
Lecture 7. Accelerated Gradient Methods

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023



The iteration complexity of (proximal) gradient methods
strongly convex and smooth problems O(κ log 1

ε ).
convex and smooth problems O(1

ε ).

Can one hope to accelerate convergence?



Issues:
1) GD focuses on improving the cost per iteration, which might sometimes be too
"short-sighted";
2) GD might sometimes zigzag or experience abrupt changes.



Solutions:
1) exploit information from the history (i.e. past iterates);
2) add buffers (like momentum) to yield smoother trajectory.



Heavy-ball method

x t+1 = x t − ηt∇f (x t) + θt(x t − x t−1)︸ ︷︷ ︸
momentum term

,

where we add inertia to the "ball" (i.e. include a momentum term) to mitigate
zigzagging.



State-space method

Consider
min
x

1
2

(x − x∗)>Q(x − x∗),

where Q � 0 has a condition number κ. One can understand heavy-ball methods
through dynamical systems.

Consider the following dynamical system[
x t+1

x t

]
=

[
(1 + θt)I −θtI

I 0

] [
x t

x t−1

]
−
[
ηt∇f (x t)

0

]



State-space method

or equivalently[
x t+1 − x∗

x t − x∗

]
︸ ︷︷ ︸

state

=

[
(1 + θt)I −θtI

I 0

] [
x t − x∗

x t−1 − x∗

]
−
[
ηt∇f (x t)

0

]

=

[
(1 + θt)I − ηtQ −θtI

I 0

]
︸ ︷︷ ︸

system matrix:=Ht

[
x t − x∗

x t−1 − x∗

] (1)

The convergence of heavy-ball methods depends on the spectrum of the system matrix
Ht . We need to find appropriate stepsizes ηt and momentum coefficients θt to control
the spectrum of Ht .



Convergence of heavy-ball methods for quadratic functions

Theorem 1. [Convergence of heavy-ball methods for quadratic functions] Suppose f is
a L-smooth and µ-strongly convex quadratic function. Set ηt ≡ 4/(

√
L +
√
µ)2,

θt ≡ max{|1−
√
ηtL|, |1−

√
ηtµ|}2, and κ = L/µ. Then∥∥∥ [x t+1 − x∗

x t − x∗

] ∥∥∥
2
.
(√κ− 1√

κ+ 1

)t∥∥∥ [x1 − x∗

x0 − x∗

] ∥∥∥
2

Note that the iteration complexity is O(
√
κ log 1

ε ) (vs. O(κ log 1
ε ) of GD), the

convergence rate relies on knowledge of both L and µ.



Proof of Theorem 1. In view of (1), it suffices to control the spectrum of Ht . Let λi
be the ith eigenvalue of Q and let Λ := diag(λ1, · · · , λn), then there exists an
orthogonal matrix U such that Q = UΛU> and we have∥∥∥ [U 0

0 U

] [
(1 + θt)I − ηtQ −θtI

I 0

] [
U 0
0 U

]> ∥∥∥
2

=
∥∥∥ [(1 + θt)I − ηtΛ −θtI

I 0

] ∥∥∥
2
.

Further, note that the characteristic polynomial of the right-hand side matrix satisfies

ch

([
(1 + θt)I − ηtΛ −θtI

I 0

])
= det

[
λI −

(
(1 + θt)I − ηtΛ

)
θtI

−I λI

]
= det

(
λ2I − λ

(
(1 + θt)I − ηtΛ

)
+ θtI

)
.



The matrix λ2I − λ
(
(1 + θt)I − ηΛ

)
+ θtI is diagonal with each diagonal entry be the

characteristic polynomial of the following 2× 2 matrix[
1 + θt − ηtλi −θt

1 0

]
.

Then the spectral radius (denoted by ρ(·)) 1 of Ht obeys

ρ(Ht) = ρ
([(1 + θt)I − ηtΛ −θtI

I 0

])
= max

1≤i≤n
ρ
([1 + θt − ηtλi −θt

1 0

])
To finish the proof, it suffices to show

max
i
ρ
([1 + θt − ηtλi −θt

1 0

])
≤
√
κ− 1√
κ+ 1

. (2)

1The largest absolute value of its eigenvalues



To show (2), note that the two eigenvalues of
[
1 + θt − ηtλi −θt

1 0

]
are the roots of

z2 − (1 + θt − ηtλi )z + θt = 0. (3)

If (1 + θt − ηtλi )2 ≤ 4θt , then the roots of this equation have the same magnitudes√
θt (as they are either both imaginary or there is only one root).

