
Diffusion Models

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Diffusion Models

• Forward diffusion process: q(xt |xt−1), ∀t = 1, 2, . . . ,T .
• Reverse diffusion process: q(xt−1|xt , x0), ∀t = T ,T − 1, . . . , 1.
• Diffusion model learns the reverse process p(xt−1|xt) to match q(xt−1|xt , x0) for training data x0s and
t = T , . . . , 1. The learned reverse process can be applied to new sampled xT to generate new data.

Forward Diffusion Process

• Given a sample from a data distribution x0 ∼ q(x), we define a forward diffusion process by adding a
small amount of Gaussian noise in T steps (with variance schedule {βt ∈ (0, 1)}Tt=1):

q(xt |xt−1) = N (xt ;
√

1 − βtxt−1, βt I) q(x1:T |x0) =
T∏

t=1

q(xt |xt−1)

• Let αt = 1 − βt and ᾱt =
∏t

i=1 αi , we have

q(xt |x0) = N (xt ;
√
ᾱtx0, (1 − ᾱt)I)

Usually, β1 < β2 < . . . < βT . In DDPM, β1 = 10−4 and βT = 0.02. When T → ∞, xT is equivalent
to an isotropic Gaussian distribution.

Reverse Diffusion Process

• If we can reverse the above process and sample from q(xt−1|xt), we will be able to recreate the true
sample from a Gaussian noise input, xT ∼ N (0, I).

• We cannot estimate q(xt−1|xt) because it needs to use the entire dataset, therefore, we need to learn
a model pθ to approximate these conditional probabilities to run the reverse diffusion process.

pθ(x0:T) = p(xT)
T∏

t=1

pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

• The reverse conditional probability is tractable when conditioned on x0. Use Bayes’ rule, we have

q(xt−1|xt , x0) = q(xt |xt−1, x0)
q(xt−1|x0)

q(xt |x0)

∝ exp
(
−

1
2

(
(
αt

βt
+

1
1 − ᾱt−1

)x2
t−1 − (

2
√
αt

βt
xt +

2
√
ᾱt−1

1 − ᾱt−1
x0)xt−1+C(xt , x0)

))
:= N (xt−1;µq(xt , x0), β̃t I)

where C(xt , x0) is some function not involving xt−1 and the details are omitted.

Reverse Diffusion Process

• The mean and variance can be parameterized as (αt = 1 − βt and ᾱt =
∏T

i=1 αi):

β̃t = 1/(
αt

βt
+

1
1 − ᾱt−1

) =
1 − ᾱt−1

1 − ᾱt
· βt

µ̃q(xt , x0) = (

√
αt

βt
xt +

√
ᾱt−1

1 − ᾱt−1
x0)/(

αt

βt
+

1
1 − ᾱt−1

)

=

√
αt(1 − ᾱt−1)

1 − ᾱt
xt +

√
ᾱt−1βt

1 − ᾱt
x0

• Note that q(xt |x0) = N (xt ;
√
ᾱtx0, (1− ᾱt)I), we can represent then x0 = 1√

ᾱt
(xt −

√
1 − ᾱtϵt); thus

µq =

√
αt(1 − ᾱt−1)

1 − ᾱt
xt +

√
ᾱt−1βt
1 − ᾱt

1√
ᾱt

(xt −
√

1 − ᾱtϵt) =
1√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵt
)

Training: Maximize the Evidence Lower Bound (ELBO)

•
log pθ(x) =Eq(z|x)

[
log

pθ(x , z)
q(z |x)

]
+ DKL(q(z |x)||pθ(z |x)) ≥ Eq(z|x)

[
log

pθ(x , z)
q(z |x)

]
• For the multi-level case, we have

LVLB := Eq(x0:T)

[
log

q(x1:T |x0)

pθ(x0:T)

]
≥ −Eq(x0) log pθ(x0)

We need to minimize LVLB .

• Notice that we have

LVLB = Eq

[
DKL(q(xT |x0) ∥ pθ(xT))︸ ︷︷ ︸

LT

+
T∑

t=2

DKL(q(xt−1|xt , x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]

• Every KL term in LVLB (except for L0) compares two Gaussian distributions and can be computed in
closed form. LT is constant and can be ignored during training because q has no learnable parameters
and xT is a Gaussian noise. [May not be true for finite T]

Parameterization of Lt for Training Loss

• We need to learn a neural network to approximate the conditioned probability distributions in the
reverse diffusion process, pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t)).

