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• Dimension reduction: mapping data in a high dimensional space into a new space
whose dimensionality is much smaller.

Linear dimension reduction: if the original data is in Rd and we want to embed it
into Rn(n < d) then we would like to find a matrix W ∈ Rn×d that induces the
mapping x →Wx .



Outline

• Random projection

• Principal component analysis (PCA)

• Compressed sensing



• Random projection: probably approximately preserves the pairwise distance

• PCA: the high-dimensional data can be nearly recovered from the reduced data

• Compressed sensing: acquire reduced data and reconstruct the complete data from
the reduced data



Random Projections



• The first natural criterion for choosing W is in a way such that the pairwise distance
between reduced data is probably approximately the same as that of the original data.

P

[∣∣∣∣∣‖Wxi −Wxj‖2

‖xi − xj‖2
− 1

∣∣∣∣∣ > ε

]
≤ o(ε)



• We show that reducing the dimension by using a random linear transformation leads
to a simple compression scheme with surprisingly low distortion. — Nearly preserving
pairwise distance.

• The transformation x →Wx , when W is a random matrix (each Wi ,j is an
independent normal random variable), is often referred to as a random projection.



• Let x1, x2 ∈ Rd . A matrix W ∈ Rn×d with n < d does not distort too much the
distance between x1 and x2 if the ratio

‖Wx1 −Wx2‖
‖x1 − x2‖

is close to 1.

• In other words, the distances between x1 and x2 before and after the transformation
are almost the same. To show that ‖Wx1−Wx2‖ is not too far away from ‖x1− x2‖ it
suffices to show that W does not distort the norm of the difference vector x = x1− x2.

• Therefore, from now on we focus on the ratio ‖Wx‖
‖x‖ .



Random projections

• We start with analyzing the distortion caused by applying a random projection to a
single vector.

• Lemma 2. Fix some x ∈ Rd . Let W ∈ Rn×d be a random matrix such that each
Wi ,j is an independent Gaussian random variable. Then, for every ε ∈ (0, 3) we have

P

[∣∣∣∣∣‖(1/
√
n)Wx‖2

‖x‖2
− 1

∣∣∣∣∣ > ε

]
≤ 2e−ε

2n/6.



Lemma: Concentration of χ2 Variables

• Let X1, · · · ,Xk be k independent Gaussian random variables, i.e. Xi ∼ N(0, 1). The
distribution of the random variable X 2

i is call χ2 and the distribution of the random
variable Z = X 2

1 + · · ·+ X 2
k is called χ2

k . Clearly, E[X 2
i ] = 1 and E[Z ] = k . The

following lemma states that X 2
k is concentrated around its mean.

• Lemma. Let Z ∼ χ2
k . Then, for all ε > 0 we have

P[Z ≤ (1− ε)k] ≤ e−ε
2k/6,

and for all ε ∈ (0, 3) we have

P[Z ≥ (1 + ε)k] ≤ e−ε
2k/6.

Finally, for all ε ∈ (0, 3),

P[(1− ε)k ≤ Z ≤ (1 + ε)k] ≥ 1− 2e−ε
2k/6.



Proof of Lemma 2.
• Without loss of generality, we can assume that ‖x‖2 = 1. Therefore, an equivalent
inequality is

P
[
(1− ε)n ≤ ‖Wx‖2 ≤ (1 + ε)n

]
≥ 1− 2e−ε

2n/6.

• Let wi be the i-the row of W . The random variable 〈wi , x〉 (x ∈ Rd is given) is a
weighted sum of d independent normal random variables and therefore it is normally
distributed with zero mean and variance

∑
j x

2
j = ‖x‖2 = 1 (the variance of (wi )i ∗ xi is

x2
i , also var(r1 + r2) = var(r1) + var(r2), i.e., 〈wi , x〉 is the standard Gaussian).

• Therefore, the random variable ‖Wx‖2 =
∑n

i=1(〈wi , x〉)2 has a χ2
n distribution. The

claim now follows directly from a measure concentration property of χ2 random
variables.



Johnson-Lindenstrauss Lemma

Lemma 3. [Johnson-Lindenstrauss Lemma] Let Q be a finite set of vectors in Rd . Let
δ ∈ (0, 1) and n be an integer such that

ε =

√
6 log(2|Q|/δ)

n
≤ 3.

Then, with probability at least 1− δ over a choice of a random matrix W ∈ Rn×d such
that each element of W is distributed normally with zero mean and variance of 1/n we
have

sup
x∈Q

∣∣∣∣∣‖Wx‖2

‖x‖2
− 1

∣∣∣∣∣ < ε.



Proof. Combining Lemma 2 and the union bound (P(A
⋃
B) ≤ P(A) + P(B)) we

have that for every ε ∈ (0, 3):

P

[
sup
x∈Q

∣∣∣∣∣‖Wx‖2

‖x‖2
− 1

∣∣∣∣∣ > ε

]
≤ 2|Q|e−ε2n/6.

