Lecture 7. Accelerated Gradient Methods

Bao Wang
Department of Mathematics
Scientific Computing and Imaging Institute
University of Utah
Math 5750/6880, Fall 2023



The iteration complexity of (proximal) gradient methods
strongly convex and smooth problems O(k log %)

convex and smooth problems O(2).

Can one hope to accelerate convergence?



Issues:

1) GD focuses on improving the cost per iteration, which might sometimes be too
"short-sighted":

2) GD might sometimes zigzag or experience abrupt changes.

gradient descent



gradient descent

Solutions:
1) exploit information from the history (i.e. past iterates);

2) add buffers (like momentum) to yield smoother trajectory.



Heavy-ball method

xT = Xt~ VF(x) 4+ 0:(xt —xt71)
—_—
momentum term

where we add inertia to the "ball" (i.e. include a momentum term) to mitigate
zigzagging.

heavy-ball method



State-space method

Consider
1 *\ T *
min =(x — x*) ' Q(x — x*),
x 2
where @ > 0 has a condition number k. One can understand heavy-ball methods

through dynamical systems.

Consider the following dynamical system

[x“trl] _ [(1+9t): _at:} { xt ] - [ntVf(xt)]

X I 0 xt—1 0



State-space method

or equivalently

(1 + 91&)[

—0d] | xt—x* | [n:VF(xF)
1 0 | [xt1—x* 0

(1+9t)l—77t0 —th XT'-—X>'<
/ 0 xt=1 — x*

system matrix:=H,

The convergence of heavy-ball methods depends on the spectrum of the system matrix
H;. We need to find appropriate stepsizes 1; and momentum coefficients 6; to control

the spectrum of H;.



Convergence of heavy-ball methods for quadratic functions

Theorem 1. [Convergence of heavy-ball methods for quadratic functions] Suppose f is
a L-smooth and p-strongly convex quadratic function. Set 1, = 4/(v/L + \/ﬁ)z

0: = max{|1 — v/n:L|,|1 — /n:p|}2, and k = L/p. Then

I[% 2= G T2

Note that the iteration complexity is O(y/k log 1) (vs. O(xlog 1) of GD), the
convergence rate relies on knowledge of both L and p.



Proof of Theorem 1. In view of (1), it suffices to control the spectrum of H;. Let \;
be the ith eigenvalue of Q and let A := diag(\1,- -, Ap), then there exists an
orthogonal matrix U such that @ = UAUT and we have

[[Y g][rrar—ma b u o)) | [axeai=mn ]

Further, note that the characteristic polynomial of the right-hand side matrix satisfies

Ch<[(1+9t)ll—nt/\ —gtlD:det [)\I—((1+_elt)l—nt/\) 9;1,]

- det()\2l (1401 — ) + et/).



The matrix A2 — A((1 + 6;)1 — nA) + 0:1 is diagonal with each diagonal entry be the
characteristic polynomial of the following 2 x 2 matrix

1+0: —neAi —0;
1 0|’

Then the spectral radius (denoted by p(-)) * of H; obeys

. (1 + Ht)l — 7’]t/\ —9tl . 1 + 01_- — 7’]15)\,‘ —91-
p(Hf)_p([ I 0 )‘fo"gxnp( 1 0 )

To finish the proof, it suffices to show

1+0r —meAi —0; VK —
m?Xp([ 1 ODS\/EJF

=

—

'The largest absolute value of its eigenvalues



1 + Qt — T]t)\,' _91&

1 o | e the roots of

To show (2), note that the two eigenvalues of

22— (1460 —n:Xi)z + 6, = 0. (3)

If (14 6; —neXi)? < 46;, then the roots of this equation have the same magnitudes
V/0: (as they are either both imaginary or there is only one root).

In addition, one can easily check that (1 + 0; — 1:\;)? < 40, is satisfied if

0: € [(1— v/neXi)?, (14 V/nehi)?), (4)

which would hold if one picks 8; = max{(1 — v/n:L)?, (1 — \/nez)?}. (Here, we will
choose 7; to guarantee 6; € [0,1).)



With this choice of 6, we have (from (3) and the fact that two eigenvalues have
identical magnitudes) [Vieta's formula: z1zo = 6]

p(Hy) = \/0:.

Finally, setting n; = EwE ensures 1 — /n;L = —(1 — \/n¢11), which yields

oo (- 2 (1 B (Y

Vi+ i) N Vit Vit 1
This in turn establishes Vi1
K —_



Nesterov's accelerated gradient methods

toer1 ot
t—|—3(x x)

> alternates between gradient updates and proper extrapolation

xt+1 _ yt _ ntVf(yt); yt+1 _ xt+1 +

> each iteration takes nearly the same cost as GD

> not a descent method (i.e. we may not have f(x*1) < f(xt)), we will see it
later.