In addition, one can easily check that (1 + θt − ηtλi )2 ≤ 4θt is satisfied if

θt ∈ [(1−
√
ηtλi )

2, (1 +
√
ηtλi )

2], (4)

which would hold if one picks θt = max{(1−
√
ηtL)2, (1−√ηtµ)2}. (Here, we will

choose ηt to guarantee θt ∈ [0, 1).)



With this choice of θt , we have (from (3) and the fact that two eigenvalues have
identical magnitudes) [Vieta’s formula: z1z2 = θt ]

ρ(Ht) =
√
θt .

Finally, setting ηt = 4
(
√
L+
√
µ)2

ensures 1−
√
ηtL = −(1−√ηtµ), which yields

θt = max
{(

1− 2
√
L√

L +
√
µ

)2
,
(
1−

2
√
µ

√
L +
√
µ

)2}
=
(√κ− 1√

κ+ 1

)2
.

This in turn establishes

ρ(Ht) =

√
κ− 1√
κ+ 1

.



Nesterov’s accelerated gradient methods

x t+1 = y t − ηt∇f (y t); y t+1 = x t+1 +
t

t + 3
(x t+1 − x t).

> alternates between gradient updates and proper extrapolation

> each iteration takes nearly the same cost as GD

> not a descent method (i.e. we may not have f (x t+1) ≤ f (x t)), we will see it
later.



Numerical example

Consider
min
w

f (w) =
1
2
wTLw −wTe1,

where

L =


2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2


1000×1000

,

and e1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.





Theorem 2. [Convergence of Nesterov’s accelerated gradient method] Suppose f is
convex and L-smooth. If ηt ≡ η = 1/L, then

f (x t)− f opt ≤ 2L‖x0 − x∗‖22
(t + 1)2 .

Remark. The iteration complexity if O( 1√
ε
), which is much faster than gradient

methods.



ODE analogy of Nesterov’s accelerated gradient

To develop insight into why Nesterov’s method works so well, it’s helpful to look at its
continuous limits (ηt → 0). To begin with, Nesterov’s update rule is equivalent to

x t+1 − x t

√
η

=
t − 1
t + 2

x t − x t−1
√
η

−√η∇f (y t). (5)

Let t = τ√
η . Set X (τ) ≈ xτ/

√
η = x t and X (τ +

√
η) ≈ x t+1. Then the Taylor

expansion gives

x t+1 − x t

√
η

≈ Ẋ (τ) +
1
2
Ẍ (τ)

√
η;

x t − x t−1
√
η

≈ Ẋ (τ)− 1
2
Ẍ (τ)

√
η,



ODE analogy of Nesterov’s accelerated gradient

which combined with (5) yields

Ẋ (τ) +
1
2
Ẍ (τ)

√
η ≈

(
1−

3
√
η

τ

)(
Ẋ (τ)− 1

2
Ẍ (τ)

√
η
)
−√η∇f (X (τ))

⇒ Ẍ (τ) +
3
τ
Ẋ (τ) +∇f (X (τ)) = 0.

What is the ODE limit of the heavy-ball method?



Heavy-ball method

x t+1 = x t − η∇f (x t) + θ(x t − x t−1),

Let mt := (x t+1 − x t)/
√
η and let θ := 1− γ√η, where γ ≥ 0 is another

hyperparameter. Then we can rewrite the heavy-ball method as

mt+1 = (1− γ√η)mt −√η∇f (x t); x t+1 = x t +
√
smt+1.

Let s → 0; we obtain the following system of first-order ODEs

dX (t)

dt
= M(t);

dM(t)

dt
= −γM(t)−∇f (X (t)),

which can be further written as

Ẍ (τ) + γẊ (τ) +∇f (X (τ)) = 0.



Heavy-ball method vs. Nesterov’s acceleration

Heavy-ball method:

x t+1 = x t − η∇f (x t) + θ(x t − x t−1),

and the ODE-limit is
Ẍ (τ) + γẊ (τ) +∇f (X (τ)) = 0.

Nesterov’s acceleration:

x t+1 = y t − η∇f (y t); y t+1 = x t+1 +
t

t + 3
(x t+1 − x t),

and the ODE-limit is
Ẍ (τ) +

3
τ
Ẋ (τ) +∇f (X (τ)) = 0.



Convergence rate inspired by the ODE analysis

By the standard ODE theory, we can show that

f (X (τ))− f opt ≤ O(
1
τ2 ), (6)

which somehow explains Nesterov’s O(1/t2) convergence.



Convergence rate inspired by the ODE analysis

Proof. Define E (τ) := τ2(f (X )− f opt) + 2‖X + τ
2 Ẋ − X ∗‖22 (Lyapunov function).

