The let
$$f:B^2 \rightarrow B^2$$
 is continuous. Then
 $3 \times cB^3$ s.t. $f(w) = x$.
Please well show if f doesn't have a fixed point
 \Rightarrow) $3 = \frac{1}{12} + \frac{1}{12}$

This is where we use that
$$f(x) \neq x$$
.

Define
$$R: B^2 \times [1, \delta] \longrightarrow IR^2$$
 by
 $R(\chi, 5) = (1-\delta) f(\chi) + \delta \cdot \chi$.
 R is continuous by standard theorems on continuity.
Then $R^1(S^2)$ is closed in $B^2 \times [1, \delta]$ since
the pre-image of closed sets are closed
under continuous maps.

So we have a bijection

$$\sigma: B^2 \longrightarrow R^{-1}(s^2)$$

with
 $R \cdot r(x) = r(x).$

We need to show that σ is continuous. Let $K \subset p^{-1}(s^i)$ be closed as a subspace of $p^{-i}(s^1)$. As $p^{-i}(s^1)$ is closed in $[1,\delta]$, K is also closed in $BY[2,\delta] \Rightarrow K$ is compact.

LEMMA If
$$f_{1,9}$$
; $(X_1 \times_7 - n)$ (Y, y_1)
are hornohole as prins then $f_X = 9_X$.
PECOP Let $[h] \in \Pi_1(X, \infty)$ the
 $f_X(h_1) = [f_0h] \& g_X(h_1) = f_{2H_1}$
As f & g are handly as prins so
are fold & gold \Rightarrow) $[f_0h]^{\pm} [g_0h_3]$.
LEMMA let $f_4 : X \rightarrow Y$ be a hornohopy &
let $Y_0 \in X$ be a bacquist. Let
 $\alpha(h_1 = f_e(X_e)) = \beta = f_1(X_e) = 3 \Leftrightarrow (f_1 + f_1(Y_{1,0})) = 17, (Y, y_1)$
The $\hat{\mathcal{L}} \circ [f_0]_X = f_1(X_e) = 3 \Leftrightarrow (\pi_1(Y_{1,0})) = 17, (Y, y_1)$
 \mathbb{E} $(f_1)_X : \pi_1(X_1 \times_3) \rightarrow \pi_1(Y_1, y_2)$
 $\hat{\mathcal{L}}$ $(f_1)_X : (f_1, X_e) \rightarrow \pi_1(Y_1, y_2)$
 $\hat{\mathcal{L}}$ $(f_1)_X : (f_2, h_1) \neq \hat{\mathcal{L}}$.
 $h_{\xi} : x_{\xi} (f_{\xi} \circ h_1) \neq \hat{\mathcal{L}}$.
 $h_{\xi} : x_{\xi} (f_{\xi} \circ h_1) \neq \hat{\mathcal{L}}$.
 $h_{\xi} : x_{\xi} (f_{\xi} \circ h_1) \neq \hat{\mathcal{L}}$.
 $\hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X (h_1)$.
 $\hat{\mathcal{L}}$ $(f_1)_X : \hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X (h_1)$.
 $\hat{\mathcal{L}}$ $(f_1)_X : \hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X (h_1)$.
 $\hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X (h_1)$.
 $\hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X (h_1)$.
 $\hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X (h_1)$.
 $\hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X (h_1)$.
 $\hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X : \hat{\mathcal{L}} (f_1)_X (h_1)$.

THEFUNDAMENTAL THEOREM OF ALGEBRA Let p(2) = a, 2" + a, 2" + ... +20 be a polynomial with anto & 17,1. Then 326 R st p(2) = 0. PROOF Assume that p(2) to the f. Let o: Lo,i) -> Lo,oon be a homeomorphism and define $f_{i}: s^{1} \rightarrow S^{1}$ by $f^{\xi}(z) = \frac{|b(u(\varepsilon) s)|}{b(u(\varepsilon) s)}$ $Q \leq \xi < J$ Then $\int_0 = \frac{P(0)}{P(0)}$. Then to = $\overline{p(o)}$. f, is not defined initially but ve can define $f_1(z) = \lim_{k \to 2} \frac{p(\sigma(k) z)}{p(\sigma(e)z)}$ = $\lim_{k \to 1} \frac{q_k(\sigma(k) z)^k + q_{k-1}(\sigma(e) z)^{k-1}}{(\sigma(e) z)^{k-1}} + q_0$ = 1 $\frac{q_k(\sigma(k) z)^k + q_{k-1}(\sigma(e) z)^{k-1}}{q_k(\sigma(k) z)^k + q_{k-1}(\sigma(e) z)^{k-1}} + q_0$ A< 1-1 P(x)-100 $= \lim_{n \to \infty} 2^{n} + \frac{2^{n-1}}{p(k)} + \frac{2^{n-1}}{p(k)} + \frac{2^{n-2}}{p(k)^{2}} + \dots + \frac{9}{p(k)^{n}}$ $G^{-1} / A_{h} \ge \frac{2^{h-1}}{4} + \frac{2^{h-1}}{r(t)} + \frac{2^{h-2}}{r(t)} + \frac{2^{h-2}}{r(t)} + \frac{9}{r(t)} / \frac{1}{r(t)} + \frac{1}{r(t)} + \frac{9}{r(t)} / \frac{1}{r(t)} + \frac{$ $= \frac{a_{1} 2^{1}}{(a_{n} 2^{1})^{2}} = \frac{a_{n} 2^{1}}{(a_{n} 1 2^{1})^{2}} = \frac{a_{n} 2^{1}}{(a_{n} 1 2^{1})^{2}}$ $(f_{0})_{*}(c_{43})=0$ $(f_{1})_{*}(c_{43})=4.[4]$ => cabadjutin