Numerical example

Consider
mMi,n fw)==w'Lw—w'ey,
where
2 -1 0 0 -1
-1 2 -1 0 0
L — ,
0 o -1 2 -1
-1 0 0o -1 2

1000x1000

and e; is a 1000-dim vector whose first entry is 1 and all the other entries are 0.
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Theorem 2. [Convergence of Nesterov's accelerated gradient method] Suppose f is
convex and L-smooth. If n, =n =1/L, then

f(Xt) — fort < 2L||XO — X*”%
- (t41)?

Remark. The iteration complexity if O(-1-), which is much faster than gradient

€
methods.



ODE analogy of Nesterov's accelerated gradient

To develop insight into why Nesterov's method works so well, it's helpful to look at its
continuous limits (7 — 0). To begin with, Nesterov's update rule is equivalent to

xttl —xt 1 xt — xt1

Let t = % Set X(7) ~ x™/V1 = xt and X (7 + \/77) = x**1. Then the Taylor
expansion gives
xt+1 _ xt 1 Xt t—1 1



ODE analogy of Nesterov's accelerated gradient

which combined with (5) yields

X()+ X~ (12 (X() - X (Vi) — VIVAX())

T

S X(7)+ 2 X(7) + VF(X(7)) = 0.

T

What is the ODE limit of the heavy-ball method?



Heavy-ball method

xtT = xt — pVF(xt) 4+ 0(xt — xt71),

Let m' := (x*™! — x*)/\/7 and let 6 := 1 — ~,/7, where v > 0 is another
hyperparameter. Then we can rewrite the heavy-ball method as

mttl = (1 _ 7\/ﬁ)mt _ \anf(xt); xtHL — yt + ﬁmHl.
Let s — 0; we obtain the following system of first-order ODEs

dX(t)
dt

dM(t)
dt

= M(t);

= —7M(t) — VI(X(1)),

which can be further written as

X(1) +~X(1) + VF(X(1)) = 0.



Heavy-ball method vs. Nesterov's acceleration

Heavy-ball method:

Xt = xt — pVF(xt) 4+ 0(xt — xt71),
and the ODE-limit is

X (1) +X(1) + VF(X(7)) = 0.

Nesterov's acceleration:
t
xtl = yt — an(yt); yt 1yttt 4 113 3(xtJrl — xt),

and the ODE-limit is

X(r)+ 2X(r) + VAX(r)) =0



Convergence rate inspired by the ODE analysis

By the standard ODE theory, we can show that

FX(r)) — £ < O( ),

which somehow explains Nesterov's O(1/t?) convergence.

(6)



Convergence rate inspired by the ODE analysis

Proof. Define E(7) := 72(f(X) — foPt) +2|| X + gX — X*||3 (Lyapunov function).
This obeys

E =27(f(X) — FP) + 72(VF(X), X) + 4(X + gx — X", gx + g)"q

\:,,QT(f(X) — fOPYY _27(X — X*,VF(X)) \S/ 0

() convexity

where (i) follows by replacing 7X + 3X with —7V£(X). This means E is
non-decreasing in 7, and hence

E(0) 1
< = O(?)

72

f(X —forPt <
(X(7)) =
def of E



Extend Nesterov's acceleration to composite models

mxin F(x) :=f(x) + h(x) s.t. x€R",

where f is convex and smooth and h is convex (may not be differentiable). Let
F°Pt := miny F(x) be the optimal cost.

FISTA (Fast iterative shrinkage-thresholding algorithm)

x"t = prox, p(yt — neVE(y*))

We can show that %f_—l =1-3+ o(1) Homework..
t+1 t t
We can also show that ; > % (Math induction.)



Convergence analysis

Theorem 3. [Convergence of accelerated proximal gradient methods for convex
problems] Suppose f is convex and L-smooth. If 5, = 1/L, then

F(Xt) _ Fopt < 2LHX0 — X*H%
- (t+1)2

Remark. The algorithm is fast if prox can be efficiently implemented.

Remark. The algorithm is particularly useful for ¢1-regularization problem in e.g. image
processing (total variation in the wavelet space) and compressed sensing.

Remark. To proof Theorem 3, we follow: 1) build a discrete-time version of "Lyapunov
function"; 2) "Lyapunov function" is non-increasing when Nesterov's momentum
coefficients are adopted.



Lemma 1. [Fundamental inequality for proximal method] Let

1
y" = proxy(y — 7 V(y)),

then . |
Fly™) — Fx) < Sllx— I3 — 2 lx — y* I3



Proof of Lemma 1. More precisely, we have

L L
Fiyf) = FO) < slix—yla = Slx =yl - g(xy)
>0 by convexity

where g(x,y) := f(x) — f(y) = (Vf(y),x — y).

