Homework 8 Math 5520 - Spring 2020

Let X and Y be a path connected spaces and $B \subset Y$ a path-connected subspace. Let

 $f: B \to X$

be a continuous map. Let \sim_f be the smallest equivalence relation on the union of X and Y with $y \sim_f f(y)$ for all $y \in B$ and let $X \sqcup_f Y$ be the quotient space for this equivalence relation.

1. Let X be path-connected and B^n the closed n-dimensional map. Let

$$f: S^{n-1} = \partial B^n \to X$$

be a continuous map. If $n \ge 3$ show that if

$$\iota: X \to X \sqcup_f B^{\flat}$$

is the inclusion map then ι_* is an isomorphism.

2. Let

$$F: B \times [0,1] \to X$$

be a continuous map. Define

$$f: B \to X$$

by f(x) = F(x,0) and

$$\tilde{F}: B \times [0,1] \to X \times [0,1]$$

by $\tilde{F}(x,t) = (F(x,t),t)$. Show that $(X \times [0,1]) \sqcup_{\tilde{F}} (Y \times [0,1])$ and $X \sqcup_f Y$ are homotopy equivalent. Let

$$g: B \to X$$

be another continuous map with f and g homotopic. Show that $X \sqcup_f Y$ and $X \sqcup_g Y$ are homotopy equivalent.

3. Let $X = U \cup V$ where U and V are open in X. Let $x_0 \in U \cap V$ be a basepoint. Let

$$\iota_U : U \hookrightarrow X, \iota_V : V \hookrightarrow X \text{ and } \iota_{U \cap V} : U \cap V \hookrightarrow X$$

be the inclusion maps. If

$$(\iota_{U\cap V})_*$$
: $\pi_1(U\cap V, x_0) \to \pi_1(X, x_0)$

is injective show that

$$(\iota_U)_*: \pi_1(U, x_0) \to \pi_1(X, x_0) \text{ and } (\iota_V)_*: \pi_1(V, x_0) \to \pi_1(X, x_0)$$

are both injective.

Comments on equivalence relations: A *relation* on a set E is a subset of the product $E \times E$. Every relation can be extended to a unique smallest equivalence relation. This is a (not difficult) exercise that you should do (but you do not need to turn it in).