Lecture 10. Dimension Reduction

Bao Wang Department of Mathematics Scientific Computing and Imaging Institute University of Utah Math 5750/6880, Fall 2023

• Dimension reduction: mapping data in a high dimensional space into a new space whose dimensionality is much smaller.

Linear dimension reduction: if the original data is in \mathbb{R}^d and we want to embed it into $\mathbb{R}^n (n < d)$ then we would like to find a matrix $\boldsymbol{W} \in \mathbb{R}^{n \times d}$ that induces the mapping $x \rightarrow Wx$.

Outline

• Random projection

• Principal component analysis (PCA)

• Compressed sensing

• Random projection: probably approximately preserves the pairwise distance

• PCA: the high-dimensional data can be nearly recovered from the reduced data

• Compressed sensing: acquire reduced data and reconstruct the complete data from the reduced data

Random Projections

• The first natural criterion for choosing W is in a way such that the pairwise distance between reduced data is probably approximately the same as that of the original data.

$$
\mathbb{P}\left[\left|\frac{\|\mathbf{W}\mathbf{x}_i-\mathbf{W}\mathbf{x}_j\|^2}{\|\mathbf{x}_i-\mathbf{x}_j\|^2}-1\right|>\epsilon\right]\leq o(\epsilon)
$$

• We show that reducing the dimension by using a random linear transformation leads to a simple compression scheme with surprisingly low distortion. — Nearly preserving pairwise distance.

 \bullet The transformation $\bm{x} \rightarrow \bm{W} \bm{x}$, when \bm{W} is a random matrix (each $W_{i,j}$ is an independent normal random variable), is often referred to as a random projection.

 \bullet Let $\pmb{x}_1,\pmb{x}_2\in\mathbb{R}^d$. A matrix $\pmb{W}\in\mathbb{R}^{n\times d}$ with $n < d$ does not distort too much the distance between x_1 and x_2 if the ratio

$$
\frac{\|\textit{\textbf{W}}{\textbf{x}}_1-\textit{\textbf{W}}{\textbf{x}}_2\|}{\|\textit{\textbf{x}}_1-\textit{\textbf{x}}_2\|}
$$

is close to 1.

• In other words, the distances between x_1 and x_2 before and after the transformation are almost the same. To show that $||Wx_1 - Wx_2||$ is not too far away from $||x_1 - x_2||$ it suffices to show that W does not distort the norm of the difference vector $x = x_1 - x_2$.

• Therefore, from now on we focus on the ratio $\frac{\|Wx\|}{\|x\|}$.

• We start with analyzing the distortion caused by applying a random projection to a single vector.

• Lemma 2. Fix some $x \in \mathbb{R}^d$. Let $\boldsymbol{W} \in \mathbb{R}^{n \times d}$ be a random matrix such that each $W_{i,j}$ is an independent Gaussian random variable. Then, for every $\epsilon \in (0,3)$ we have

$$
\mathbb{P}\left[\left|\frac{\| (1/\sqrt{n}) {\bm W} {\bm x} \|^2}{\|{\bm x}\|^2} - 1\right| > \epsilon\right] \leq 2 e^{-\epsilon^2 n/6}.
$$

Lemma: Concentration of χ^2 Variables

• Let X_1, \dots, X_k be k independent Gaussian random variables, i.e. $X_i \sim N(0, 1)$. The distribution of the random variable X_i^2 is call χ^2 and the distribution of the random variable $Z=X_1^2+\cdots+X_k^2$ is called χ_k^2 . Clearly, $\mathbb{E}[X_i^2]=1$ and $\mathbb{E}[Z]=k$. The following lemma states that X^2_k is concentrated around its mean.

• Lemma. Let $Z \sim \chi^2_k$. Then, for all $\epsilon > 0$ we have

$$
\mathbb{P}[Z \leq (1-\epsilon)k] \leq e^{-\epsilon^2 k/6},
$$

and for all $\epsilon \in (0, 3)$ we have

$$
\mathbb{P}[Z \geq (1+\epsilon)k] \leq e^{-\epsilon^2k/6}.
$$

Finally, for all $\epsilon \in (0, 3)$,

$$
\mathbb{P}[(1-\epsilon)k \leq Z \leq (1+\epsilon)k] \geq 1-2e^{-\epsilon^2k/6}.
$$

Proof of Lemma 2.