Define ¢(z) = f(y) + (Vf(y),z — y) + 5llz— y|3 + h(z). It is easily seen that
yT = argmin; ¢(z). Two important properties:

1. Since ¢(z) is L-strongly convex, one has

L
80) 2 6y ) + 5 Ix — y* 3
2. From smoothness,

o(y*) =fly) +(Vi(y),y" —y)+ élly+ —yl5+h(y™) > f(y ") +h(y*) = F(y™).

upper bound on f(;r) (L-smoothness)



Taken collectively, these yield

L
o(x) = Fly™) + Slx =y ™[5,

which together with the definition of ¢(x) gives

L L
Fy) + (VF(y), x —y) + h(x) + 5[ x = ylz = Fy*)+ Sllx = yrl3

=f(x)+h(x)—g(x.y)=F(x)—g(x.y)

which finishes the proof.



Lemma 2. [Monotonicity of certain "Lyapunov function"]

Let
ut = Qt_lxt — (X* + (Ht_]_ — ].)Xt_l).
Then ) )
a3 + ZHf(F(X”l) — FoPY) < |luf|5 + 195_1(F(Xt) — FoP).

Remark. Note that this is quite similar to 2[| X + X — X*||3 + 72(f(X) — f°P!), think
about 6; ~ t/2.



Proof of Lemma 2. Take x = 7-x* + (1 — 7-)x" and y = y* (based on FISTA

xT1 = proxi,(yt — $VF(y*)), we have x** = proxi,(y — $V£(y))) in Lemma 1 to
L L

get

F(x™ — F(0;71x* + (1 — 071)xY)

L L
< 10X+ (1= 0% = I3 — S0 X+ (1 - 0 )Xt — X3

L . L. .
= 202 HX + (Qt — ].)xt _ Qtnyg _ 202 H x + (9t — 1)xt _ tht-i-l H% (7)
t t
—_yt+l
L t)2 t+12
Z 5l = llu™]2),
t

(i

~

where (i) follows from the definition of u* and y* = x* + %(Xt — xt71).



We will also lower bound (7). By convexity of F,

F(0. %+ (1= 0;1)x) < 077 F(x) 4+ (1— 0, 1) F(xt) = 0,1 F%P 4 (1 — 0;1)F(x")

= F(07 5"+ (1= 07)xt) = F(xt1) < (1 07 1)(F(x") — F%) — (F(x"+1) — Fo°")
Combining this with (7) (last equation) and 6? — 0, = 62_; yields

L
Sl 13 = [ [3) > OF(F(x 1) — FOP') — (67 — B)(F(x) — F)
= O3(F(x"T1) — FoP') — 02 | (F(x") — FoP"),

thus finishing the proof.



Proof of Theorem 3. With Lemma 2, one has
2 2 sy 2
293_1(F(Xt) — FoPY < |lu'|3 + Z9§(F(X1) — FoPY) = ||x! — x*|5 + Z(F(Xl) — FoPY).

To bound the RHS of this inequality, we use Lemma 1 and y° = x° (y* = x!) and
take x = x* to get

2
T(FO) = o) < ly® = x5 =[x = x5 = [1x” = x"|3 — [[x* = x7|3

2
& It = xT 4+ Z(F(x7) = FP) < [Ix® — x| 3

As a result,
2
L

Hence,

* 2 *
Or_1(F(x*) = F) < lxt = x"[[3 4 Z(F(x) = F) < [l = X713,

Llx® = x*[3 _ 2L]x° — x*|3
202, T (t+1)?

F(xt) — FoPt <



Lower bounds

Interestingly, no first-order methods can improve upon Nesterov's results in general.
More precisely, 3 convex and L-smooth function f s.t.

3L[x% — x*||3
f ty fopt > 2
(x°) = TR+ 1)2

as long as x* € x® + span{Vf(x°),- .-, VF(x*" 1} forall 1 < k < t.

def. of first-order methods



Example

Consider min, pn+1) %(%XTAX — e;—x) where

2 -1
-1 2 -1
A— . . . c R(2n+1)><(2n+1)‘
-1 2 -1
- _1 2 -
Note that f is convex and L-smooth and the optimizer x* is given by
X =1— 55(1 < i< n) obeying
L 1 2n+2
FOPt = = —1) and |x*|3 < :
sy = 1) and X713 < 2



Example

Also, Vf(x) = %Ax - %el and span{Vf(x°), -, VF(x*1)} = span{ey,--- , e} if

=K
x% = 0. That is, every iteration of first-order methods expands the search space by at
most one dimension.
If we start with x° = 0, then

. L 1 fxn) — £ s —mm) _ 3L
f(x™) > inf f(x)=—= — > = :
(x7) 2 xEKs () 8 (n +1 ) ~ [x0—x*3 =  1(2n+2) 32(n+1)?



Nesterov's method for strongly convex problems

X = proxm,,(yt —neVE(x"))

t+1 _ t+1 \/E —1 t+1 t

=x S (x" —x
Y * VE+ 1( )

Theorem 4. [Convergence of accelerated proximal gradient methods for strongly

convex case| Suppose f is p-strongly convex and L-smooth. If n; = 1/L, then

AN plix® — x5
F(x')— FPt < (1- F(x%) — FoPt 2 ).
o) _< x/E> ( o) " 2