Let δ denote the right-hand-side of the inequality; thus we obtain that

ε =

√
6 log(2|Q|/δ)

n
.

Remark. Interestingly, the bound given in the JL lemma does not depend on the
original dimension of x . In fact, the bound holds even if x is in an infinite dimensional
Hilbert space.



Principal Component Analysis (PCA)



• Another natural criterion for choosing W is in a way that will enable a reasonable
recovery of x from Wx is possible.



Principal component analysis (PCA)

• Let x1, · · · , xm be m vectors in Rd . We would like to reduce the dimensionality of
these vectors using a linear transformation.

• A matrix W ∈ Rn×d , where n < d , induces a mapping x →Wx , where Wx ∈ Rn is
the lower dimensionality representation of x . Then, a second matrix U ∈ Rd×n can be
used to (approximately) recover each original vector x from its compressed version.

• That is, for a compressed vector y = Wx , where y is in the low dimensional space
Rn, we can construct x̃ = Uy , so that x̃ is the recovered version of x and resides in
the original high dimensional space Rd . We want ‖x − x̃‖ to be small.



Principal component analysis (PCA) – Formulation

• PCA: find the compression matrix W and the recovering matrix U so that the total
squared distance between the original and recovered vectors is minimal:

arg min
W∈Rn×d ,U∈Rd×n

m∑
i=1

‖xi −UWxi‖2. (1)



PCA

• To solve problem (1), we first show that the optimal solution takes a specific form.

• Lemma 1. Let (U ,W ) be a solution to (1). Then the columns of U are orthonormal
(namely, U>U is the identity matrix of Rn) and W = U>.



Proof.
• Fix any U ,W and consider the mapping x → UWx . The range of this mapping,
R = {UWx : x ∈ Rd}, is an n dimensional linear subspace of Rd .

• Let V ∈ Rd×n be a matrix whose columns form an orthonormal basis of this
subspace, namely, the range of V is R and V>V = I . Therefore, each vector in R can
be written as Vy where y ∈ Rn.

• Also, for every x ∈ Rd and y ∈ Rn, we have

‖x − Vy‖2 = ‖x‖2 + y>V>Vy − 2y>V>x = ‖x‖2 + ‖y‖2 − 2y>(V>x),

where we used the fact that V>V is the identity matrix of Rn.



• Minimizing the preceding expression w.r.t. y by comparing the gradient w.r.t. y to
zero gives that y = V>x . Therefore, for each x we have that

VV>x = arg min
x̃∈R
‖x − x̃‖2.

• In particular this holds for x1, · · · , xm and therefore we can replace U ,W by V ,V>

and by that do not increase the objective

m∑
i=1

‖xi −UWxi‖22 ≥
m∑
i=1

‖xi − VV>xi‖22.

Since this holds for every U ,W the proof of the lemma follows.



PCA

• Lemma 1 indicates that we can rewrite the optimization problem (1) as follows:

arg min
U∈Rd×n,U>U=I

m∑
i=1

‖xi −UU>xi‖22. (2)



PCA

• We further simplify the optimization problem: For every x ∈ Rd and U ∈ Rd×n such
that U>U = I we have

‖x −UU>x‖2 = ‖x‖2 − 2x>UU>x + x>UU>UU>x

= ‖x‖2 − x>UU>x = ‖x‖2 − trace(U>xx>U),
(3)

where the trace of a matrix is the sum of its diagonal entries.

• Since the trace is a linear operator, this allows us to rewrite (2) as follows:

arg max
U∈Rd×n:U>U=I

trace
(
U>

m∑
i=1

xix>i U
)
. (4)

• trace(A + B) = trace(A) + trace(B)



PCA

• Let A =
∑m

i=1 xix>i .

• The matrix A is symmetric (all eigenvalues are real and A is diagonalizable) and
therefore it can be written using its spectral decomposition as A = VDV>, where D
is diagonal and V>V = VV> = I . Here, the elements on the diagonal of D are the
eigenvalues of A and the columns of V are the corresponding eigenvectors.

• We assume without of generality that D1,1 ≥ D2,2 ≥ · · · ≥ Dd ,d . Since A is positive
semidefinite it holds that Dd ,d ≥ 0. We claim that the solution to (4) is the matrix U
whose columns are the n eigenvectors of A corresponding to the largest n eigenvalues.



PCA

• Theorem. Let x1, · · · , xm be arbitrary vectors in Rd , let A =
∑m

i=1 xix>i , and let
u1, · · · ,un be eigenvectors of the matrix A corresponding to the largest n eigenvalues
of A. Then, the solution to the PCA optimization problem given in (1) is the set U to
be the matrix whose columns are u1, · · · ,un and to set W = U>.