 \bullet Without loss of generality, we can assume that $\|\textbf{x}\|^2 = 1$. Therefore, an equivalent inequality is

$$
\mathbb{P}\Big[(1-\epsilon)n\leq \|\mathbf{Wx}\|^2\leq (1+\epsilon)n\Big]\geq 1-2e^{-\epsilon^2n/6}.
$$

 \bullet Let w_i be the *i-*the row of \pmb{W} . The random variable $\langle \pmb{w}_i, \pmb{x}\rangle$ $(\pmb{x}\in \mathbb{R}^d$ is given) is a weighted sum of d independent normal random variables and therefore it is normally distributed with zero mean and variance $\sum_j x_j^2 = \|\textbf{x}\|^2 = 1$ (the variance of $(\textbf{\textit{w}}_i)_i * x_i$ is x_i^2 , also var $(r_1+r_2)=\text{var}(r_1)+\text{var}(r_2)$, i.e., $\langle \mathbf{w}_i, \mathbf{x}\rangle$ is the standard Gaussian).

• Therefore, the random variable $\|W\mathbf{x}\|^2 = \sum_{i=1}^n (\langle \mathbf{w}_i, \mathbf{x} \rangle)^2$ has a χ^2_n distribution. The claim now follows directly from a measure concentration property of χ^2 random variables.

Lemma 3. [Johnson-Lindenstrauss Lemma] Let Q be a finite set of vectors in \mathbb{R}^d . Let $\delta \in (0, 1)$ and *n* be an integer such that

$$
\epsilon = \sqrt{\frac{6\log(2|Q|/\delta)}{n}} \leq 3.
$$

Then, with probability at least $1-\delta$ over a choice of a random matrix $\boldsymbol{W} \in \mathbb{R}^{n \times d}$ such that each element of W is distributed normally with zero mean and variance of $1/n$ we have \mathbf{r}

$$
\sup_{\mathbf{x}\in Q}\left|\frac{\|\mathbf{Wx}\|^2}{\|\mathbf{x}\|^2}-1\right|<\epsilon.
$$

Proof. Combining Lemma 2 and the union bound $(P(A\bigcup B)\leq P(A)+P(B))$ we have that for every $\epsilon \in (0, 3)$:

$$
\mathbb{P}\left[\sup_{\mathbf{x}\in Q}\left|\frac{\|\mathbf{Wx}\|^2}{\|\mathbf{x}\|^2}-1\right|>\epsilon\right]\leq 2|Q|e^{-\epsilon^2n/6}.
$$

Let δ denote the right-hand-side of the inequality; thus we obtain that

$$
\epsilon = \sqrt{\frac{6 \log(2|Q|/\delta)}{n}}.
$$

Remark. Interestingly, the bound given in the JL lemma does not depend on the original dimension of x . In fact, the bound holds even if x is in an infinite dimensional Hilbert space.

Principal Component Analysis (PCA)

• Another natural criterion for choosing W is in a way that will enable a reasonable recovery of x from Wx is possible.

Principal component analysis (PCA)

 \bullet Let ${\bm x}_1, \cdots, {\bm x}_m$ be m vectors in \mathbb{R}^d . We would like to reduce the dimensionality of these vectors using a linear transformation.

 \bullet A matrix $\pmb{\mathcal{W}}\in\mathbb{R}^{n\times d}$, where $n < d$, induces a mapping $\pmb{x}\to\pmb{\mathcal{W}}\pmb{x}$, where $\pmb{\mathcal{W}}\pmb{x}\in\mathbb{R}^n$ is the lower dimensionality representation of $\boldsymbol{z}.$ Then, a second matrix $\boldsymbol{U} \in \mathbb{R}^{d \times n}$ can be used to (approximately) recover each original vector x from its compressed version.