• We train µθ to predict µq = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵt
)
. Because xt is available as input at training time,

we can reparameterize the Gaussian noise term instead to predict ϵt from the input xt at time step t:

µθ(xt , t) =
1√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵθ(xt , t)
)

• The loss term Lt is parameterized to minimize the KL divergence (closed form of KL divergence):

Lt = Ex0,ϵ

[1
2∥Σθ(xt , t)∥2

2
∥µq(xt , x0)− µθ(xt , t)∥2

]
= Ex0,ϵ

[(1 − αt)2

2αt(1 − ᾱt)∥Σθ∥2
2
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1 − ᾱtϵt , t)∥2

]
• DDPM chooses to fix βt as constants instead of making them learnable and set Σθ(xt , t) = σ2

t I,
where σt is not learned but set to βt or β̃t =

1−ᾱt−1
1−ᾱt

· βt .

Training and Sampling DDPM

• Empirically, training DDPM works better with a simplified objective that ignores the weighting term:

Lsimple
t = Et∼[1,T],x0,ϵt

[∥∥∥ϵt − ϵθ(
√
ᾱtx0 +

√
1 − ᾱtϵt , t)

∥∥∥2]

Latent Diffusion Model

• The latent diffusion model (LDM) runs the diffusion process in the latent space instead of pixel
space, making training cost lower and inference faster.

• An encoder E is used to compress the input image x ∈ RH×W×3 to a smaller 2D latent vector
z = E(x) ∈ Rh×w×c . Then an decoder D reconstructs the images from the latent vector, x̃ = D(z).

• The diffusion and denoising processes happen on the latent vector z . The denoising model is a
time-conditioned U-Net, augmented with the cross-attention mechanism to handle flexible conditioning
information for image generation (e.g. class labels).

Lt : A Score Viewpoint
• Tweedie’s formula: E[µq|xt] = xt + (1 − ᾱt)∇ log p(xt), where ∇ log p(xt) := ∇xt log p(xt).

• We have shown that q(xt |x0) = N (xt ;
√
ᾱtx0, (1 − ᾱt)I). Then, Tweedie’s formula implies that

√
ᾱtx0 = xt + (1 − ᾱt)∇ log p(xt) ⇒ x0 =

xt + (1 − ᾱt)∇ log p(xt)√
ᾱt

.

• The ground-truth denoising transition mean µq(xt , x0) again and derive a new form:

µq(xt , x0) =

√
αt(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)x0

1 − ᾱt
=

1√
αt

xt +
1 − αt√
αt

∇ log p(xt)

• Therefore, we can set our approximate denoising transition mean µθ(xt , t) as follows:

µθ(xt , t) =
1√
αt

xt +
1 − αt√
αt

sθ(xt , t).

• Then Lt can be written as follows (score matching):

Lt = DKL

(
q(xt−1|xt , x0)||pθ(xt−1|xt)

)
=

1
2∥Σθ∥2

2

(1 − αt)
2

αt

[
∥sθ(xt , t)−∇ log p(xt)∥2

2

]
Here, sθ(xt , t) is a neural network that learns to predict the score function ∇ log p(xt).

Some Score Matching Algorithms

• Explicit score matching: learns θ so that ψ(x ; θ) best matches the corresponding score of the true
distribution, i.e. ∂ log p(x)

∂x . The corresponding objective function is

JESMp (θ) = Ep(x)

[1
2

∥∥∥ψ(x ; θ)− ∂ log p(x)
∂x

∥∥∥2]
,

since p is unknown, we do not have explicit regression targets ∂ log p(x)
∂x .

• Implicit score matching: Notice that

Ep(x)

[1
2

∥∥∥ψ(x ; θ)− ∂ log p(x)
∂x

∥∥∥2]
︸ ︷︷ ︸

JESMp (θ)

= Ep(x)

[1
2
∥ψ(x ; θ)∥2 +

d∑
i=1

∂ψi (x ; θ)
∂xi

]
︸ ︷︷ ︸

JISMp (θ)

+C1,

where ψi (x ; θ) = ψ(x ; θ)i and C1 is a constant that does not depend on θ. This yields an implicit score
matching objective JISMp that no longer requires having an explicit score target for p.

