
Lecture 3. Support Vector Machine
and Large Margin Learning

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023



Maximum Margin Classifiers

• Consider the two-class linear classifier

y(x) = w>φ(x) + b (1)

where φ(x) denotes a fixed feature-space transformation, and b is the bias.

> Let the training data be {xn, tn}Nn=1 with tn ∈ {−1, 1}.

> The new data x is classified based on sign(y(x)).



Maximum Margin Classifiers

Assume the training data set is linearly separable in feature space, i.e. there exists at
least one set of w and b s.t. a function of the form (1) satisfies y(xn) > 0(< 0) for
points having tn = +1(−1), i.e., tny(xn) > 0 for all training data points.

Which classifier is better?



Geometry of the linear discriminant

Signed distance: y(x)/‖w‖.



Geometry of the linear discriminant

If all data points are correctly classified, then tny(xn) > 0 for all n. Thus the distance
of a point xn to the decision surface is given by

tny(xn)
‖w‖

=
tn
(
w>φ(xn) + b

)
‖w‖

. (2)



Geometry of the linear discriminant

The margin is given by the perpendicular distance to the closest point xn from the data
set; we wish to optimize the parameters w and b in order to maximize this distance.



Maximize margin

The maximum margin solution is found by solving

argmax
w ,b

{
1
‖w‖

min
n

[
tn(w>φ(xn) + b)

]}
. (3)

Direct solution of this optimization problem would be very complex, and so we shall
convert it into an equivalent problem that is much easier to solve.



Maximize margin

Note that the decision boundary w>x + b = 0 is the same as κw>x + κb = 0 for any
κ 6= 0.

Rescaling w → κw and b → κb does not change the distance of xn to the decision
boundary, i.e. tny(xn)/‖w‖ remains unchanged. We can select κ, s.t.

tn
(
κw>φ(xn) + κb

)
= 1 (4)

for the point that is closest to the surface.

Let ŵ = κw and b̂ = κb, then we have

argmax
w ,b

{
1
‖κw‖

min
n

[
tn(κw>φ(xn) + κb)

]}
= argmax

w ,b

{
1
‖κw‖

}
= argmax

ŵ ,b

{
1
‖ŵ‖

}
.

(5)



Maximize margin

argmax
ŵ ,b

{
1
‖ŵ‖

}
= argmax

w ,b

{
1
‖w‖

}
Using the above rescaling, all data points will satisfy the constraints

tn
(
w>φ(xn) + b

)
≥ 1, n = 1, · · · ,N, (6)

which is the canonical representation of the decision hyperplane. In the case of data
points for which the equality holds, the constraints are active, whereas for the
remainder they are inactive.

At least one active constraint, because there will always be a closest point, and once
the margin has been maximized there will be at least two active constraints.



Maximize margin

The optimization problem then simply requires that we maximize 1
‖w‖ , which is

equivalent to minimizing ‖w‖2, and so we have to solve the optimization

argmin
w ,b

1
2
‖w‖2 (7)

subject to the constraints given by (6). The factor of 1/2 in (7) is included for later
convenience. This is an example of a quadratic programming problem in which we are
trying to minimize a quadratic function subject to a set of linear inequality constraints.

How to solve the constraint quadratic programming above?



Maximize margin: dual form

We introduce Lagrange multipliers an ≥ 0, with one multiplier an for each of the
constraints in (6), giving the Lagrangian function1

L(w , b, a) =
1
2
‖w‖2 −

N∑
n=1

an{tn(w>φ(xn) + b)− 1}, a = (a1, · · · , aN)>. (8)

Setting the derivatives of L(w , b, a) w.r.t. w and b equal to zero, we have

w =
N∑

n=1

antnφ(xn); 0 =
N∑

n=1

antn. (9)

1KKT condition: If we wish to minimize the function f (x) s.t. g(x) ≥ 0, then we minimize the
Lagrangian function L(x , λ) = f (x)− λg(x) w.r.t. x , subject to λ ≥ 0.



