Lecture 6. Proximal Gradient Methods

Bao Wang
Department of Mathematics
Scientific Computing and Imaging Institute
University of Utah
Math 5750/6880, Fall 2023

Loss function

So far, we have formulated training machine learning models as

1 N
min f(x) = N E Li(x)+ R(x)
i=1

where x is the parameter of the machine learning model, £;(x) is the loss of the ith
training instance, and R(x) is the regularization term.

How to find the optimal x* if R(x) is not differentiable everywhere, e.g.
l1-regularization?

Subgradient methods or proximal gradient methods.

Proximal gradient descent for composite functions
Consider the composite model
min F(x) := f(x) + h(x), x € R",
X

let FOP' := miny F(x) be the optimal cost.

1. ¢; regularized minimization for promoting sparsity (e.g., lasso)
mxin f(x)+ x|

2. nuclear norm (sum of the singular values) regularized minimization for promoting
low-rank structure (Netflix competition)

min £(X) + || X ||«

Matrix completion

Movies

(&P

IEPRESTIGE
Bob ? ? 4
¢ Alice ? 5 4 ?
7]
-
Joe ? 5 ? ?
Sam 5 ? ? ?

Recommender system through matrix completion!

A proximal view of gradient descent

We note that the gradient descent iteration
xtT = xt — 5, VF(x")
can be written as

. 1
x = arg min { f(x") + (VF(x"),x — x") + Tm”x - Xz }

first-order approximation R
proximal term

Motivation. GD can be considered as find the optimal solution of the linear
approximation of f(x*), and the linear approximation is accurate when x and x* is close
to each other.

Proximal gradient algorithm

We note that the gradient descent iteration
xt = xt -, VF(x")
can be written as

1
t+1 _ . f t \v43 t I 4 - A)
X7 argmin { £(x) 4 (VF(x)x = x%) 4 5= x|

first-order approximation .
proximal term

=

ol
x4 = argmin {]lx — (x* — V() 3}

Proximal gradient algorithm

e Define the proximal operator

1
proxp(x) := arg min {EHZ —x|3+ h(z)}
z
for any convex function h.

e This allows one to express GD update as (set h(z) = 0),
xt = proxg(xt — 1:VF(x")).

One can generalize (1) to accommodate more general h,

t+1

x' = prox,,n(xt — n:VF(x")).

e The proximal gradient algorithm alternates between gradient updates on f and
proximal minimization on h, and it will be useful if prox;, is inexpensive.

(1)

Proximal gradient descent

Consider the composite model

min F(x) := f(x) + h(x), x e R",

X

Proximal gradient descent
for k=0,1,---
xt = prox;, p(xt — n:VF(x'))

Proximal mapping/operator
The proximal operator is define by

1
proxp(x) := arg min {EHZ — x5+ h(z)}.

> well-defined under very general conditions (including nonsmooth convex functions)

> can be evaluated efficiently for many widely used functions (in particular,
regularizers)

> this abstraction is conceptually and mathematically simple, and covers many
well-known optimization algorithms.

Example (¢1 norm)

If h(x) = ||x||1, then (proxyn(x)); = ¥st(xi; A) (soft-thresholding) where

x—XAifx>A
Yst(X;A) = { x+ A if x < =\
0 else

Why?

.1 .l
proxyej, (x) = arg min { |z — x| + Allzll1 | = argmin { 5|]3 = (z.x) + Al zIl1 }

Note that)
argmin {5 12I3 = (z.x) + Azl f = £s
1
where
15
Li:= 5% = ZiXi Alzil.

If x; > 0, then we must have z; > 0, otherwise, let z* < 0 minimizes £;, then —z/
enables even smaller £;.

If x; < 0, then we must have z; < 0.

If x; > 0, since z; > 0, then we have
1 2
[,,' = —X;z; + *22,' +)\Z,',

oL
0z;

Here, we require the RHS is positive (we require z; > 0), i.e., x; > .

=0=—Xx+z+A=0=2z=x— A\

If X < 0, since zi < O, then we have
1 2
Lj=—xizj + 5%~ Azj,

oL
0z;

Here, we require the RHS is negative (we require z; < 0), i.e., x; < —\.