• Denoising score matching:

> Given i.i.d. samples {x (1), . . . , x (n)} ∼ p(x), the Parzen window density estimator is

pσ(x̃) =
1
n

n∑
t=1

pσ(x̃ |x (t)) =
1
n

n∑
t=1

1
(2π)d/2σd

e−
1

2σ2 ∥x̃−x(t)∥2

> Explicitly matching ψ(x ; θ) with the score of Parzen windows density estimator gives

JESMpσ
(θ) = Epσ(x̃)

[1
2

∥∥∥ψ(x̃ ; θ)− ∂ log pσ(x̃)
∂x

∥∥∥2]
.

> Consider pairs of clean and corrupted data (x , x̃) ∼ pσ(x̃ , x) = pσ(x̃ |x)p0(x), we define the
following denoising score matching (DSM) objective:

JDSMpσ
(θ) = Epσ(x,x̃)

[1
2

∥∥∥ψ(x̃ ; θ)− ∂ log pσ(x̃ |x)
∂x̃

∥∥∥2]
.

With Gaussian kernel, we have ∂ log pσ(x̃|x)
∂x̃ = 1

σ2 (x − x̃).

• ESM and ISM directly samples from the true distribution. In contrast, DSM approximates the Parzen
window density estimator from the samples – Gaussian mixture.

Yuhao Huang, Qingsong Wang, Akwum Onwunta, Bao Wang, Efficient Score Matching
via Deep Equilibrium Layers, ICLR, 2024.

Score-based Generative Models

Score-based Generative Models

• We choose a sequence of noise levels {σt}Tt=1 and define a sequence of perturbed data distributions:

pσt (xt) =
∫

p(x)N (xt ; x , σ2
t I)dx .

Notice that none of pσt (xt) is a Gaussian mixture, and DSM can be worse than SSM.

• Then, a neural network sθ(x , t) is used to learn the score function for all noise levels simultaneously:

argmin
θ

T∑
t=1

λ(t)Epσt (xt)

[
∥sθ(x , t)−∇ log pσt (xt)∥

2
2

]
,

where λ(t) is a positive weighting function that conditions on noise level t.

• Furthermore, we use annealed Langevin dynamics sampling as a generative procedure, in which
samples are produced by running Langevin dynamics for each t = T , . . . , 2, 1 in sequence.

• The initialization is chosen from a fixed prior, e.g. uniform, and each subsequent sampling step starts
from the final samples of the previous simulation. The noise levels steadily decrease over timesteps t,
and we reduce the step size over time. [Some related theoretical analysis.]

Score SDE Formulation

• Forward SDE: The diffusion process can be viewed as the following SDE:

dx = f (x , t)dt + g(t)dw , t ∈ [0,T],

where p0(x) = p(x) is the data distribution. After perturbing p(x) for a sufficiently long time T ,
pT (x) becomes close to a tractable noise distribution π(x), called a prior distribution.

• Reverse SDE: The sampling is done via a corresponding reverse-time SDE of the forward process:

dx = [f (x , t)− g(t)2∇x log pt(x)]dt̄ + g(t)dw̄ , t ∈ [0,T],

where t̄ denotes time traveling backward from T to 0 and ∇x log pt(x) is the score function.

• The training objective is a weighted sum of score-matching objective:

L := Et

{
λ(t)Ex0Eq(xt |x0)

[
∥sθ(x , t)−∇xt log p(xt |x0)∥2

2

]}
where x0 is sampled from the data distribution p0 and λ(t) is sampled from the data distribution p0

and λ(t) is the positive weighting function. q(xt |x0) is the Gaussian transition kernel associated with
the forward process. For example, q(xt |x0) = N (xt ; x0, σ

2(t)I).

Probability flow ODE

• Probability flow ODE (PFO): PFO is the continuous-time ODE that supports the deterministic
process which shares the same marginal probability density with SDE. The corresponding PFO is

dx =
[
f (x , t)− 1

2
g(t)2∇x log pt(x)

]
dt.

PFO can be solved with larger step sizes as they have no randomness.

• Problem: Enforcing guidance in the SDE design for particular applications.

