Basepoint dependence How does
$$\pi_1(X, x_0)$$
 compare $\pi_1(X, x_1)$?
For our example S' clearly $\pi_1(s', z_0)$ is isomorphic to $\pi_1(s', z_0)$ for any
point $[t] \in S'$.
What if $X = S' \amalg p + ?$ That is X is the disjoint union of a circle and a point
Then $\pi_1(X, z_0) = \pi_1(s', z_0) = 72$ but $\pi_1(X, p +) \cong \pi_1(p +, p +) \cong \{e\}$.
 $\pi_1(X, x_0)$ only depends on the path component of X that contains X_0.

What if x & x, are in the same path component? Then $\pi_1(X, x) \cong \pi_1(X, x) \& every path <math>d: 20,13 \rightarrow X$ with d(0) = x, determines an explicit isomorphism:

$$\hat{\mathcal{Q}}: \ \widehat{\pi}_{1}(X, \kappa) \longrightarrow \pi_{1}(X, \kappa)$$

To define 2 we first need to generalize the constraints operation. Let $Y: [a,1] \rightarrow X \quad \& \quad B: [a,1] \rightarrow X$ be patted with $Y(a) \in B(a)$. Then $Y \neq B(d) = \begin{cases} Y(ab) & t \leq \frac{1}{2} \\ B(ab-1) & t > \frac{1}{2} \\ \end{cases}$ $Y(a) \quad Xd = Ra$ $Y(a) \quad Xd = Ra$ $Y \neq B(d) \quad Xd = Ra$ Y = Ra

Back to
$$\alpha$$
:
Define $\overline{\alpha}(\epsilon) = \alpha(\epsilon, \epsilon)$ $\widehat{\alpha} : \pi_i(\chi, \chi_i) \rightarrow \pi_i(\chi, \chi_i)$ by
 $\widehat{\alpha}(\epsilon, \chi_i) = [\overline{\alpha} + \frac{1}{2} + \frac$

3. Use general fact asain:
$$f \in T$$
, (X, X) then $\hat{\mathcal{B}}(\mathcal{Q}(LFS)) = \hat{\mathcal{B}}([\overline{\mathcal{Q}} \times f \times \alpha S])$
= $[\overline{\mathcal{O}} \times \overline{\mathcal{Q}} \times f \times \alpha \times \beta]$
= $[\alpha \times \overline{\mathcal{Q}} \times f \times \alpha \times \beta]$
= $[\alpha \times \overline{\mathcal{Q}} \times f \times \alpha \times \beta]$
= $[\alpha \times \overline{\mathcal{Q}} \times f \times \alpha \times \beta]$

FACTS A BOUT CO UC ATENATION

- X, # X2 # + Xy
- 1. order of carcitection isn't inportant. Order doesn't path honotopy dass
- 2. If di pdi the di x--- aix--- * an ~ p a. * --- ai* -- ai

INDUCED HOMOMORPHISMS Let $h: (X, x) \rightarrow (Y, y_0)$ be continuous. We define a honomorphism $h_x: \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$ by $h_x(Lf3) = [hof3].$

Again need to check that he is a well defined map and that he is a homomorphism. Again use a general fact: If highly =) hofs ~ phof.. This implies that he is a well defined Map. To see that he is a homomorphism we observe that $[h_{*}(f_{0})] \cdot [h_{*}(f_{1})] = [hof_{0} * hof_{1}] = [ho(f_{0} * f_{1})] = h_{*}(If_{0}) \cdot [f_{1}])$

LEMMA Given
$$h: (X, x_0) \rightarrow (Y, y_0) \land g: (Y, y_0) \rightarrow (Z, z_0)$$
 we have
 $g_* \circ h_* = (g \circ h)_*$.

(KOOF) The proof is tormal:

$$g_* \circ h_* (Lfs) = g_*(Lfofs) = [g_0 h_0 f] = (g_0 h_1)_* ([fs]).$$

 $h_1 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_0 f) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_1)_* ([fs]).$
 $h_2 = ef(g_1) = (g_0 h_1)_* ([fs]).$
 $h_3 = ef(g_1) = (g_0 h_1)_* ([fs]).$
 $h_4 = h_4 is an is a home or morphism.$
 $h_4 = h_4 is a home or morphism.$
 $h_4 = h_4 is a home or morphism.$

$$h^{-1}: (Y_{1} y_{0}) \longrightarrow (X_{1} x_{0}).$$

In particular $h^{-1} \cdot h^{-1} \cdot d_{X} \ge h \cdot h^{-1} = i d_{Y}.$
For the identity thup the induced map on T_{1} is also the identity since
 $(i d_{X})_{X}(T) = [i d_{X} \circ f] = [f].$
Therefore $(h^{-1})_{X} \circ h_{X} = i d \ge sinilorly$ $h_{Y} \circ (h^{-1})_{X} = i d \Longrightarrow$ h_{X} is an
isomorphism.