• That is, for a compressed vector $y = Wx$, where y is in the low dimensional space \mathbb{R}^n , we can construct $\tilde{\pmb{x}} = \pmb{U} \pmb{y}$, so that $\tilde{\pmb{x}}$ is the recovered version of \pmb{x} and resides in the original high dimensional space \mathbb{R}^d . We want $\|{\mathbf{x}} - \tilde{{\mathbf{x}}}\|$ to be small.

• PCA: find the compression matrix W and the recovering matrix U so that the total squared distance between the original and recovered vectors is minimal:

$$
\arg\min_{\boldsymbol{W}\in\mathbb{R}^{n\times d},\boldsymbol{U}\in\mathbb{R}^{d\times n}}\sum_{i=1}^{m}\|\boldsymbol{x}_i-\boldsymbol{U}\boldsymbol{W}\boldsymbol{x}_i\|^2.
$$
 (1)

• To solve problem [\(1\)](#page-16-0), we first show that the optimal solution takes a specific form.

• Lemma 1. Let (U, W) be a solution to [\(1\)](#page-16-0). Then the columns of U are orthonormal (namely, $\bm{U}^\top \bm{U}$ is the identity matrix of $\mathbb{R}^n)$ and $\bm{W} = \bm{U}^\top.$

Proof.

• Fix any U, W and consider the mapping $x \rightarrow UWx$. The range of this mapping, $R=\{\textit{UWx}: \textit{x}\in \mathbb{R}^{d}\},$ is an n dimensional linear subspace of $\mathbb{R}^{d}.$

 \bullet Let $\boldsymbol{V} \in \mathbb{R}^{d \times n}$ be a matrix whose columns form an orthonormal basis of this subspace, namely, the range of V is R and $V^{\top}V = I$. Therefore, each vector in R can be written as $\boldsymbol{V} \boldsymbol{y}$ where $\boldsymbol{y} \in \mathbb{R}^n$.

 \bullet Also, for every $\pmb{x} \in \mathbb{R}^d$ and $\pmb{y} \in \mathbb{R}^n$, we have

$$
\|\mathbf{x}-\mathbf{V}\mathbf{y}\|^2=\|\mathbf{x}\|^2+\mathbf{y}^\top\mathbf{V}^\top\mathbf{V}\mathbf{y}-2\mathbf{y}^\top\mathbf{V}^\top\mathbf{x}=\|\mathbf{x}\|^2+\|\mathbf{y}\|^2-2\mathbf{y}^\top(\mathbf{V}^\top\mathbf{x}),
$$

where we used the fact that $\bm V^\top \bm V$ is the identity matrix of $\mathbb R^n.$

• Minimizing the preceding expression w.r.t. \boldsymbol{v} by comparing the gradient w.r.t. \boldsymbol{v} to zero gives that $y = V^{\top}x$. Therefore, for each x we have that

$$
\boldsymbol{V}\boldsymbol{V}^{\top}\boldsymbol{x} = \arg\min_{\tilde{\boldsymbol{x}} \in R} \|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|^2.
$$

• In particular this holds for x_1, \dots, x_m and therefore we can replace U, W by V, V^{\top} and by that do not increase the objective

$$
\sum_{i=1}^m \|\mathbf{x}_i - \mathbf{U}\mathbf{W}\mathbf{x}_i\|_2^2 \geq \sum_{i=1}^m \|\mathbf{x}_i - \mathbf{V}\mathbf{V}^\top \mathbf{x}_i\|_2^2.
$$

Since this holds for every U, W the proof of the lemma follows.

• Lemma 1 indicates that we can rewrite the optimization problem [\(1\)](#page-16-0) as follows:

$$
\arg\min_{\boldsymbol{U}\in\mathbb{R}^{d\times n},\boldsymbol{U}^{\top}\boldsymbol{U}=\boldsymbol{I}}\sum_{i=1}^{m}\|\boldsymbol{x}_i-\boldsymbol{U}\boldsymbol{U}^{\top}\boldsymbol{x}_i\|_2^2.
$$
 (2)

