
Lecture 6. Proximal Gradient Methods

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023

Loss function

So far, we have formulated training machine learning models as

min f (x) =
1
N

N∑
i=1

Li (x) + R(x)

where x is the parameter of the machine learning model, Li (x) is the loss of the ith
training instance, and R(x) is the regularization term.

How to find the optimal x∗ if R(x) is not differentiable everywhere, e.g.
`1-regularization?

Subgradient methods or proximal gradient methods.

Proximal gradient descent for composite functions

Consider the composite model

min
x

F (x) := f (x) + h(x), x ∈ Rn,

let F opt := minx F (x) be the optimal cost.

1. `1 regularized minimization for promoting sparsity (e.g., lasso)

min
x

f (x) + ‖x‖1

2. nuclear norm (sum of the singular values) regularized minimization for promoting
low-rank structure (Netflix competition)

min
X

f (X) + ‖X‖∗

Matrix completion

Recommender system through matrix completion!

A proximal view of gradient descent

We note that the gradient descent iteration

x t+1 = x t − ηt∇f (x t)

can be written as

x t+1 = argmin
x

{
f (x t) + 〈∇f (x t), x − x t〉︸ ︷︷ ︸
first-order approximation

+
1
2ηt
‖x − x t‖22︸ ︷︷ ︸

proximal term

}
.

Motivation. GD can be considered as find the optimal solution of the linear
approximation of f (x t), and the linear approximation is accurate when x and x t is close
to each other.

Proximal gradient algorithm

We note that the gradient descent iteration

x t+1 = x t − ηt∇f (x t)

can be written as

x t+1 = argmin
x

{
f (x t) + 〈∇f (x t), x − x t〉︸ ︷︷ ︸
first-order approximation

+
1
2ηt
‖x − x t‖22︸ ︷︷ ︸

proximal term

}
.

⇔

x t+1 = argmin
x

{1
2
‖x − (x t − ηt∇f (x t))‖22

}
.

Proximal gradient algorithm

• Define the proximal operator

proxh(x) := argmin
z

{1
2
‖z − x‖22 + h(z)

}
for any convex function h.

• This allows one to express GD update as (set h(z) = 0),

x t+1 = prox0(x t − ηt∇f (x t)). (1)

One can generalize (1) to accommodate more general h,

x t+1 = proxηth(x
t − ηt∇f (x t)).

• The proximal gradient algorithm alternates between gradient updates on f and
proximal minimization on h, and it will be useful if proxh is inexpensive.

Proximal gradient descent

Consider the composite model

min
x

F (x) := f (x) + h(x), x ∈ Rn,

Proximal gradient descent
for k = 0, 1, · · ·

x t+1 = proxηth(x t − ηt∇f (x t))

Proximal mapping/operator

The proximal operator is define by

proxh(x) := argmin
z

{1
2
‖z − x‖22 + h(z)

}
.

> well-defined under very general conditions (including nonsmooth convex functions)

> can be evaluated efficiently for many widely used functions (in particular,
regularizers)

> this abstraction is conceptually and mathematically simple, and covers many
well-known optimization algorithms.

Example (`1 norm)

If h(x) = ‖x‖1, then (proxλh(x))i = ψst(xi ;λ) (soft-thresholding) where

ψst(x ;λ) =


x − λ if x ≥ λ
x + λ if x ≤ −λ
0 else

Why?

proxλ‖x‖1(x) = argmin
z

{1
2
‖z − x‖22 + λ‖z‖1

}
= argmin

z

{1
2
‖z‖22 − 〈z , x〉+ λ‖z‖1

}
Note that

argmin
z

{1
2
‖z‖22 − 〈z , x〉+ λ‖z‖1

}
=
∑
i

Li ,

where
Li :=

1
2
z2
i − zixi + λ|zi |.

If xi > 0, then we must have zi ≥ 0, otherwise, let z∗i < 0 minimizes Li , then −z∗i
enables even smaller Li .

If xi < 0, then we must have zi ≤ 0.