Maximize margin: dual form

Eliminating w and b from L(w , b, a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an−
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm), k(xn, xm) = φ(xn)>φ(xm) is the kernel.

(10)
with respect to a subject to the constraints

an ≥ 0;
N∑

n=1

antn = 0. (11)



Support vector machines (SVMs): Some remarks

• The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3).

• In going to the dual formulation we have turned the original optimization problem,
which involved minimizing (7) over M variables (the dimension of w plus the dimension
of b), into the dual problem (10), which has N variables.

• For a fixed set of basis functions whose number M is smaller than the number N of
data points, the move to the dual problem is more computationally expensive.



Support vector machines (SVMs): Some remarks

• However, it allows the model to be reformulated using kernels, and so the maximum
margin classifier can be applied efficiently to feature spaces whose dimensionality
exceeds the number of data points, including infinite feature spaces.



Kernel function

Kernel functions: inner products in feature spaces that can have high, or even infinite,
dimensionality. Working directly with kernel functions can handle very high dimensional
feature space (φ). For instance, a second order polynomial kernel can represent six
dimensional features:

k(x , z) = (1+ x>z)2 = (1+ x1z1 + x2z2)
2

= 1+ 2x1z1 + 2x2z2 + x2
1 z

2
1 + 2x1z1x2z2 + x2

2 z
2
2

= (1,
√
2x1,
√
2x2, x

2
1 ,
√
2x1x2, x

2
2 )(1,

√
2z1,
√
2z2, z2

1 ,
√
2z1z2, z2

2 )
>

= φ(x)>φ(z),

where φ is a six dimensional feature map, though the input space has dimension two.



SVM classifier

To classify new data points using the trained model, we evaluate the sign of y(x)
defined by (1). This can be expressed in terms of the parameters {an} and the kernel
function by substituting for w using (9) to give

y(x) =
N∑

n=1

antnk(x , xn) + b. (12)



SVM solution and support vectors

• The dual constraint optimization problems satisfies the Karush-Kuhn-Tucker (KKT)
conditions, which in this case require that the following three properties hold

an ≥ 0; tny(xn)− 1 ≥ 0; an{tny(xn)− 1} = 0. (13)

Thus for every data point, either an = 0 or tny(xn) = 1.

• Any data point for which an = 0 will not appear in the sum in (12) and hence plays
no role in making predictions for new data points. The remaining data points are called
support vectors, and because they satisfy tny(xn) = 1, they correspond to points that
lie on the maximum margin hyperplanes in feature space. This property is central to the
practical applicability of SVMs. Once the model is trained, a significant proportion of
the data points can be discarded and only the support vectors retained.



SVM solution and support vectors

• Having solved the quadratic programming and found a value for a, we then determine
the value of the threshold parameter b by noting that any support vector xn satisfies
tny(xn) = 1. Using (12) gives

tn
(∑

m∈S
amtmk(xn, xm) + b

)
= 1 (14)

where S is the indices of the support vectors.

• We can solve this equation for b using an arbitrarily chosen support vector xn, but a
numerically more stable solution is obtained by first multiplying through by tn, note
t2n = 1, and then averaging these equations over all support vectors and solving for b to
give (equation (14) holds for any n ∈ S)

b =
1
NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn, xm)

)
, NS = #S . (15)



SVM

We can express the maximum-margin classifier in terms of the minimization of an error
function, with a simple quadratic regularizer, in the form

N∑
n=1

E∞
(
y(xn)tn − 1

)
+ λ‖w‖2 (16)

where E∞(z) is a function that is zero if z ≥ 0 and ∞ otherwise and ensures that the
constraints (6) are satisfied. (y(xn)tn − 1 ≥ 0)



Overlapping Class Distributions



Overlapping class distributions

• So far, we have assumed that the training data points are linearly separable in the
feature space φ(x). The resulting support vector machine will give exact separation of
the training data in the original input space x , although the corresponding decision
boundary will be nonlinear.

• In practice, however, the class-conditional distributions may overlap, in which case
exact separation of the training data can lead to poor generalization.

• We therefore need a way to modify the SVM so as to allow some of the training
points to be misclassified.