PCA

 \bullet We further simplify the optimization problem: For every $\bm{x}\in\mathbb{R}^d$ and $\bm{U}\in\mathbb{R}^{d\times n}$ such that $\mathbf{U}^\top \mathbf{U} = \mathbf{I}$ we have

$$
\|\mathbf{x} - \mathbf{U}\mathbf{U}^\top \mathbf{x}\|^2 = \|\mathbf{x}\|^2 - 2\mathbf{x}^\top \mathbf{U}\mathbf{U}^\top \mathbf{x} + \mathbf{x}^\top \mathbf{U}\mathbf{U}^\top \mathbf{U}\mathbf{U}^\top \mathbf{x} = \|\mathbf{x}\|^2 - \mathbf{x}^\top \mathbf{U}\mathbf{U}^\top \mathbf{x} = \|\mathbf{x}\|^2 - \text{trace}(\mathbf{U}^\top \mathbf{x}\mathbf{x}^\top \mathbf{U}),
$$
(3)

where the trace of a matrix is the sum of its diagonal entries.

• Since the trace is a linear operator, this allows us to rewrite [\(2\)](#page-20-0) as follows:

$$
\arg\max_{\boldsymbol{U}\in\mathbb{R}^{d\times n}: \boldsymbol{U}^{\top}\boldsymbol{U}=\boldsymbol{I}}\text{trace}\left(\boldsymbol{U}^{\top}\sum_{i=1}^{m}\boldsymbol{x}_{i}\boldsymbol{x}_{i}^{\top}\boldsymbol{U}\right).
$$
 (4)

• trace($\mathbf{A} + \mathbf{B}$) = trace(\mathbf{A}) + trace(\mathbf{B})

PCA

• Let $\boldsymbol{A} = \sum_{i=1}^{m} \boldsymbol{x}_i \boldsymbol{x}_i^{\top}$.

• The matrix \bm{A} is symmetric (all eigenvalues are real and \bm{A} is diagonalizable) and therefore it can be written using its spectral decomposition as $A = VDV^{\top}$. where D is diagonal and $V^{\top}V = VV^{\top} = I$. Here, the elements on the diagonal of D are the eigenvalues of \boldsymbol{A} and the columns of \boldsymbol{V} are the corresponding eigenvectors.

• We assume without of generality that $D_{1,1} \geq D_{2,2} \geq \cdots \geq D_{d,d}$. Since **A** is positive semidefinite it holds that $D_{d,d} > 0$. We claim that the solution to [\(4\)](#page-21-0) is the matrix U whose columns are the *n* eigenvectors of **A** corresponding to the largest *n* eigenvalues.

 \bullet Theorem. Let $\mathsf{x}_1,\cdots,\mathsf{x}_m$ be arbitrary vectors in \mathbb{R}^d , let $\boldsymbol{A}=\sum_{i=1}^m\mathsf{x}_i\mathsf{x}_i^\top$, and let u_1, \dots, u_n be eigenvectors of the matrix **A** corresponding to the largest *n* eigenvalues of \bm{A} . Then, the solution to the PCA optimization problem given in [\(1\)](#page-16-0) is the set \bm{U} to be the matrix whose columns are u_1, \dots, u_n and to set $W = U^{\top}$.

Proof.

 \bullet Let $\bm{V}\bm{D}\bm{V}^\top$ be the spectral decomposition of \bm{A} . Fix some matrix $\bm{U} \in \mathbb{R}^{d \times n}$ with orthonormal columns and let $B = V^{\top}U$. Then, $VB = VV^{\top}U = U$. It follows that

$$
\boldsymbol{U}^\top \boldsymbol{A} \boldsymbol{U} = \boldsymbol{B}^\top \boldsymbol{V}^\top \boldsymbol{V} \boldsymbol{D} \boldsymbol{V}^\top \boldsymbol{V} \boldsymbol{B} = \boldsymbol{B}^\top \boldsymbol{D} \boldsymbol{B},
$$

and therefore

$$
\text{trace}(\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U}) = \text{trace}(\boldsymbol{B}^{\top}\boldsymbol{D}\boldsymbol{B}) = \sum_{j=1}^{d} D_{j,j} \sum_{i=1}^{n} B_{j,i}^{2}.
$$