Proof.
• Let VDV> be the spectral decomposition of A. Fix some matrix U ∈ Rd×n with
orthonormal columns and let B = V>U . Then, VB = VV>U = U . It follows that

U>AU = B>V>VDV>VB = B>DB,

and therefore

trace(U>AU) = trace(B>DB) =
d∑

j=1

Dj ,j

n∑
i=1

B2
j ,i .

• Note that B>B = U>VV>U = U>U = I . Therefore, the columns of B are also
orthonormal, implying that

∑n
i=1
∑d

j=1 B
2
j ,i =

∑d
j=1
∑n

i=1 B
2
j ,i = n. In addition, let

B̃ ∈ Rd×d be a matrix such that its first n columns are the columns of B and in
addition B̃>B̃ = I . Then, we have

∑d
i=1 B̃

2
j ,i = 1,∀j , implying that

∑n
i=1 B

2
j ,i ≤ 1.



• It follows that

trace(U>AU) =
d∑

j=1

Djjβj ≤ max
β∈[0,1]d :‖β‖1=n

d∑
j=1

Dj ,jβj . (βj =
n∑

i=1

B2
j ,i ∈ [0, 1],

d∑
j=1

βj = n)

It is not hard to verify that the right-hand side equals to
∑n

j=1 Dj ,j (note that Dj ,j has
been sorted and by setting β1 = · · ·βn = 1 and βn+1 = · · · = βd = 0).

• We have therefore shown that for every matrix U ∈ Rd×n with orthonormal columns
it hold that trace(U>AU) ≤

∑n
j=1 Dj ,j .

• On the other hand, if we set U to be the matrix whose columns are the n leading
eigenvectors of A we obtain that

trace(U>AU) =
n∑

j=1

Dj ,j , using spectral decomposition of A.



PCA

Remark. The proof of the above theorem tells us that:
> the value of the objective of (4) is

∑n
i=1 Di ,i ;

> combine this with (3) and note that
∑m

i=1 ‖xi‖2 = trace(A) =
∑d

i=1 Di ,i we
obtain that the optimal objective value of (1) is

∑d
i=n+1 Di ,i .



PCA

Remark. It is a common practice to "center" the examples before applying PCA. That
is, we first calculate µ = 1

m

∑m
i=1 xi and then apply PCA on the vectors (x1 − µ), · · · ,

(xm − µ).



A More Efficient Solution for the Case d � m

• In some situations, the original dimensionality of the data is much larger than the
number of examples m. The computational complexity of calculating the PCA solution
as described previously is O(d3) (for calculating eigenvalues of A) plus O(md2) (for
constructing the matrix A).

• How to calculate PCA solution efficiently when d � m?



A More Efficient Solution for the Case d � m

• Recall that the matrix A is defined to be
∑m

i=1 xix>i .

• We can rewrite A = X>X where X ∈ Rm×d is a matrix whose i-th row is x>i .

• Consider the matrix B = XX>. That is, B ∈ Rm×m is the matrix whose i , j element
equals 〈xi , xj〉.

• Suppose that u is an eigenvector of B: That is, Bu = λu for some λ ∈ R.

• Multiplying the equality by X> and using the definition of B we obtain
X>XX>u = λX>u.

• But using the definition of A, we get that A(X>u) = λ(X>u). Thus, X>u
‖X>u‖ is an

eigenvector of A with eigenvalue of λ.



A More Efficient Solution for the Case d � m

• We can therefore calculate the PCA solution by calculating the eigenvalues of B
instead of A. The complexity is O(m3) (for calculating eigenvalues of B) and m2d (for
constructing the matrix B).



PCA
Input A matrix ofm examples X ∈ Rm×d , number of components
n.
if (m > d)
A = X>X , let u1, · · · ,un be the eigenvectors of A with largest
eigenvalues
else
B = XX>

Let v1, · · · , vn be the eigenvectors of B with largest eigenvalues
for i = 1, · · · , n set ui = 1

‖X>vi‖
X>vi

output u1, · · · ,un



• To illustrate how PCA works, let us generate vectors in R2 that approximately reside
on a line, namely, on a one dimensional subspace of R2.

• For example, suppose that each example is of the form (x , x + y) where x is chosen
uniformly at random from [−1, 1] and y is sampled from a Gaussian distribution with

mean 0 and standard deviation of 0.1. Note that A =
∑m

i=1 xix>i ∼
(
1 1
1 1

)
with

λ1 = 0 (v1 =

(
−1
1

)
) and λ2 = 2 (v2 =

(
1
1

)
).

• Suppose we apply PCA to this data. Then, the eigenvector corresponding to the
largest eigenvalue is (1/

√
2, 1/
√
2). When projecting a point (x , x + y) on this principal

component we will obtain the scalar (2x + y)/
√
2. The reconstruction of the original

vector will be (1/
√
2, 1/
√
2) ∗ (2x + y)/

√
2 = ((x + y/2), (x + y/2)). In Figure 1, we

depict the original versus reconstructed data.