Relaxed SVM: Slack variables

• From the following SVM objective function

N∑
n=1

E∞
(
y(xn)tn − 1

)
+ λ‖w‖2, (17)

we see that in the case of separable classes, we implicitly used an error function that
gave infinite error if a data point was misclassified and zero if it was classified correctly,
and then optimized the model parameters to maximize the margin.

• We now modify this approach so that data points are allowed to be on the ‘wrong
side’ of the margin boundary, but with a penalty that increases with the distance from
the boundary. For the subsequent optimization problem, it is convenient to make this
penalty a linear function of this distance.



Relaxed SVM: Slack variables

• We introduce slack variables, ξn ≥ 0 where n = 1, · · · ,N, with one slack variable for
each training data point. These are defined by ξn = 0 for data points that are on or
inside the correct margin boundary and ξn = |tn − y(xn)| for other points. Thus a data
point that is on the decision boundary y(xn) = 0 will have ξn = 1, and points with
ξn > 1 will be misclassified.

• Data points that are on the correct side of the margin boundary, and which therefore
satisfy yntn ≥ 1, we have ξn = 0, and for the remaining points we have ξn = 1− yntn.



Relaxed SVM: Slack variables

• The exact classification constraints (6) are then replaced with

tny(xn) ≥ 1− ξn, n = 1, · · · ,N (18)

in which the slack variables are constrained to satisfy ξn ≥ 0.

• Data points for which ξn = 0 are correctly classified and are either on the margin or on
the correct side of the margin. Points for which 0 < ξn ≤ 1 lie inside the margin, but on
the correct side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Figure 1.

• This is sometimes described as relaxing the hard margin constraint to give a soft
margin and allows some of the training set data points to be misclassified.



Relaxed SVM: Slack variables

Figure: Illustration of the slack variables ξn ≥ 0. Data points with circles around them are
support vectors.



Soft-margin SVM

• Our goal is now to maximize the margin while softly penalizing points that lie on the
wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
‖w‖2, (19)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points.

• Constraints tn(w>φ(xn) + b) ≥ 1− ξn instead of tn(w>φ(xn) + b) ≥ 1.

• The parameter C is therefore analogous to (the inverse of) a regularization coefficient
because it controls the trade-off between minimizing training errors and controlling
model complexity. In the limit C →∞, we will recover the earlier SVM for separable
data.



Soft-margin SVM

We now wish to minimize (19) subject to the constrains (18) together with ξn ≥ 0.
The corresponding Lagrangian is given by

L(w , b, a) =
1
2
‖w‖2 + C

N∑
n=1

ξn −
N∑

n=1

an
{
tny(xn)− 1+ ξn

}
−

N∑
n=1

µnξn, (20)

where {an ≥ 0} and {µn ≥ 0} are Lagrange multipliers. The corresponding KKT
conditions are

an ≥ 0
tny(xn)− 1+ ξn ≥ 0

an(tny(xn)− 1+ ξn) = 0
µn ≥ 0
ξn ≥ 0

µnξn = 0

(21)

where n = 1, · · · ,N.



Soft-margin SVM: dual formulation

We now optimize out w , b, and {ξn} making use of the definition (1) of y(x) to give

∂L

∂x
= 0⇒ w =

N∑
n=1

antnφ(xn)

∂L

∂b
= 0⇒

N∑
n=1

antn = 0

∂L

∂ξn
= 0⇒ an = C − µn.

(22)

Using these results to eliminate w , b, and {ξn} from the Lagrangian, we obtain the dual
Lagrangian in the form

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm), (23)

which is identical to the separable case, except that the constraints are somewhat
different.



Soft-margin SVM: constraints

What are the constraints now?

> an ≥ 0 is required because these are Lagrange multipliers.
> Furthermore, the last equation of (22) together with µn ≥ 0 implies an ≤ C .

We therefore have to minimize (23) with respect to the dual variables {an} subject to

0 ≤ an ≤ C ;
N∑

n=1

antn = 0 (24)

for n = 1, · · · ,N, where 0 ≤ an ≤ C are known as box constraints. This again
represents a quadratic programming problem. If we substitute the first equation of (22)
into (1), we see that predictions for new data points are again made by using (12).