• Note that $B^{\top}B = U^{\top}VV^{\top}U = U^{\top}U = I$. Therefore, the columns of B are also orthonormal, implying that $\sum_{i=1}^n\sum_{j=1}^dB^2_{j,i}=\sum_{j=1}^d\sum_{i=1}^nB^2_{j,i}=n.$ In addition, let $\tilde{\bm{B}} \in \mathbb{R}^{d \times d}$ be a matrix such that its first n columns are the columns of \bm{B} and in addition $\tilde{\bm{B}}^\top\tilde{\bm{B}}=\bm{I}$. Then, we have $\sum_{i=1}^d \tilde{B}_{j,i}^2=1, \forall j,$ implying that $\sum_{i=1}^n B_{j,i}^2\leq 1.$

• It follows that

$$
\text{trace}(\bm{U}^{\top}\bm{A}\bm{U}) = \sum_{j=1}^{d} D_{jj}\beta_j \leq \max_{\beta \in [0,1]^d: ||\beta||_1 = n} \sum_{j=1}^{d} D_{j,j}\beta_j. \quad (\beta_j = \sum_{i=1}^{n} B_{j,i}^2 \in [0,1], \sum_{j=1}^{d} \beta_j = n)
$$

It is not hard to verify that the right-hand side equals to $\sum_{j=1}^n D_{j,j}$ (note that $D_{j,j}$ has been sorted and by setting $\beta_1 = \cdots \beta_n = 1$ and $\beta_{n+1} = \cdots = \beta_d = 0$.

 \bullet We have therefore shown that for every matrix $\bm{U} \in \mathbb{R}^{d \times n}$ with orthonormal columns it hold that $\text{trace}(\boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U})\leq\sum_{j=1}^{n}D_{j,j}.$

• On the other hand, if we set U to be the matrix whose columns are the n leading eigenvectors of A we obtain that

trace(
$$
\mathbf{U}^{\top} \mathbf{A} \mathbf{U}
$$
) = $\sum_{j=1}^{n} D_{j,j}$, using spectral decomposition of **A**.

Remark. The proof of the above theorem tells us that:

 $>$ the value of the objective of [\(4\)](#page-21-0) is $\sum_{i=1}^{n} D_{i,i}$;

 $>$ combine this with [\(3\)](#page-21-1) and note that $\sum_{i=1}^m \|{\bm{x}}_i\|^2 = \text{trace}({\bm{A}}) = \sum_{i=1}^d D_{i,i}$ we obtain that the optimal objective value of (1) is $\sum_{i=n+1}^{d} D_{i,i}.$

Remark. It is a common practice to "center" the examples before applying PCA. That is, we first calculate $\mu = \frac{1}{n}$ $\frac{1}{m}\sum_{i=1}^{m}x_{i}$ and then apply PCA on the vectors $(x_{1}-\mu), \cdots$, $(x_m - \mu)$.

• In some situations, the original dimensionality of the data is much larger than the number of examples m. The computational complexity of calculating the PCA solution as described previously is $O(d^3)$ (for calculating eigenvalues of **A**) plus $O(md^2)$ (for constructing the matrix \bm{A}).

• How to calculate PCA solution efficiently when $d \gg m$?

A More Efficient Solution for the Case $d \gg m$

- \bullet Recall that the matrix \boldsymbol{A} is defined to be $\sum_{i=1}^m \boldsymbol{x}_i \boldsymbol{x}_i^\top.$
- We can rewrite $\bm A=\bm X^\top\bm X$ where $\bm X\in\mathbb R^{m\times d}$ is a matrix whose *i*-th row is $\bm x_i^\top.$
- \bullet Consider the matrix $\bm{B} = \bm{X} \bm{X}^\top.$ That is, $\bm{B} \in \mathbb{R}^{m \times m}$ is the matrix whose i,j element equals $\langle \pmb{x}_i, \pmb{x}_j \rangle$.
- Suppose that **u** is an eigenvector of **B**: That is, $\boldsymbol{B}\boldsymbol{u} = \lambda \boldsymbol{u}$ for some $\lambda \in \mathbb{R}$.
- Multiplying the equality by X^{\top} and using the definition of B we obtain $\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top} \mathbf{u} - \lambda \mathbf{X}^{\top} \mathbf{u}$.