=0=—Xx+z—-A=0=2z=x+ A\

Finally, let us consider the case when —\ < x; < A, our goal is
. 1,
argmin L; := —x;z; + 5% + Azl
1. z=0=L;=0

2. zi>0= L, = —x;zj + %2,2 + Az; and the minimum is obtained when
zi = 1 —), in this case we have
1
E,-:—x,-(1—)\)+§(1—)\)2+/\(1—)\)>0

3. 2z< 0= L; = —xjz + %2,2 — Az; and the minimum is obtained when
zi =1+), in this case we have

1
Li= —x,-(1+/\)+§(1+)\)2+)\(1+/\) > 0.

e Thus z; = 0 when =\ < x; < \.

Basic rules

If f(x) = ag(x)+ b with a >0, then

proxs(x) = proxag(x).

Basic rules, Affine addition

If f(x) =g(x)+a'x+ b, then

prox¢(x) = proxg(x — a)

Basic rules, Quadratic addition

If f(x) = g(x) + §|lx — a||3, then

roxr(x) = prox (! + P a)
= —X —_—
prox ProXte\1 +p 1+p

Proof.

p
Iz = I3+ &(2) + 511z - all3

{

= argmin { L |23~ (z.x + pa) + g(2)}
{
{

28~ 1 (zox +pa) + ——a(2)}

_1+p 1+p

. 1 1
—argmin { |z (;—x+ 2—a) 3+ ——g(2)}

1+p 14+p 1+p

1 p
= —x+-—a
P“Wd¢g<1 px T+,)

Basic rules, Scaling and translation

If f(x) = g(ax + b) with a # 0, then

1
proxs(x) = 3 <proxazg(ax +b) — b)

Why?

e
proxs(x) = arg min {E”Z —x|3 + g(az + b)}
zZ—b

a

1
:argmin{EH —x||%+g(z/)} (Let 2/ = az + b)

1
= arg min {EHZ/ — (ax + b)|I3 + a2g(z')}

Next, consider
1
Z* = argmin {§||z' — (ax + b)||3 + azg(z’)} = proxzz,(ax + b).
z/
Moreover, we have z* = zl%b, thus

1
proxg(x) = B (proxazg(ax +b) — b).

Basic rules, Orthogonal mapping

If f(x) = g(Qx) with Q orthogonal (QQT =Q'Q= 1), then

prox¢(x) = Q" proxg (Q T x)

proxg(x —argmm{f||x—z||2+f()}
= argmin {J |x — 2| + £(Q=)}
0[Sl - Q23 + ()

= arg m|

Let z/* = arg miny/ {%Hx Q7|3+ g(z’)} = proxz(Q " x) and we have
z* = Q' Z'*, therefore
proxs(x) = QTproxg(QTx)

Basic rules, Orthogonal affine mapping

If £(x) = g(Qx + b) with QR =o'l , then
—_———
does not require QT Q=a"11

proxg(x) = (I —aQ’ Q)x +aQ" (proxaqg(Qx +b) — b)

Basic rules, Norm composition

If f(x) = g(||x||2) with domain(g) = [0, c0), then
x

Vx #0
112

prox¢(x) = proxg(||x||2)

Basic rules, Norm composition — cont'd

Proof. Observe that

. 1 . 1 1
min {£(z) + -1z = x|3} = min {g(lzll2) + 511213 - 2" + S |x|3}
z 2 z 2 2

RN, Lo 1.1 2}
R T el {g(a)+ ¢ — 2 x+5lxl

| 1 1
- min{g(@) + ;0% ~ allxl2 + 5 x5}
Cauchy—Schwarz

-l o)

From the above calculation, we know the optimal point is

x (IIx[|2)—
— = proxg(||X||2)——
Ix]l> £ Ix]l>’

a* = proxg(||x|2) and z* ="

thus concluding proof.

Convergence analysis

Convergence analysis

Lemma 5. [Cost monotonicity] Suppose f is convex and L-smooth. If 7, = 1/L, then

F(x”l) < F(xY).

Fundamental Inequality

Lemma 6. (key lemma) Let y* = prox%h(y - %Vf(y)), then

L L
Fiyt) = FO) < slx—yB—slx—y"3— glx.y)
>0 by convexity

where g(x,y) := f(x) — f(y) — (Vf(y), x —y).

Take x = y = x* and hence y* = x'*! to complete the proof of Lemma 5.