Reference:
https://arxiv.org/abs/2209.15408

https://arxiv.org/abs/2209.15408

Figure: We map data to a noise distribution (prior) with an SDE, and reverse this SDE for generative
modeling. We can also reverse the associated probability flow ODE, yielding a deterministic process
that samples from the same distribution as the SDE.

Guided Diffusion Models

Guidance

• So far, we have focused on modeling just the data distribution p(x). However, we are often also
interested in learning conditional distribution p(x |y), enabling us to control the data we generated
through conditioning information y . This is the backbone of DALL-E2 and Imagen.

• We can add arbitrary conditioning information y at each transition step as follows:

p(x0:T |y) = p(xT)
T∏

t=1

pθ(xt−1|xt , y).

For example, y could be a low-resolution image to perform super-resolution on or physical properties in
material sciences and biophysics.

• The two most popular forms of guidance are Classifier Guidance and Classifier-Free Guidance.

Classifier Guidance

• Consider learning ∇ log p(xt |y), the score of the conditional model, at arbitrary noise levels t.

• By Bayes rule, we have

∇ log p(xt |y) = ∇ log
(p(xt)p(y |xt)

p(y)

)
= ∇ log p(xt)︸ ︷︷ ︸

unconditional score

+ ∇ log p(y |xt)︸ ︷︷ ︸
adversarial gradient

. (1)

• In Classifier Guidance, the score of an unconditional diffusion model is learned as previously derived,
alongside a classifier that takes in arbitrary noisy xt and attempts to predict conditional information y .
In sampling, the overall conditional score function is used for annealed Langevin dynamics.

• We can rescale the adversarial gradient of the noisy classifier to get

∇ log p(xt |y) = ∇ log p(xt) + γ∇ log p(y |xt). (2)

Classifier-Free Guidance

• Train a separate classifier in favor of an unconditional diffusion model and a conditional diffusion
model. To derive the score function under Classifier-Free Guidance, we can first rearrange (1) to

∇ log p(y |xt) = ∇ log p(xt |y)−∇ log p(xt). (3)

• Substituting (3) into (2), we get

∇ log p(xt |y) = ∇ log p(xt) + γ(∇ log p(xt |y)−∇ log p(xt))
= γ∇ log p(xt |y)︸ ︷︷ ︸

conditional score

+ (1 − γ)∇ log p(xt)︸ ︷︷ ︸
unconditional score

(4)

• Learning two separate diffusion models is expensive, we can learn both conditional and unconditional
diffusion models together as a singular conditional model: the unconditional diffusion model can be
queried by replacing the conditioning information with fixed constant values, such as zeros.

AI for Science

Controllable generation for inverse problem solving

• Accelerate MRI and CT: Achieving even better performance than supervised or unrolled deep learning
approaches, while being more robust to different measurement processes at test time.

• Inverse problems are the same as Bayesian inference. Let the forward process of generating y from x
is given by the transition probability p(y |x), the inverse problem is to compute p(x |y).

• From Bayes’ rule, we have p(x |y) = p(x)p(y |x)/
∫
p(x)p(y |x)dx . Taking gradient w.r.t. x on both

sides, leading to the following Bayes’ rule for score functions

∇x log p(x |y) = ∇x log p(x) +∇x log p(y |x). (5)

• Through score matching, we can train a model to estimate the score function of the unconditional
data distribution, i.e. sθ(x) ≈ ∇x log p(x).

• This will allow us to compute the posterior score function ∇x log p(x |y) from the known forward
process p(y |x) via (5), and sample from it with Langevin-type sampling.

ConfGF

References:
http://proceedings.mlr.press/v139/shi21b/shi21b.pdf

https://proceedings.neurips.cc/paper_files/paper/2021/file/
a45a1d12ee0fb7f1f872ab91da18f899-Paper.pdf

http://proceedings.mlr.press/v139/shi21b/shi21b.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a45a1d12ee0fb7f1f872ab91da18f899-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a45a1d12ee0fb7f1f872ab91da18f899-Paper.pdf

• Molecular Conformation Prediction: Given an undirected graph G = (V ,E) with each node vi
associated with a nuclear charge Zi and a 3D vector ri , indicating its atomic type and atomic
coordinate, respectively. All distances between connected nodes d = {dij} ∈ R|E |. We extend the
original molecular graph by adding auxiliary edges, i.e., virtual bonds, between atoms that are 2 or 3
hops away. Given an extended molecular graph G = (V ,E), our goal is to learn a generative model to
generate molecular conformations R = (r1, r2, . . . , r|V |) based on the molecular graph.