 \bullet But using the definition of $\bm A$, we get that $\bm A(\bm X^\top \bm u)=\lambda(\bm X^\top \bm u)$. Thus, $\frac{\bm X^\top \bm u}{\|\bm X^\top \bm u\|}$ is an eigenvector of **A** with eigenvalue of λ .

• We can therefore calculate the PCA solution by calculating the eigenvalues of \bm{B} instead of **A**. The complexity is $O(m^3)$ (for calculating eigenvalues of **B**) and m^2d (for constructing the matrix B).

PCA <code>Input</code> <code>A</code> matrix of m examples $\boldsymbol{X} \in \mathbb{R}^{m \times d}$, number of components n. if $(m > d)$ $A = X^{\top}X$, let u_1, \dots, u_n be the eigenvectors of A with largest eigenvalues else $B = XX^{\top}$ Let v_1, \dots, v_n be the eigenvectors of **B** with largest eigenvalues for $i=1,\cdots,n$ set $\textbf{\textit{u}}_i = \frac{1}{\|\textbf{\textit{X}}^\top \textbf{\textit{v}}_i\|} \textbf{\textit{X}}^\top \textbf{\textit{v}}_i$ output u_1, \cdots, u_n

 \bullet To illustrate how PCA works, let us generate vectors in \mathbb{R}^2 that approximately reside on a line, namely, on a one dimensional subspace of $\mathbb{R}^2.$

• For example, suppose that each example is of the form $(x, x + y)$ where x is chosen uniformly at random from $[-1, 1]$ and y is sampled from a Gaussian distribution with mean 0 and standard deviation of 0.1. Note that $\bm A = \sum_{i=1}^m \bm x_i \bm x_i^\top \sim \begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$ with

$$
\lambda_1 = 0 \; (\textbf{v}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}) \text{ and } \lambda_2 = 2 \; (\textbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}).
$$

● Suppose we apply PCA to this data. Then, the eigenvector corresponding to the largest eigenvalue is $(1/\sqrt{2}, 1/\sqrt{2})$. When projecting a point $(x, x + y)$ on this principal component we will obtain the scalar $(2x + y)/\sqrt{2}$. The reconstruction of the original vector will be $(1/\sqrt{2},1/\sqrt{2})*(2x+y)/\sqrt{2}=((x+y/2),(x+y/2)).$ In Figure [1,](#page-33-0) we depict the original versus reconstructed data.

Figure: A set of vectors in \mathbb{R}^2 (blue) and their reconstruction after dimensionality reduction to \mathbb{R}^1 using PCA (red).

Compressed Sensing

• Compressed sensing is a dimensionality reduction technique which utilizes a prior assumption that the original vector is sparse in some basis.

Ground truth 25% subsampling in k-space (MRI) Reconstruction

 \bullet To motivate compressed sensing, consider a vector $\textbf{x} \in \mathbb{R}^{d}$ that has at most $s \ll a$ nonzero elements. That is,

$$
\|\mathbf{x}\|_0 := |\{i : x_i \neq 0\}| \leq s.
$$

Clearly, we can compress x by representing it using s (index, value) pairs. This compression is lossless – we can reconstruct x exactly from the s (index, value) pairs.

• Now, let us take one step forward and assume that $x = U\alpha$ where α is a sparse vector, $\|\alpha\|_0 \leq s$, and U is a fixed orthonormal matrix. That is, x has a sparse representation in another basis. It turns out that many natural vectors are (at least approximately) sparse in some representations. – For instance, the natural image in wavelet representation.

• Can we still compress x into roughly s numbers?

• One simple way to do this is to multiply x by U^{\top} , which yields the sparse vector α . and then represent α by its s (index,value) pairs. However, this requires us to first to "sense" x , to store it, and then to multiply it by U^{\top} .

• This raises a very natural question: $Why go to so much effort to acquire all the data$ when most of what we get will be thrown away? Cannot we just directly measure the part that will not end up being thrown away?

Compressed sensing

• Compressed sensing is a technique that simultaneously acquires and compresses the data. The key result is that a random linear transformation can compress x without losing information.

• The number of measurements needed is order of $s \log(d)$ rather than order d. That is, we roughly acquire only the important information about the signal.

