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Recall

The Euclidean group E (n) := {isometries of the Euclidean space Rn}
E (n) is parametrized by (Q, t) where Q ∈ O(n), t ∈ Rn and the
associated isometry on Rn is x ∈ Rn 7→ Qx + t
For any spatial embedding X ∈ Rn×m, the isometry (Q, t) can
transform the column vectors of X simultaneously by

X → QX + t1⊤m

where 1m ∈ Rm×1 is a vector of ones.

The Euclidean distance matrix D(X ) of X is defined by

D(X )ij = d(xi , xj)2 = ||xi − xj ||2

where xi is the i−th column vector of X .
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Recall: Euclidean distance matrix

Let S be the operator sending X to X⊤X .

Let D be the operator defined by

D(S) = δ(S)1⊤ − 2S + 1δ(S)⊤

where S is any symmetric matrix and is a column vector of the
diagonal elements of S . Then we see that D(X ) = D(S(X )).

For any vector b ∈ Rm, we define Mb := {X ∈ Rn×m|Xb = 0}.

Proposition

The restriction Db : S(Mb) → D(Mb) of the operator D on S(Mb) is
bijective.
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Group Representation

Definition

A representation of a group G on a vector space V is a map
ρ : G → GL(V ) such that

ρ(g · h) = ρ(g)ρ(h) for any g , h ∈ G

In particular, we say that ρ is a trivial representation if ρ sends all the
elements of G to the identity mapping of V .

For example, ρ : E (n) → GL(n + 1) defined by

(Q, g = (g1, g2, · · · , gn)) 7→


1 0 · · · 0 g1
0 1 · · · 0 g2
...

...
. . .

...
...

0 0 · · · 1 gn
0 0 · · · 0 1


[
Q 0
0 1

]

is a representation of E(n) on Rn
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Equivariance and Invariance

Definition

Let ρV : G → GL(V ) and ρW : G → GL(W ) be the representations of G
on vector spaces V and W , respectively.
A (nonlinear) function ϕ : V → W is said to be equivariant if

ϕ(ρV (g)(x)) = ρW (g)(ϕ(x)) for any g ∈ G , x ∈ X ,

that is, we have the following commutative diagram for any g ∈ G

V V

W W

ϕ

ρV (g)

ϕ

ρW (g)

In particular, we say that ϕ is invariant when ρW is a trivial group action.
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E (n) Equivariant and Invariant Functions

Definition: E (n) Equivariant Functions

A function f : Rn×m → Rn×m′
is said to be E (n) equivariant, if for any

orthogonal matrix Q ∈ Rn×n and any vector t ∈ Rn, we have

f (QX + t1⊤m) = Qf (X ) + t1⊤m′

where X is an arbitrary matrix in Rn×m

Definition: E (n) Invariant Functions

A function g : Rn×m → Rn×m′
is said to be E (n) invariant, if for any

orthogonal matrix Q ∈ Rn×n and any vector t ∈ Rn, we have

g(QX + t1⊤m) = g(X )

where X is an arbitrary matrix in Rn×m
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Orthogonally Equivariant and Invariant Functions

Fundamental theorem of invariant theory for orthogonal groups

If g(X ) is an orthogonal invariant function, it can be written as a function
of X⊤X .

Proposition [Villar et al., 2021] or [Ma and Ying, 2022]

For any orthogonal equivariant function f , i.e., f (QX ) = Qf (X ), there is
an orthogonal invariant function g s.t.

f (X ) = Xg(X )

In particular, each column vector of f (X ) is a linear combination of the
column vectors of X where g(X ) gives the coefficient.
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Orthogonally Equivariant and Invariant Functions

Proof.

Assume f (X ) ∈ Rn×1 and let V := span(x1, . . . , xm) where x1, . . . , xm are
the column vectors of X . Decompose f (X ) into the sum v + u where
v ∈ V and u ∈ V⊥ and consider the orthogonal matrix

Qu = I − 2

||u||2
uu⊤. Clearly, Quw = w for any w ∈ V and Quu = −u.