Proof of Lemma 6. Define ¢(2) = f(y) + (Vf(y).z —y) + 5|z — y|3 + h(2). Itis
easily seen that y™ = argmin, ¢(z). Two important properties:

1. Since ¢(z) is L-strongly convex, one has

2. From smoothness,

oy*) =fly) +(Vi(y),y" —y) + élly+ —yl5+h(y™) > f(y ") +h(y*) = F(y™).

upper bound on f(y+) (L-smoothness)

Proof of Lemma 6 (cont’d). Taken collectively, these yield
L +112
¢(x) = F(y™) + S lx = y7Il2,
which together with the definition of ¢(x) gives

L L
Fly) + (VF(y), x — y) + h(x) +5x = yl3=Fy*)+ Sllx = yhI3

=f(x)+h(x)—g(x,y)=F(x)—g(x.y)

which finishes the proof.

Monotonicity in estimation error

Lemma 7. Suppose f is convex and L-smooth. If n; = 1/L, then

I = x[l2 < [|xF = X" 2.

Proof. From Lemma 6, taking x = x*,y = x! (and hence y™ = x**1) yields

. L. . L.
Fx'™) = F(x) +g(x,y) < S llx" = x[B = S lx = x**3
——

>0 >0

which immediately concludes the proof.

Remark. Proximal gradient iterates are not only monotonic w.r.t. cost, but also
monotonic in estimation error.

Convergence for convex problems

Theorem. [Convergence of proximal gradient methods for convex problems] Suppose f
is convex and L-smooth. If n; = 1/L, then

L|x® — x*3

F(xt) = Ft < =5

Convergence for convex problems

Proof. With Lemma 6 in mind, set x = x*, y = x! to obtain

F(x*1) = F(x*) < Sllx" = x[3 = S = x"[3 = g(x*,x°)
2 2 —

>0 by convexity

L
[x* = x7[5 = o Ix

L
<
- 2

2
| X[
Apply it recursively and add up all inequalities to get

t—1

> (FOMN = F(x)) < S1x0 = x*3 = 5 lxt = x7[3:
k=0

This combines with monotonicity of F(x*) (cf. Lemma 6) yields

501x° — x*[3

F(xt) - F(x') < 25—

Convergence for convex problems

Theorem. [Convergence of proximal gradient methods for strongly convex problems]
Suppose f is u-strongly convex and L-smooth. If n, = 1/L, then

t
It = x3 < (1= 1) I = "I

Convergence for convex problems

Proof. Taking x = x*,y = x* (and hence y™ = x**1) in Lemma 6 gives

F(x™1) — F(x*) < Flx* = xf5 — S [Ix* = x5 — g(x*,x")
L 2 A

>4 lx—xt3

<L—,u L

t_ k12 _ = t+1
< S X B Sl

- x|I3.
This taken collectively with F(x*1) — F(x*) > 0 yields

2
Ix = x5 < (1—4ﬂh x|z

Applying it recursively concludes the proof.

Proximal Gradient vs. Backward Euler Solver

Numerical ODE solvers

Consider dh(1)
2 — f(h(2)),

forward Euler solver
hiy1 = hy + sf(hy),

backward Euler solver
hii1 = by + sf(hiyq),

the problem of the backward Euler solver is that the underlying problem is
high-dimensional, which is very expensive to solve.

Proximal gradient descent

(1 2
hi1 = prox,¢(hy) = arg min {EHZ - th2 + nf(z)}.

By the stationary condition, we have
d
il — h.|?
M (Hz (I3 + nf(2)> ,

hiy1 = he —nVif(hey),

=0,

k+1

that is

i.e., backward Euler.

Proximal gradient descent vs. Backward Euler

Start from hy to obtain hy 1 through the backward Euler, we need to solve the
following nonlinear equations

hii1 = he = nVf(heia),

which is computationally very expensive.

Alternatively, we can start from h, = z° and apply gradient descent to the following
optimization problem
1 2
arg min {in — th2 + 77f(z)}7

z

0

resulting in 20, z%,--- | zt, and we let h 1 =zt

Neural ODE solvers

dh(t) _
= = f(h(®)).

Backward Euler
hi 1 = b+ nf(hei),

which is equivalent to

h, 1 =arg mzin {%HZ - thz - UF(Z)}7

where F(z) is the anti-derivative of f(z).

Let z0 = hy, and we apply gradient descent to solve the following problem to get hy 1,

1 2
argmin {5 [z = b, —nF(2)},

2t — -1 svz<%Hz - thi - nF(z))
=252 = by —nf(217Y))
= (1—s)2"" + shy + spf(z"1).

zt—l

Remark. We can use L-BFGS to solve the