• It is possible to reconstruct any sparse signal fully if it was compressed by $x \to Wx$, where W is a matrix which satisfies a condition called the Restricted Isoperimetric Property (RIP). A matrix that satisfies this property is guaranteed to have a low distortion of the norm of any sparse representable vector.

Compressed sensing

Definition. [RIP] A matrix $\mathcal{W} \in \mathbb{R}^{n \times d}$ is (ϵ, s) -RIP if for all $\mathbf{x} \neq 0$ s.t. $\|\mathbf{x}\|_0 \leq s$ we have

$$
\left|\frac{\|\mathbf{Wx}\|^2}{\|\mathbf{x}\|^2}-1\right|\leq \epsilon.
$$

• Theorem 1. Let $\epsilon < 1$ and let W be a $(\epsilon, 2s)$ -RIP matrix. Let x be a vector s.t. $\|\mathbf{x}\|_0 \leq s$, let $\mathbf{y} = \mathbf{W}\mathbf{x}$ be the compression of x, and let

$$
\tilde{\mathbf{x}} \in \arg\min_{\mathbf{v}: \mathbf{Wv} = \mathbf{y}} \|\mathbf{v}\|_0,
$$

be a reconstructed vector. Then, $\tilde{\mathbf{x}} = \mathbf{x}$.

• Remark. The theorem above establishes that RIP matrices yield a lossless compression scheme for sparse vectors. It also provides a (nonefficient) reconstruction scheme.

Proof. We assume, by contradiction, that $\tilde{\mathbf{x}} \neq \mathbf{x}$. Since x satisfies the constraints in the optimization problem that defines \tilde{x} we clearly have that $\|\tilde{x}\|_0 \leq \|x\|_0 \leq s$. Therefore, $\|\mathbf{x} - \tilde{\mathbf{x}}\|_0 \leq 2s$ and we can apply the RIP inequality on the vector $\mathbf{x} - \tilde{\mathbf{x}}$. But, since $W(x - \tilde{x}) = 0$ we get that $|0 - 1| \le \epsilon$, which leads to a contradiction.

The reconstruction scheme given in Theorem 1 seems to be nonefficient because we need to minimize a combinatorial objective (the sparsity of \boldsymbol{v}). Quite surprisingly, it turns out that we can replace the combinatorial objective, $\|\mathbf{v}\|_0$, with a convex objective, $\|\mathbf{v}\|_1$, which leads to a linear programming problem that can be solved efficiently.

Theorem 2. Assume that the conditions of Theorem 1 holds and that $\epsilon < \frac{1}{1+\sqrt{2}}$. Then

$$
\boldsymbol{x} = \arg\min_{\boldsymbol{v}: \boldsymbol{W}\boldsymbol{v} = \boldsymbol{y}} \|\boldsymbol{v}\|_0 = \arg\min_{\boldsymbol{v}: \boldsymbol{W}\boldsymbol{v} = \boldsymbol{y}} \|\boldsymbol{v}\|_1.
$$

When a matrix is RIP

• A random matrix with $n > \Omega(s \log(d))$ are likely to be RIP.

• In fact, multiplying a random matrix by an orthonormal matrix also provides an RIP matrix.

• This is important for compressing signals of the form $x = U\alpha$ where x is not sparse but α is sparse. In that case, if W is a random matrix and we compress using $y = Wx$ then this is the same as compressing α by $y = (WU)\alpha$ and since WU is also RIP we can reconstruct α (and thus also x) from y.

More precisely, we have:

Theorem 3. Let **U** be an arbitrary fixed $d \times d$ orthonormal matrix, let ϵ , δ be scalars on $(0, 1)$, let s be an integer in $[d]$, and let n be an integer that satisfies

$$
n \geq 100 \frac{s \log(40d/(\delta \epsilon))}{\epsilon^2}.
$$

Let $\pmb{\mathcal{W}}\in\mathbb{R}^{n\times d}$ be a matrix s.t. each element of $\pmb{\mathcal{W}}$ is distributed normally with zero mean and variance of $1/n$. Then, with probability at least $1 - \delta$ over the choice of W, the matrix WU is (ϵ, s) -RIP.