• We aim to model the score function of the p.d.f. w.r.t. conformation s(R) = ∇R log p(R|G). As
log p(R|G) is roto-translation invariant w.r.t. conformations, so is the score function s(R).

• To ensure s(R) is roto-translational equivariant, ConfGF parameterize the log-density of coordinates
R given the molecular graph G as log pθ(R|G) := fG ◦ gG (R) = fG (d), where gG : R|V |×3 → R|E | maps
a set of atomic coordinates to a set of interatomic distances, and fG : R|E | → R is a GNN that
estimates the negative energy of a molecule based on the interatomic distances d and the graph G .

• Estimating the gradient fields of atomic coordinates can be translated to estimating the gradient
fields of interatomic distances, which can be estimated using score-based generative models.

• Note that the interatomic distances d are continuously differentiable w.r.t. atomic coordinates R.
Therefore, the two gradient fields, ∇R log pθ(R|G) and ∇d log pθ(d |G), are connected by chain rule:

sθ(R)i =
∂fG (d)
∂ri

=
∑

(i,j),eij∈E

∂fG (d)
∂dij

· ∂dij
∂ri

=
∑
j∈N(i)

1
dij

· ∂fG (d)
∂dij

· (ri − rj) =
∑
j∈N(i)

1
dij

· sθ(d)ij · (ri − rj),

where sθ(R)i = ∇ri log pθ(R|G) and sθ(d)ij = ∇dij log pθ(d |G).

• By the above observation, we first train a noise conditional score network sθ(d , σ) to approximate
∇d̃ log qσ(d̃ |G). We then calculate the gradient fields of atomic coordinates sθ(R, σ) from sθ(d , σ).
Such designed score network sθ(R, σ) enjoys roto-translation equivariance.

• Let {σi}Li=1 be a geometric progression with common ratio γ, i.e. σi/σi−1 = γ. We define the
perturbed conditional distance distribution qσ(d̃ |G) to be

∫
p(d |G)N (d̃ |d , σ2

i I)dd . We aim to learn a
conditional score network to jointly estimate the scores of all perturbed distance distributions, i.e.
∀σ ∈ {σi}Li=1 : sθ(d̃ , σ) ≈ ∇d̃ log qσ(d̃ |G). Note that sθ(d̃ , σ) ∈ R|E | – Much higher-dimension.

• ConfGF circumvents directly modeling atomic coordinates using intermediate geometric variables
such as atomic distances, bond, and torsion angles, which are roto-translational invariant.

• We embed node and edge attributes into low-dimensional feature spaces using feedforward networks

h0
i = MLP(Zi) ∀vi ∈ V ; heij = MLP(eij , dij), ∀eij ∈ E .

Then use graph isomorphism network to compute node embeddings based on graph structures:

hl
i = MLP(hl−1

i +
∑
j∈N(i)

ReLU(hl+1
j + heij)).

We compute the final edge embeddings by concatenating the corresponding node embeddings:

ho
eij = hN

i ||hN
j ||heij .

• We parameterize the noise conditional network with sθ(d̃ , σ) = sθ(d̃)/σ as follows

sθ(d̃)ij = MLP(ho
eij), ∀eij ∈ E ,

where sθ(d̃) is an unconditional score network, and the MLP maps edge embeddings to a scalar for
each eij ∈ E . Note that sθ(d̃ , σ) is roto-translation invariant as we only use interatomic distances.

EDM

denoisediffusedenoisediffuse

Reference: https://arxiv.org/abs/2203.17003

https://arxiv.org/abs/2203.17003

• EDM learns to denoise a diffusion process with an equivariant network that jointly operates on both
continuous (atom coordinates) and categorical features (atom types).

• A conditional distribution p(y |x) is equivariant to the action of rotations or reflections when

p(y |x) = p(Ry |Rx), for all orthogonal R.

A distribution is invariant to R transformation if p(y) = p(Ry), for all orthogonal R.

• If x ∼ p(x) is invariant to a group and the transition probabilities of a Markov chain y ∼ p(y |x) are
equivariant, then the marginal distribution of y at any time step is invariant to group transformations.
It means that if p(zT) is invariant and the neural network p(xt−1|xt) is equivariant, then the marginal
distribution p(x) of the denoising model will be invariant.