Support vectors again

A subset of the data points may have an = 0, in which case they do not contribute to
the predictive model (12). The remaining data points constitute the support vectors.
These have an > 0 and hence from (21) (the third equation) must satisfy

tny(xn) = 1− ξn. (25)

If an < C , then (22) (the third equation) implies that µn > 0, which from (21) (the last
equation) requires ξn = 0 and hence points lie on the margin. Points with an = C can
lie inside the margin and can either be correctly classified if ξ ≤ 1 or misclassified if
ξn > 1.



Parameter b

To determine the parameter b in (1), we note that those support vectors for which
0 < an < C have ξn = 0 so that tny(xn) = 1 and hence will satisfy

tn
(∑

m∈S
amtmk(xn, xm) + b

)
= 1. (26)

Again, a numerically stable solution is obtained by averaging to give

b =
1

NM

∑
n∈M

(
tn −

∑
m∈S

amtmk(xn, xm)
)
, (27)

whereM denotes the set of indices of data points having 0 < an < C .



Hinge loss

We can re-cast the SVM for nonseparable distributions in terms of minimizing a
regularized error function. We have seen that for data points that are on the correct
side of the margin boundary, and which therefore satisfy yntn ≥ 1, we have ξn = 0, and
for the remaining points we have ξn = 1− yntn. thus the objective function (19)
(C
∑N

n=1 ξn +
1
2‖w‖

2) can be written (up to an overall multiplicative constant) in the
form

N∑
n=1

ESV (yntn) + λ‖w‖2, (28)

where λ = (2C )−1, and ESV (·) is the hinge error function defined by

ESV (yntn) = [1− yntn]+ (29)

where [·]+ denotes the positive part.



Motivation of SVM: Computational learning theory

Probably approximately correct (PAC) learning framework. The goal of the PAC
framework is to understand how large a data set needs to be in order to give good
generalization. It also gives bounds for the computational cost of learning.
Suppose that a data set D of size N is drawn from some joint distribution p(x , t) where
x is the input variable and t represents the class label, and that we restrict attention to
‘noise free’ situations in which the class labels are determined by some (unknown)
deterministic function t = g(x). In PAC learning we say that a function f (x ;D), drawn
from a space F of such functions on the basis of the training set D, has good
generalization if its expected error rate is below some pre-specified threshold ε, so that

Ex ,t [I (f (x ;D) 6= t)] < ε (30)

where I (·) is the indicator function, and the expectation is with respect to the
distribution p(x , t).



Motivation of SVM: Computational learning theory

The quantity on the left-hand side is a random variable, because it depends on the
training set D, and the PAC framework requires that (30) holds, with probability
greater than 1− δ, for a data set D drawn randomly from p(x , t). Here δ is another
pre-specified parameter, and the terminology ‘probably approximately correct’ comes
from the requirement that with high probability (greater than 1− δ), the error rate be
smaller (less than ε). For a given choice of model space F , and for given parameters ε
and δ, PAC learning aims to provide bounds on the minimum size N of data set needed
to meet this criterion. A key quantity in PAC learning is the Vapnik-Chervonenkis
dimension, or VC dimension, which provides a measure of the complexity of a space of
functions, and which allows the PAC framework to be extended to spaces containing an
infinite number of functions.



Computational learning theory

The bounds derived within the PAC framework are often described as worst case,
because they apply to any choice for the distribution p(x , t), so long as both the
training and the test examples are drawn (independently) from the same distribution,
and for any choice for the function f (x) so long as it belongs to F . In real-world
applications of machine learning, we deal with distributions that have significant
regularity, for example in which large regions of input space carry the same class label.
As a consequence of the lack of any assumptions about the form of the distribution, the
PAC bounds are very conservative, in other words they strongly over-estimate the size
of data sets required to achieve a given generalization performance. For this reason,
PAC bounds have found few, if any, practical applications.