If xi > 0, since zi ≥ 0, then we have

Li = −xizi +
1
2
z2
i + λzi ,

∂L
∂zi

= 0⇒ −xi + zi + λ = 0⇒ zi = xi − λ.

Here, we require the RHS is positive (we require zi ≥ 0), i.e., xi ≥ λ.

If xi < 0, since zi ≤ 0, then we have

Li = −xizi +
1
2
z2
i − λzi ,

∂L
∂zi

= 0⇒ −xi + zi − λ = 0⇒ zi = xi + λ.

Here, we require the RHS is negative (we require zi ≤ 0), i.e., xi ≤ −λ.

Finally, let us consider the case when −λ < xi < λ, our goal is

argminLi := −xizi +
1
2
z2
i + λ|zi |.

1. zi = 0⇒ Li = 0
2. zi > 0⇒ Li = −xizi + 1

2z
2
i + λzi and the minimum is obtained when

zi = 1− λ, in this case we have

Li = −xi (1− λ) +
1
2
(1− λ)2 + λ(1− λ) > 0

3. zi < 0⇒ Li = −xizi + 1
2z

2
i − λzi and the minimum is obtained when

zi = 1+ λ, in this case we have

Li = −xi (1+ λ) +
1
2
(1+ λ)2 + λ(1+ λ) > 0.

• Thus zi = 0 when −λ < xi < λ.

Basic rules

If f (x) = ag(x) + b with a > 0, then

proxf (x) = proxag (x).

Basic rules, Affine addition

If f (x) = g(x) + a>x + b, then

proxf (x) = proxg (x − a)

Basic rules, Quadratic addition

If f (x) = g(x) + ρ
2‖x − a‖22, then

proxf (x) = prox 1
1+ρ

g

(1
1+ ρ

x +
ρ

1+ ρ
a
)

Proof.

proxf (x) = argmin
z

{1
2
‖z − x‖22 + g(z) +

ρ

2
‖z − a‖22

}
= argmin

z

{1+ ρ

2
‖z‖22 − 〈z , x + ρa〉+ g(z)

}
= argmin

z

{1
2
‖z‖22 −

1
1+ ρ

〈z , x + ρa〉+ 1
1+ ρ

g(z)
}

= argmin
z

{1
2
‖z −

(1
1+ ρ

x +
ρ

1+ ρ
a
)
‖22 +

1
1+ ρ

g(z)
}

= prox 1
1+ρ

g

(1
1+ ρ

x +
ρ

1+ ρ
a
)

Basic rules, Scaling and translation

If f (x) = g(ax + b) with a 6= 0, then

proxf (x) =
1
a

(
proxa2g (ax + b)− b

)
Why?

proxf (x) = argmin
z

{1
2
‖z − x‖22 + g(az + b)

}
= argmin

z

{1
2
‖z
′ − b

a
− x‖22 + g(z ′)

}
(Let z ′ = az + b)

= argmin
z

{1
2
‖z ′ − (ax + b)‖22 + a2g(z ′)

}
Next, consider

z ′∗ = argmin
z ′

{1
2
‖z ′ − (ax + b)‖22 + a2g(z ′)

}
= proxa2g (ax + b).

Moreover, we have z∗ = z ′∗−b
a , thus

proxf (x) =
1
a

(
proxa2g (ax + b)− b

)
.

Basic rules, Orthogonal mapping

If f (x) = g(Qx) with Q orthogonal (QQ> = Q>Q = I), then

proxf (x) = Q>proxg (Q>x)

proxf (x) = argmin
z

{1
2
‖x − z‖2 + f (z)

}
= argmin

z

{1
2
‖x − z‖2 + g(Qz)

}
= argmin

z

{1
2
‖x −Q>z ′‖22 + g(z ′)

}
Let z ′∗ = argminz ′

{
1
2‖x −Q>z ′‖22 + g(z ′)

}
= proxg (Q>x) and we have

z∗ = Q>z ′∗, therefore
proxf (x) = Q>proxg (Q>x)