This obeys

Ė = 2τ(f (X )− f opt) + τ2〈∇f (X ), Ẋ 〉+ 4〈X +
τ

2
Ẋ − X ∗,

3
2
Ẋ +

τ

2
Ẍ 〉

=︸︷︷︸
(i)

2τ(f (X )− f opt)− 2τ〈X − X ∗,∇f (X )〉 ≤︸︷︷︸
convexity

0

where (i) follows by replacing τ Ẍ + 3Ẋ with −τ∇f (X ). This means E is
non-decreasing in τ , and hence

f (X (τ))− f opt ≤︸︷︷︸
def of E

E (τ)

τ2 ≤ E (0)

τ2 = O(
1
τ2 ).



Extend Nesterov’s acceleration to composite models

min
x

F (x) := f (x) + h(x) s.t. x ∈ Rn,

where f is convex and smooth and h is convex (may not be differentiable). Let
F opt := minx F (x) be the optimal cost.

FISTA (Fast iterative shrinkage-thresholding algorithm)

x t+1 = proxηth(y t − ηt∇f (y t))

y t+1 = x t+1 +
θt − 1
θt+1

(x t+1 − x t)

where y0 = x0, θ0 = 1 and θt+1 =
1+
√

1+4θ2t
2 .

We can show that θt−1
θt+1

= 1− 3
t + o(1

t ) Homework..
We can also show that θt ≥ t+2

2 . (Math induction.)



Convergence analysis

Theorem 3. [Convergence of accelerated proximal gradient methods for convex
problems] Suppose f is convex and L-smooth. If ηt ≡ 1/L, then

F (x t)− F opt ≤ 2L‖x0 − x∗‖22
(t + 1)2 .

Remark. The algorithm is fast if prox can be efficiently implemented.

Remark. The algorithm is particularly useful for `1-regularization problem in e.g. image
processing (total variation in the wavelet space) and compressed sensing.

Remark. To proof Theorem 3, we follow: 1) build a discrete-time version of "Lyapunov
function"; 2) "Lyapunov function" is non-increasing when Nesterov’s momentum
coefficients are adopted.



Lemma 1. [Fundamental inequality for proximal method] Let

y+ = prox 1
L
h(y − 1

L
∇f (y)),

then
F (y+)− F (x) ≤ L

2
‖x − y‖22 −

L

2
‖x − y+‖22.



Proof of Lemma 1. More precisely, we have

F (y+)− F (x) ≤ L

2
‖x − y‖22 −

L

2
‖x − y+‖22 − g(x , y)︸ ︷︷ ︸

≥0 by convexity

where g(x , y) := f (x)− f (y)− 〈∇f (y), x − y〉.

Define φ(z) = f (y) + 〈∇f (y), z − y〉+ L
2‖z − y‖22 + h(z). It is easily seen that

y+ = arg minz φ(z). Two important properties:
1. Since φ(z) is L-strongly convex, one has

φ(x) ≥ φ(y+) +
L

2
‖x − y+‖22.

2. From smoothness,

φ(y+) = f (y) + 〈∇f (y), y+ − y〉+
L

2
‖y+ − y‖22︸ ︷︷ ︸

upper bound on f (y+) (L-smoothness)

+h(y+) ≥ f (y+)+h(y+) = F (y+).



Taken collectively, these yield

φ(x) ≥ F (y+) +
L

2
‖x − y+‖22,

which together with the definition of φ(x) gives

f (y) + 〈∇f (y), x − y〉+ h(x)︸ ︷︷ ︸
=f (x)+h(x)−g(x ,y)=F (x)−g(x ,y)

+
L

2
‖x − y‖22 ≥ F (y+) +

L

2
‖x − y+‖22

which finishes the proof.



Lemma 2. [Monotonicity of certain "Lyapunov function"]
Let

ut = θt−1x t −
(
x∗ + (θt−1 − 1)x t−1

)
.

Then
‖ut+1‖22 +

2
L
θ2
t (F (x t+1)− F opt) ≤ ‖ut‖22 +

2
L
θ2
t−1(F (x t)− F opt).

Remark. Note that this is quite similar to 2‖X + τ
2 Ẋ − X ∗‖22 + τ2(f (X )− f opt), think

about θt ≈ t/2.