Figure: A set of vectors in R2 (blue) and their reconstruction after dimensionality reduction to
R1 using PCA (red).



Compressed Sensing



• Compressed sensing is a dimensionality reduction technique which utilizes a prior
assumption that the original vector is sparse in some basis.



Ground truth 25% subsampling in k-space (MRI) Reconstruction



• To motivate compressed sensing, consider a vector x ∈ Rd that has at most s � d
nonzero elements. That is,

‖x‖0 := |{i : xi 6= 0}| ≤ s.

Clearly, we can compress x by representing it using s (index, value) pairs. This
compression is lossless – we can reconstruct x exactly from the s (index, value) pairs.

• Now, let us take one step forward and assume that x = Uα where α is a sparse
vector, ‖α‖0 ≤ s, and U is a fixed orthonormal matrix. That is, x has a sparse
representation in another basis. It turns out that many natural vectors are (at least
approximately) sparse in some representations. – For instance, the natural image in
wavelet representation.

• Can we still compress x into roughly s numbers?



Compressed sensing

• One simple way to do this is to multiply x by U>, which yields the sparse vector α,
and then represent α by its s (index,value) pairs. However, this requires us to first to
“sense” x , to store it, and then to multiply it by U>.

• This raises a very natural question: Why go to so much effort to acquire all the data
when most of what we get will be thrown away? Cannot we just directly measure the
part that will not end up being thrown away?



Compressed sensing

• Compressed sensing is a technique that simultaneously acquires and compresses the
data. The key result is that a random linear transformation can compress x without
losing information.

• The number of measurements needed is order of s log(d) rather than order d . That
is, we roughly acquire only the important information about the signal.

• It is possible to reconstruct any sparse signal fully if it was compressed by x →Wx ,
where W is a matrix which satisfies a condition called the Restricted Isoperimetric
Property (RIP). A matrix that satisfies this property is guaranteed to have a low
distortion of the norm of any sparse representable vector.



Compressed sensing

Definition. [RIP] A matrix W ∈ Rn×d is (ε, s)-RIP if for all x 6= 0 s.t. ‖x‖0 ≤ s we
have ∣∣∣∣∣‖Wx‖2

‖x‖2
− 1

∣∣∣∣∣ ≤ ε.
• Theorem 1. Let ε < 1 and let W be a (ε, 2s)-RIP matrix. Let x be a vector s.t.
‖x‖0 ≤ s, let y = Wx be the compression of x , and let

x̃ ∈ arg min
v :Wv=y

‖v‖0,

be a reconstructed vector. Then, x̃ = x .

• Remark. The theorem above establishes that RIP matrices yield a lossless
compression scheme for sparse vectors. It also provides a (nonefficient) reconstruction
scheme.



Proof. We assume, by contradiction, that x̃ 6= x . Since x satisfies the constraints in
the optimization problem that defines x̃ we clearly have that ‖x̃‖0 ≤ ‖x‖0 ≤ s.
Therefore, ‖x − x̃‖0 ≤ 2s and we can apply the RIP inequality on the vector x − x̃ .
But, since W (x − x̃) = 0 we get that |0− 1| ≤ ε, which leads to a contradiction.



Compressed sensing

The reconstruction scheme given in Theorem 1 seems to be nonefficient because we
need to minimize a combinatorial objective (the sparsity of v). Quite surprisingly, it
turns out that we can replace the combinatorial objective, ‖v‖0, with a convex
objective, ‖v‖1, which leads to a linear programming problem that can be solved
efficiently.

Theorem 2. Assume that the conditions of Theorem 1 holds and that ε < 1
1+
√

2
. Then

x = arg min
v :Wv=y

‖v‖0 = arg min
v :Wv=y

‖v‖1.



When a matrix is RIP

• A random matrix with n ≥ Ω(s log(d)) are likely to be RIP.

• In fact, multiplying a random matrix by an orthonormal matrix also provides an RIP
matrix.

• This is important for compressing signals of the form x = Uα where x is not sparse
but α is sparse. In that case, if W is a random matrix and we compress using
y = Wx then this is the same as compressing α by y = (WU)α and since WU is
also RIP we can reconstruct α (and thus also x) from y .

More precisely, we have:



Theorem 3. Let U be an arbitrary fixed d × d orthonormal matrix, let ε, δ be scalars
on (0, 1), let s be an integer in [d ], and let n be an integer that satisfies

n ≥ 100
s log(40d/(δε))

ε2
.

Let W ∈ Rn×d be a matrix s.t. each element of W is distributed normally with zero
mean and variance of 1/n. Then, with probability at least 1− δ over the choice of W ,
the matrix WU is (ε, s)-RIP.