Basic rules, Orthogonal affine mapping

If f (x) = g(Qx + b) with QQ> = α−1I︸ ︷︷ ︸
does not require Q>Q=α−1I

, then

proxf (x) =
(
I − αQ>Q

)
x + αQ>

(
proxα−1g (Qx + b)− b

)

Basic rules, Norm composition

If f (x) = g(‖x‖2) with domain(g) = [0,∞), then

proxf (x) = proxg (‖x‖2)
x
‖x‖2

∀x 6= 0

Basic rules, Norm composition – cont’d

Proof. Observe that

min
z

{
f (z) +

1
2
‖z − x‖22

}
= min

z

{
g(‖z‖2) +

1
2
‖z‖22 − z>x +

1
2
‖x‖22

}
= min

α≥0
min
‖z‖2=α

{
g(α) +

1
2
α2 − z>x +

1
2
‖x‖22

}
=︸︷︷︸

Cauchy−Schwarz

min
α≥0

{
g(α) +

1
2
α2 − α‖x‖2 +

1
2
‖x‖22

}
= min

α≥0

{
g(α) +

1
2
(α− ‖x‖2)2

}
From the above calculation, we know the optimal point is

α∗ = proxg (‖x‖2) and z∗ = α∗
x
‖x‖2

= proxg (‖x‖2)
x
‖x‖2

,

thus concluding proof.

Convergence analysis

Convergence analysis

Lemma 5. [Cost monotonicity] Suppose f is convex and L-smooth. If ηt ≡ 1/L, then

F (x t+1) ≤ F (x t).

Fundamental Inequality

Lemma 6. (key lemma) Let y+ = prox 1
L
h

(
y − 1

L∇f (y)
)
, then

F (y+)− F (x) ≤ L

2
‖x − y‖22 −

L

2
‖x − y+‖22 − g(x , y)︸ ︷︷ ︸

≥0 by convexity

where g(x , y) := f (x)− f (y)− 〈∇f (y), x − y〉.

Take x = y = x t and hence y+ = x t+1 to complete the proof of Lemma 5.

Proof of Lemma 6. Define φ(z) = f (y) + 〈∇f (y), z − y〉+ L
2‖z − y‖22 + h(z). It is

easily seen that y+ = argminz φ(z). Two important properties:

1. Since φ(z) is L-strongly convex, one has

φ(x) ≥ φ(y+) +
L

2
‖x − y+‖22.

2. From smoothness,

φ(y+) = f (y) + 〈∇f (y), y+ − y〉+ L

2
‖y+ − y‖22︸ ︷︷ ︸

upper bound on f (y+) (L-smoothness)

+h(y+) ≥ f (y+)+h(y+) = F (y+).

Proof of Lemma 6 (cont’d). Taken collectively, these yield

φ(x) ≥ F (y+) +
L

2
‖x − y+‖22,

which together with the definition of φ(x) gives

f (y) + 〈∇f (y), x − y〉+ h(x)︸ ︷︷ ︸
=f (x)+h(x)−g(x ,y)=F (x)−g(x ,y)

+
L

2
‖x − y‖22 ≥ F (y+) +

L

2
‖x − y+‖22

which finishes the proof.

Monotonicity in estimation error

Lemma 7. Suppose f is convex and L-smooth. If ηt ≡ 1/L, then

‖x t+1 − x∗‖2 ≤ ‖x t − x∗‖2.

Proof. From Lemma 6, taking x = x∗, y = x t (and hence y+ = x t+1) yields

F (x t+1)− F (x∗)︸ ︷︷ ︸
≥0

+ g(x , y)︸ ︷︷ ︸
≥0

≤ L

2
‖x∗ − x t‖22 −

L

2
‖x∗ − x t+1‖22

which immediately concludes the proof.

Remark. Proximal gradient iterates are not only monotonic w.r.t. cost, but also
monotonic in estimation error.

Convergence for convex problems

Theorem. [Convergence of proximal gradient methods for convex problems] Suppose f
is convex and L-smooth. If ηt ≡ 1/L, then

F (x t)− F opt ≤ L‖x0 − x∗‖22
2t

.