Proof of Lemma 2. Take x = 1
θt

x∗ + (1− 1
θt

)x t and y = y t (based on FISTA
x t+1 = prox 1

L
h(y t − 1

L∇f (y t)), we have x t+1 = prox 1
L
h(y − 1

L∇f (y))) in Lemma 1 to
get

F (x t+1)− F (θ−1
t x∗ + (1− θ−1

t )x t)

≤ L

2
‖θ−1

t x∗ + (1− θ−1
t )x t − y t‖22 −

L

2
‖θ−1

t x∗ + (1− θ−1
t )x t − x t+1‖22

=
L

2θ2
t

‖x∗ + (θt − 1)x t − θty t‖22 −
L

2θ2
t

‖ x∗ + (θt − 1)x t − θtx t+1︸ ︷︷ ︸
=−ut+1

‖22

=︸︷︷︸
(i)

L

2θ2
t

(‖ut‖22 − ‖ut+1‖22),

(7)

where (i) follows from the definition of ut and y t = x t + θt−1−1
θt

(x t − x t−1).



We will also lower bound (7). By convexity of F ,

F
(
θ−1
t x∗ + (1− θ−1

t )x t
)
≤ θ−1

t F (x∗) + (1− θ−1
t )F (x t) = θ−1

t F opt + (1− θ−1
t )F (x t)

⇒ F
(
θ−1
t x∗ + (1− θ−1

t )x t
)
− F (x t+1) ≤ (1− θ−1

t )(F (x t)− F opt)− (F (x t+1)− F opt)

Combining this with (7) (last equation) and θ2
t − θt = θ2

t−1 yields

L

2
(‖ut‖22 − ‖ut+1‖22) ≥ θ2

t (F (x t+1)− F opt)− (θ2
t − θt)(F (x t)− F opt)

= θ2
t (F (x t+1)− F opt)− θ2

t−1(F (x t)− F opt),

thus finishing the proof.



Proof of Theorem 3. With Lemma 2, one has
2
L
θ2
t−1(F (x t)− F opt) ≤ ‖u1‖22 +

2
L
θ2
0(F (x1)− F opt) = ‖x1 − x∗‖22 +

2
L

(F (x1)− F opt).

To bound the RHS of this inequality, we use Lemma 1 and y0 = x0 (y+ = x1) and
take x = x∗ to get

2
L

(F (x1)− F opt) ≤ ‖y0 − x∗‖22 − ‖x1 − x∗‖22 = ‖x0 − x∗‖22 − ‖x1 − x∗‖22

⇔ ‖x1 − x∗‖21 +
2
L

(F (x∗)− F opt) ≤ ‖x0 − x∗‖22
As a result,

2
L
θ2
t−1(F (x t)− F opt) ≤ ‖x1 − x∗‖22 +

2
L

(F (x1)− F opt) ≤ ‖x0 − x∗‖22,

Hence,

F (x t)− F opt ≤ L‖x0 − x∗‖22
2θ2

t−1
≤ 2L‖x0 − x∗‖22

(t + 1)2 .



Lower bounds

Interestingly, no first-order methods can improve upon Nesterov’s results in general.
More precisely, ∃ convex and L-smooth function f s.t.

f (x t)− f opt ≥ 3L‖x0 − x∗‖22
32(t + 1)2 ,

as long as xk ∈ x0 + span{∇f (x0), · · · ,∇f (xk−1)}︸ ︷︷ ︸
def. of first-order methods

for all 1 ≤ k ≤ t.



Example

Consider minx∈R(2n+1)
L
4

(
1
2x
>Ax − e>1 x

)
where

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ∈ R(2n+1)×(2n+1).

Note that f is convex and L-smooth and the optimizer x∗ is given by
x∗i = 1− i

2n+2(1 ≤ i ≤ n) obeying

f opt =
L

8
(

1
2n + 2

− 1) and ‖x∗‖22 ≤
2n + 2

3
.



Example

Also, ∇f (x) = L
4Ax − L

4e1 and span{∇f (x0), · · · ,∇f (xk−1)}︸ ︷︷ ︸
:=Kk

= span{e1, · · · , ek} if

x0 = 0. That is, every iteration of first-order methods expands the search space by at
most one dimension.
If we start with x0 = 0, then

f (xn) ≥ inf
x∈Kn

f (x) =
L

8

( 1
n + 1

− 1
)
⇒ f (xn)− f opt

‖x0 − x∗‖22
≥

L
8 ( 1

n+1 −
1

2n+2)
1
3(2n + 2)

=
3L

32(n + 1)2 .



Nesterov’s method for strongly convex problems

x t+1 = proxηth(y t − ηt∇f (x t))

y t+1 = x t+1 +

√
κ− 1√
κ+ 1

(x t+1 − x t)

Theorem 4. [Convergence of accelerated proximal gradient methods for strongly
convex case] Suppose f is µ-strongly convex and L-smooth. If ηt ≡ 1/L, then

F (x t)− F opt ≤
(
1− 1√

κ

)t(
F (x0)− F opt +

µ‖x0 − x∗‖22
2

)
.