So the equivariance implies that

f (QuX ) = Qu f (X ) = Qu(v + u) = v − u

On the other hand, since Qu preserves every vector in V , we see that
QuX = X and then f (QuX ) = f (X ) = v + u which forces u = 0. Thus,
f (X ) = v lies in V , i.e. we can write f (X ) = Xg(X ).
Moreover, since QXg(QX ) = f (QX ) = Qf (X ) = QXg(X ), we have
Xg(QX ) = Xg(X ) for any orthogonal matrix Q. So one can choose
g(X ) to be orthogonal invariant.
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Theorem for E (n) Equivariant and Invariant Functions

Theorem

If g is a Euclidean invariant function, then g can be written as a function
of the Euclidean matrix D(X ).

Proposition [Villar et al., 2021]

For any E (n) equivariant function f : Rn×m → Rn×m′
, there is a Euclidean

invariant function g : Rn×m → Rm×m′
s.t. 1Tmg(X ) = 1

T
m′ and

f (X ) = Xg(X )
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Necessary and sufficient condition

Corollary

f : Rn×m → Rn×m′
is a E (n) equivariant function if and only if there is a

function g : Rm×m → Rm×m′
s.t.

1
T
mg(D(X )) = 1

T
m′ and f (X ) = Xg(D(X ))

Proof.

For any orthogonal matrix Q and vector t ∈ Rn, we have

f (QX + t1Tm) = (QX + t1Tm)g(D(QX + t1Tm))

= (QX + t1Tm)g(D(X ))

= QXg(D(X )) + t1Tm′

= Qf (X ) + t1Tm′
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Central Idea: Direct sum decomposition

Let Me1 be the subset {X ′ ∈ Rn×m|X ′e1 = 0} consisting of all the
matrices with zero first column vector.

Define a map ϕ : Rn×m → Rn ⊕Me1 as follows:

ϕ(X ) = (Xe1)⊕ (X − Xe11⊤m)

where e1 = [1, 0, . . . , 0]⊤ and Xe1 is the first column vector of X .

Define a compatible E (n) action on Rn ⊕Me1 :

(Q, t) · (x ,X ′) = (Qx + t,QX ′)

Remark that this direct sum decomposition absorbs the effect of
translation into its first component, so it becomes easier to study the
impact of translation on functions.
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Central Idea: Direct sum decomposition

Lemma

ϕ is a E (n) equivariant bijection.

Proof.

One can check that ϕ−1(x ,X ′) = x1⊤m +X ′ is the inverse of ϕ. Moreover,
for any orthogonal matrix Q and vector t ∈ Rn, we have

ϕ(QX + t1⊤m) = ((QX + t1⊤m)e1)⊕ (QX + t1⊤m − (QX + t1⊤m)e11
⊤
m)

= (QXe1 + t)⊕ (Q(X − Xe11⊤m))
= (Q, t) · ϕ(X )

So we conclude that ϕ is a E (n) equivariant bijection.
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Proof of our main theorem

We sketch our proof:

ϕ allows us to consider X ∼= x ⊕ X ′ as the input of functions

Note that x is translation equivariant and X ′ is translation invariant.

This forces that a translation invariant function is independent of x
Then apply the orthogonal invariance (resp. equivariance) to deduce
the desired form of invariant (resp. equivariant) functions.

Also, the bijectivity of Db : S(Mb) → D(Mb) gives the
correspondence between X ′⊤X ′ and D(X ′)

Clearly, D(X ′) = D(X ) since X ′ = X − (Xe1)1⊤m
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Revisit: Equivariant Graph Neural Networks (EGNN)

Equivariant Graph Convolutional Layer [Satorras et al., 2021b]

mij = ϕe(hl
i ,h

l
j , ∥x l

i − x l
j ∥2, aij)

x l+1
i = x l

i + C
∑
j ̸=i

(x l
i − x l

j )ϕx(mij)

mi =
∑
j ̸=i

mij

hl+1
i = ϕh(hl

i ,mi )

(1)

x l
i ∈ Rn is the coordinate embedding of node vi at layer l

C is chosen to be 1/(M − 1) that computes the average of the sum

ϕx : Rnf → R is a learnable function (approximated by MLPs)
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Discussion

The updating scheme for x l
i satisfies the condition given in our

theorem.