• Parameterize diffusion model (the noise term) using EGNN.

• Problem: How to extend EDM to score-based diffusion models?

GeoLDM: Geometric Latent Diffusion Models for 3D Molecule Generation

Diffusion Process

Atomic Space

Learned Denoising Process

Latent Space

ℰ𝜙

𝒟ξ

x, h zx, zh
𝑡 = 0 𝑇

𝜖𝜃

Reference: https://proceedings.mlr.press/v202/xu23n/xu23n.pdf

https://proceedings.mlr.press/v202/xu23n/xu23n.pdf

• Each molecule is represented as points cloud G = (x , h), where x = (x1, . . . , xN) ∈ RN×3 are the atom
coordinates and h = (h1, . . . , hN) ∈ RN×d are the node features, such as atomic type and charges.

Unconditional generation. With a collection of molecules G, learn parameterized generative models
pθ(G) which can generate diverse and realistic molecules Ĝ in 3D.

Controllable generation. With molecules G that has certain properties s, learn conditional generation
models pθ(G|s), which can conduct controllable molecule generation given desired property value s.

• The learned likelihood should be invariant to roto-translation.

• Geometric autoencoder: The encoder Eϕ encodes G into latent domain z = Eϕ(x , h) and the decoder
Dξ learns to decode z back to data domain x̃ , h̃ = Dξ(z).

• Parameterization of latent space as invariant scalar-valued features is challenging. Geometric AE
requires an additional function ψ to represent appropriate group actions for encoding, and aligning
output and input positions for decoding, to solve the reconstruction task.

• GeoLDM incorporates equivariance into E and D by constructing latent features as point-structured
variables z = (zx , zh) ∈ RN×(3+k), which holds 3D equivariant and kD invariant latent features zx and
zh for each node. GeoLDM implements it by parameterizing E and D with EGNN, which extracts both
invariant and equivariant embeddings.

• The latent space z contains not only scalars (invariant features) zh but also tensors (equivariant
features) zx . This requires the distribution of latent DMs to satisfy pθ(zx , zh) = pθ(Rzx , zh), ∀R, and
GeoLDM implements latent DMs using EGNN.

• For the number of nodes N, we need to sample different numbers N for generating molecules of
different sizes. We use the distribution p(N) of molecular sizes on the training set. Then for generation,
we can first sample N ∼ p(N) and then generate latent variables and node features in size N.

• DMs are capable of controllable generation with given conditions s, by modeling conditional
distributions p(z |s). This in DMs can be implemented with conditional denoising networks ϵθ(z , t, s),
with the critical difference that it takes additional input s.

SyMat: Towards Symmetry-Aware Generation of Periodic Materials

Reference: https://arxiv.org/abs/2307.02707

https://arxiv.org/abs/2307.02707

• SyMat generates atom types and lattices of materials by generating atom type sets, lattice lengths,
and lattice angles with VAE. SyMat further employs a symmetry-aware score-based diffusion model to
generate atom coordinates of materials.

• Assume there are n atoms in a unit cell of the periodic material M = (A,P, L), where A, P ∈ R3×n,
and L ∈ R3×3 are the atom type vector, coordinate matrix, and lattice matrix, resp.

• We are given a dataset M = {Mj}mj=1 where each Mj is assumed to be sampled from the distribution
p(·), which is invariant to the following symmetry transformation:

> Permutation. If we permute A to get A′ and use the same order to permute the column
vectors of P to obtain P ′. Let M ′ = (A′,P ′, L), then p(M) = p(M ′).

> Rotation and translation. For any M = (A,P, L), we can rotate and translate its atom
positions to obtain M ′ = (A,P ′, L′). Then p(M) = p(M ′).

> Periodic transformation. A periodically equivalent coordinate matrix PK of P can be obtained
by periodic transformation as PK = P + LK , where K ∈ Z3×n. Let M = (A,P, L) and
MK = (A,PK , L) then p(M) = p(MK).

• We learn a generative model pθ(·) from the given dataset M to capture the real data distribution
p(·), and the learned generation model can generate a valid material structure M using pθ(M).