Convergence for convex problems

Proof. With Lemma 6 in mind, set x = x∗, y = x t to obtain

F (x t+1)− F (x∗) ≤ L

2
‖x t − x∗‖22 −

L

2
‖x t+1 − x∗‖22 − g(x∗, x t)︸ ︷︷ ︸

≥0 by convexity

≤ L

2
‖x t − x∗‖22 −

L

2
‖x t+1 − x∗‖22

Apply it recursively and add up all inequalities to get

t−1∑
k=0

(
F (xk+1)− F (x∗)

)
≤ L

2
‖x0 − x∗‖22 −

L

2
‖x t − x∗‖22.

This combines with monotonicity of F (x t) (cf. Lemma 6) yields

F (x t)− F (x∗) ≤
L
2‖x

0 − x∗‖22
t

.

Convergence for convex problems

Theorem. [Convergence of proximal gradient methods for strongly convex problems]
Suppose f is µ-strongly convex and L-smooth. If ηt ≡ 1/L, then

‖x t − x∗‖22 ≤
(
1− µ

L

)t
‖x0 − x∗‖22.

Convergence for convex problems

Proof. Taking x = x∗, y = x t (and hence y+ = x t+1) in Lemma 6 gives

F (x t+1)− F (x∗) ≤ 1
L
‖x∗ − x t‖22 −

L

2
‖x∗ − x t+1‖22 − g(x∗, x t)︸ ︷︷ ︸

≥µ
2 ‖x∗−x t‖22

≤ L− µ
2
‖x t − x∗‖22 −

L

2
‖x t+1 − x∗‖22.

This taken collectively with F (x t+1)− F (x∗) ≥ 0 yields

‖x t+1 − x∗‖22 ≤ (1− µ

L
)‖x t − x∗‖22.

Applying it recursively concludes the proof.

Proximal Gradient vs. Backward Euler Solver

Numerical ODE solvers

Consider
dh(t)
dt

= f (h(t)),

forward Euler solver
hk+1 = hk + sf (hk),

backward Euler solver
hk+1 = hk + sf (hk+1),

the problem of the backward Euler solver is that the underlying problem is
high-dimensional, which is very expensive to solve.

Proximal gradient descent

hk+1 = proxηf (hk) = argmin
z

{1
2

∥∥∥z − hk

∥∥∥2

2
+ ηf (z)

}
.

By the stationary condition, we have

d

dz

(
‖z − hk‖22 + ηf (z)

)∣∣∣
hk+1

= 0,

that is
hk+1 = hk − η∇f (hk+1),

i.e., backward Euler.

Proximal gradient descent vs. Backward Euler

Start from hk to obtain hk+1 through the backward Euler, we need to solve the
following nonlinear equations

hk+1 = hk − η∇f (hk+1),

which is computationally very expensive.

Alternatively, we can start from hk = z0 and apply gradient descent to the following
optimization problem

argmin
z

{1
2

∥∥∥z − hk

∥∥∥2

2
+ ηf (z)

}
,

resulting in z0, z1, · · · , z t , and we let hk+1 = z t .

Neural ODE solvers

dh(t)
dt

= f (h(t)).

Backward Euler
hk+1 = hk + ηf (hk+1),

which is equivalent to

hk+1 = argmin
z

{1
2

∥∥∥z − hk

∥∥∥2

2
− ηF (z)

}
,

where F (z) is the anti-derivative of f (z).

Let z0 = hk , and we apply gradient descent to solve the following problem to get hk+1,

argmin
z

{1
2

∥∥∥z − hk

∥∥∥2

2
− ηF (z)

}
,

i.e.,

z t = z t−1 − s∇z

(1
2

∥∥∥z − hk

∥∥∥2

2
− ηF (z)

)∣∣∣
z t−1

= z t−1 − s
(
z t−1 − hk − ηf (z t−1)

)
= (1− s)z t−1 + shk + sηf (z t−1).

Remark. We can use L-BFGS to solve the