However, it will face an exploding problem (without a control of
magnitude).

A modification of EGNN has been done in [Satorras et al., 2021a] to
make it stable

x l+1
i = x l

i +
∑
j ̸=i

(x l
i − x l

j )

||x l
i − x l

j ||+ C
ϕx(mij)

where they set C to be 1 (to ensure the differentiability)

We should be able to design a better way to solve this problem.
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Motivation

THe message passing in EGNN

mij = ϕe(hl
i ,h

l
j , ∥x l

i − x l
j ∥2, aij)

mi =
∑
j ̸=i

mij

hl+1
i = ϕh(hl

i ,mi )

It sends invariant information mij .

Question

Can we do message passing by sending equivariant information?

Answer

Design a message passing sending steerable messages.

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 19 / 33



Steerable Vectors

Definition

We say a vector space V is steerable for a group G if there is a
representation ρ : G → GL(V ) of G on V . Also, the vectors in V are
called steerable vectors.

We use Tilde ˜ to denote steerable vectors.

Steerability of a vector h̃ means that for any g ∈ G , the vector is
transformed by g via matrix multiplication ρ(g)h̃.
For example, a Euclidean vector in R3 is steerable for rotations
g = R ∈ SO(3) by multiplying the vector on right hand side.
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Properties of Representations

Definition

Let ρ : G → GL(V ) be a representation.

ρ is said to be unitary if ρ(g−1) = ρ(g)∗ for any g ∈ G

A representation ρ|W of G on a vector subspace W ⊂ V is said to be
a subrepresentation if ρ|W (g) = ρ(g)|W .

In particular, there is always a trivial subrepresentation given by the
G−invariant subspace V G := {v ∈ V |ρ(g)v = v for any g ∈ G}.

Definition

A representation ρ : G → GL(V ) is said to be irreducible if it has only
trivial subrepresentations (given by V and 0). On the other hand, if V has
a proper nontrivial G−invariant subspace, ρ is said to be reducible.
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Completely Reducible Representations

Definition

A representation ρ : G → GL(V ) is said to be completely reducible if it
decomposes as a direct sum of irreducible subrepresentations.
In particular, there is an invertible matrix P s.t. for any g ∈ G , we have

P−1ρ(g)P =


ρ(1)(g) 0 · · · 0

0 ρ(2)(g) · · · 0
...

...
. . .

...

0 0 · · · ρ(k)(g)


= ρ(1)(g)⊕ ρ(2)(g)⊕ · · · ⊕ ρ(k)(g)

Theorem

Finite-dimensional unitary representations of any group are completely
reducible.
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Wigner-D matrices

We have a well understanding of all the irreducible representations of
SO(3) (and hence O(3) = SO(3)× {±I})
Indeed, any irreducible representation of SO(3) is characterized by
l-th degree Wigner-D matrices D(l)(g) for some l ≥ 0.

They define the only irreducible representation D(l) : SO(3) → GL(V )
on a (2l + 1)-dimensional vector space V (l).

V (l) will be referred to as type-l steerable vector space.

Remark

The trivial representation is given by the direct sum of copies of D0.

The natural representation on R3 is given by D(1)
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Spherical Harmonic

Question

How to convert a given vector into a steerable vector?

Given a vector x ∈ R3.

Re-scale the vector to a vector
x

∥x∥
on S2

Then convert it to a type-l steerable vector ã(l) through (real)

spherical harmonics Y
(l)
m : S2 → R where m = −l , . . . , l . That is,

ã(l) =

(
Y

(l)
m

(
x

∥x∥

))T

m=−l ,...,l

This construction is equivariant since for any g ∈ O(3), we have

D(l)(g)ã(l) =

(
Y

(l)
m

(
g · x
∥x∥

))T

m=−l ,...,l
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Spherical Harmonic & Fourier Transform on the Sphere

Spherical harmonics {Y (l)
m : S2 → R|l ≥ 0,−l ≤ m ≤ l} form an

orthonormal basis of L2R(S
2), the Hilbert space of square-integrable

functions on the sphere.