SyMat: Atom Type and Lattice Generation

• Using VAE to directly generate and capture the distribution of A and L needs to include permutation
invariance of A and rotation invariance of L. SyMat transforms A and L to items that are invariant to
symmetry transformations and makes these items the direct generation targets of the VAE model.

(1) We count the number of atoms for every type and represent A with an unordered k-element
atom type set c = {(e1, n1), . . . , (ek , nk)}. We see that c is invariant to any permutation on A.

(2) We use six rotation-invariant items for lattice L generation, including three lattice lengths
l = [l1, l2, l3] and three lattice angles ϕ = [ϕ12, ϕ13, ϕ23], where ϕij is the angle between li and lj .

• The VAE model used for generating c , l , and ϕ consists of an encoder and a decoder. The encoder
uses symmetry-aware SphereNet that takes a material M = (A,P, L) as inputs and outputs a latent
variable zA ∈ Rd and a latent variable zL ∈ Rf .

• For any material M = (A,P, L) in M, the encoder first maps it to latent variable zA and zL.
Afterwards, the decoder uses zA and zL to reconstruct the exact c , l , and ϕ obtained from A and L.

SyMat: Coordinate Generation

• SyMat generates the coordinate matrix P conditioned on A and L using a score-based diffusion
model with score matrix ∇P log p(P|A, L).

• ∇P log p(P|A, L) satisfies:

(1) ∇P log p(P|A, L) is equivariant to permutations on A and P

(2) ∇QP+b1⊤ log p(QP + b1⊤|A,QL) = Q∇P log p(P|A, L) for any orthogonal matrix Q and b

(3) ∇P+LK log p(P + LK |A, L) = ∇P log p(P|A, L) holds for any K ∈ Z3×n.

• We formulate ∇P log p(P|A, L) as a score function of edge distances in a graph created by a multi
graph method. For M with coordinates P = [p1, . . . , pn] and lattice matrix L, multi graph method
produces an n-node undirected graph on M – the node i corresponds to the i-th atom in the unit cell,
and an edge is added between any two nodes i , j if one of the interatomic distances between them is
within cutoff r .

• The interatomic distances between i , j are the distances between their corresponding atoms in the
complete infinite structure of M , including both the distance within the unit cell and the distance
crossing the unit cell boundary. Formally, the set of all edges in the graph constructed on M can be
written as E(M) = {(i , j , k) : ∥pi + Lk − pj∥2 ≤ r , k ∈ Z3, 1 ≤ i , j ≤ n}.

SyMat: Coordinate Generation

• Let di,j,k = ∥pi + Lk − pj∥2 be the distance of the edge (i , j , k), we consider log p(P|A, L) as a
function of the distances of all edges in E(M). Denoting si as the score function of pi , then
∇P log p(P|A, L) = [s1, . . . , sn]. From the chain rule, we can calculate si as

si =
∑

(j,k)∈N (i)

∇di,j,k log p(P|A, L) · ∇pi di,j,k =
∑

(j,k)∈N (i)

si,j,k · pi + Lk − pj

di,j,k
,

where si,j,k = ∇di,j,k log p(P|A, L) is the score function of the distance di,j,k . ∇P log p(P|A, L) can be
approximated by first approximating si,j,k for every edge in the multi-graph representation of M , then
calculating each column vector of ∇P log p(P|A, L).

• If si,j,k is invariant to all symmetry transformations described before for every edge (i , j , k), the score
matrix ∇P log p(P|A, L) satisfies the desired symmetry.

• SyMat uses SphereNet as the score model sθ(·) to approximate ∇P log p(P|A, L). sθ(·) takes the
multi-graph representation of M as input and outputs oi,j,k as the approximated si,j,k at every edge
(i , j , k) in the input graph.

DiffCSP: Crystal Structure Prediction by Joint Equivariant Diffusion

Reference: https://arxiv.org/abs/2309.04475

https://arxiv.org/abs/2309.04475

• Representation of crystal structures. A 3D crystal can be represented as the infinite periodic
arrangement of atoms in 3D space, and the smallest repeating unit is called a unit cell. A unite cell
can be defined by a triplet M = (A,X , L), where A = [a1, . . . , aN] ∈ Rh×N denotes the list of the
one-hot representation of atom types, X = [x1, . . . , xN] ∈ R3×N consists of Cartesian coordinates of the
atoms, and L = [l1, l2, l3] ∈ R3×3 represents the lattice matrix consisting three basic vectors to describe
the periodicity of the crystal. The infinite periodic crystal structure is represented by

{(a′
i , x

′
i)|a′

1 = ai , x ′
i = xi + Lk , ∀k ∈ Z3×1},

where the j-th element of the integral vector k denotes the integral 3D translation in units of lj .

Fractional coordinate system. The Cartesian coordinate system X leverages three standard orthogonal
bases as the coordinate axes. The fractional coordinate system uses the lattices (l1, l2, l3) as the bases.
A point represented by fractional coordinate vector f = [f1, f2, f3]

⊤ ∈ [0, 1)3 corresponds to Cartesian
vector x =

∑3
i=1 fi li . Using a fractional coordinate system, we denote the crystal by M = (A,F , L),

where the fractional coordinates of all atoms in a cell compose the matrix F = [0, 1)3×N .

Task. CSP predicts for each unite cell the lattice matrix L and the fractional matrix F given its
chemical composition A, namely, learning the conditional distribution p(L,F |A).

• Generating crystal structures requires not only modeling the distribution of the atom coordinates
within every cell but also inferring how their bases (a.k.a. lattice vectors) are placed in 3D space.

• Periodic E(3) invariance: Any E(3) transformation of the crystal coordinates does not change the
physical law and thus keeps the crystal distribution invariant. Moreover, crystal structure prediction
(CSP) exhibits unique challenges due to the periodicity of the atom arrangement in crystals.

• DiffCSP jointly generates the lattice and atom coordinates for each crystal using a periodic E(3)
equivariant diffusion model, to model the crystal geometry.

• DiffCSP leverages the fractional coordinate systems other than the Cartesian system, which encodes
periodicity intrinsically. The fractional representation not only allows us to consider Wrapped Normal
(WN) distribution to better model the periodicity, but also facilitates the design of the denoising model
via the Fourier transformation.

• The denoising process in diffusion models acts like a force field that drives the atom coordinates
towards the energy local minimum and thus is able to increase stability.

• We consider three types of symmetries in p(L,F |A):
> (Permutation invariance) For any permutation P ∈ SN , p(L,F |A) = p(L,FP|AP), i.e.
changing the order of atoms will not change the distribution.

> (O(3) invariance) For any orthogonal transformation Q ∈ R3×3, p(QL,F |A) = p(L,F |A).
> (Periodic translation invariance) For ∀t ∈ R3×1, p(L,w(F + t1⊤)|A) = p(L,F|A), where the
function w(F) = F − ⌈F⌉ ∈ [0, 1)3×N returns the fractional part of each element in F .

• The permutation invariance is encapsulated by using GNNs. We focus on periodic E(3) invariance.

• With the help of the fractional system, the periodic E(3) invariance is made tractable by fulfilling
O(3) invariance on L and periodic translation invariance on F .

• L is a continuous variable; we use equivariant DDPM to accomplish the generation.

• The domain of fractional coordinates [0, 1)3×N induced by periodicity. DDPM is not suited to
generate F – the normal distribution used in DDPM cannot model the cyclical and bounded domain.

• We use a score matching-based framework along with Wrapped Normal (WN) distribution to fit the
specificity here. During the forward process, we first sample each column of ϵF ∈ R3×N from N (0, I),
and then acquire Ft = w(F0 + σtϵF). This truncated sampling implies the WN transition:

q(Ft |F0) ∝
∑

Z∈Z3×N

exp
(
− ∥Ft − F0 + Z∥2

F

2σ2
t

)
.

This process ensures the probability distribution over [z , z + 1)3×N for any integer z to be the same to
keep the crystal periodicity. q(Ft |F0) is periodic translation equivariant, and approaches a uniform
distribution U(0, 1) if σT is sufficiently large.

• The marginal distribution p(F0) is periodic translation invariant if ϵ̂F (Mt , t) is periodic translation
invariant, i.e. ϵ̂F (Lt ,Ft ,A, t) = ϵ̂F (Lt ,w(Ft + t1⊤),A, t), ∀t ∈ R3.

• Training objective: LF = EFt∼q(Ft |F0),t∼U(1,T)

[
λt∥∇Ft log q(Ft |F0)− ϵ̂F (Mt , t)∥2

2

]
,