Indeed, for any function f : S2 → R in L2R(S
2), we have the expansion

f =
∞∑
l=0

l∑
m=−l

a
(l)
m Y

(l)
m

where the coefficients are given by

a
(l)
m =

∫
S2

f Y
(l)
m dS2

Here ã = (a
(l)
m )l≥0,−l≤m≤l is a steerable vector in VL =

⊕
l=0

V (l)
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Spherical Harmonic & Fourier Transform on the Sphere

Figure: Visual representations of the first few real spherical harmonics. Blue
portions represent regions where the function is positive, and yellow portions
represent where it is negative. The distance of the surface from the origin
indicates the absolute value of Y (l)

m (θ, φ) in angular direction (θ, φ).
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Clebsh-Gordan (CG) tensor product

The Clebsh-Gordan (CG) tensor product

⊗w
cg : V (l1) × V (l2) → V (l)

is a bilinear operator between steerable vector spaces defined by

(h̃(l1) ⊗w
cg h̃(l2))

(l)
m = w

l1∑
m1=−l1

l2∑
m2=−l2

C
(l ,m)
(l1,m1)(l2,m2)

h
(l1)
m1 h

(l2)
m2 ,

h̃(l) ∈ V (l) = R2l+1 denote a steerable vector of type l and h
(l)
m its

components for m = −l , . . . , l

w is a learnable parameter

C
(l ,m)
(l1,m1)(l2,m2)

are the Clebsh-Gordan coefficients (ensure the resulting

vector is type-l steerable)

This product is commonly sparse, as many coefficients are zero.
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Clebsh-Gordan (CG) tensor product

Note that it combines two steerable input vectors of types l1 and l2
and then returns a steerable vector of type l .

There is no limitation on the choices of l1, l2, and l

For a fix steerable vector ã and a collection of learnable parameters
W , we define the steerable linear layer conditioned on ã to be

Wãh̃ = h̃ ⊗W
cg ã

where h̃ is a steerable vector.

This steerable linear layer is equivariant, i.e.

(D(l1)(g)h̃)⊗W
cg (D(l2)(g)ã) = D(l)(g)(h̃ ⊗W

cg ã)

When l is chosen to be 0, Wã defines a steerable linear layer mapping
into V (0) and hence is an invariant function.
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Steerable MLPs

A steerable n−layers MLP is constructed as follows:

M̃LP(h̃) = σ(W (n)
ã (. . . (σ(W (1)

ã h̃))))

where σ is a steerable activation function to ensure the equivariance,
i.e. for any g ∈ O(3),

D ′(g)M̃LP(h̃) = M̃LP(D(g)h̃)

Several classes of steerable activation functions are Fourier-based
[Cohen et al., 2018], norm-altering [Thomas et al., 2018] and
gated-non-linearities [Weiler et al., 2018].
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Steerable Equivariant GNNs (SEGNNs)

The message passing equations are extended by considering an update to
the steerable node features f̃ ∈ VL at node vi via the following steps:

m̃ = ϕm

(
f̃i , f̃j , ∥xi − xj∥2, ãij

)
,

f̃ ′
i = ϕf

f̃i ,
∑

j∈N (i)

m̃ij , ãi

 .

∥xi − xj∥ is the relative distance between i−th node and j−th node

ϕm and ϕf are O(3) steerable MLPs

The steerable edge attribute ãij ∈ VL is obtained by converting
xi − xj into steerable vectors of different types and then
concatenating them together

ãi =
∑

j∈N (i)

ãij is the node attribute in VL.
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Discussion

We see that steerable models propagate steerable messages

However, the data is acted by the trivial representation or the natural
representation; we should be able to analyze steerable models from
the perspective of general forms.

For example, a steerable model predicting an invariant output should
be able to write as a function of relative distances.
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