
Lecture 8. Stochastic Gradient Descent

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023

Loss function

• We have formulated training machine learning models as follows:

min f (x) =
1
n

n∑
i=1

Li (x) + R(x)

where x is the parameter of the machine learning model, Li (x) is the loss of the ith
training instance, and R(x) is the regularization term.

• How to find the optimal x∗ if n is very large? Computing ∇f is very difficult.

• Let us first ignore the regularization term. (Using proximal!)

Empirical risk minimization

• Let {ai , yi}ni=1 be n random samples, and consider

min
x

F (x) :=
1
n

n∑
i=1

f (x ; {ai , yi}),

e.g. quadratic loss f (x ; {ai , yi}) = (a>i x − yi)
2.

• If one draws index j ∼ Unif (1, · · · , n) uniformly at random, then

F (x) = Ej [f (x ; {aj , yj})].

• More generally, we consider the following stochastic programming

min
x

F (x) = E[f (x ; ξ)]

> ξ: randomness in problem
> suppose f (·, ξ) is convex for every ξ (and hence F (·) is convex)

A natural solution

• Under "mild" technical conditions, we have

x t+1 = x t − ηt∇F (x t)

= x t − ηt∇E[f (x t ; ξ)]

= x t − ηtE[∇x f (x t ; ξ)]

• Issues:
> distribution of ξ maybe unknown.
> even if it is known, evaluating high-dimensional expectations is often expensive.

Stochastic gradient descent (SGD)

• Stochastic approximation/stochastic gradient descent (SGD):

x t+1 = x t − ηtg(x t ; ξt) (1)

where g(x t ; ξt) is an unbiased estimate of ∇F (x t), i.e.

E[g(x t ; ξt)] = ∇F (x t).

• SGD is a stochastic algorithm for finding a critical point x obeying ∇F (x) = 0.

Stochastic gradient descent (SGD)

• Example. Consider the empirical risk minimization problem

min
x

F (x) :=
1
n

n∑
i=1

f (x ; {ai , yi})

SGD for empirical risk minimization
for t = 0, 1, · · ·

choose it uniformly at random, and run

x t+1 = x t − ηt∇x fit (x
t ; {ai , yi})

• Sample with replacement. However, the most used SGD uses sample without
replacement.

SGD for empirical risk minimization

• Benefits: SGD exploits information more efficiently than batch methods (gradient
descent)

1. practical data usually involve lots of redundancy; using all data simultaneously
in each iteration might be inefficient.

2. SGD is particularly efficient at the very beginning, as it achieves fast initial
improvement with very low per-iteration cost.

SGD for empirical risk minimization

Figure: Logistic regression for RCV1 dataset (ηt ≡ 4).

Convergence analysis

Strongly convex and smooth problems

Assumptions. Consider
min
x

F (x) := E[f (x ; ξ)]

where
1. F : µ-strongly convex, L-smooth

2. g(x t ; ξt): an unbiased estimate of ∇F (x t) given {ξ0, · · · , ξt−1}

3. for all x ,
E[‖g(x ; ξ)‖22] ≤ σ2

g + cg‖∇F (x)‖22. (2)

Bounded variance assumption and σ2
g measures the variance.

Convergence: fixed stepsizes

Theorem. [Convergence of SGD for strongly convex problems: fixed stepsizes] Under
the assumptions above, if ηt ≡ η ≤ 1

Lcg
, then SGD (1) achieves

E[F (x t)− F (x∗)] ≤
ηLσ2

g

2µ
+ (1− ηµ)t(F (x0)− F (x∗)).

Proof. See L. Bottou, F. Curtis, and J. Nocedal. "Optimization Methods for
Large-Scale Machine Learning", SIAM Rev, 2018.

Convergence: fixed stepsizes

Remarks.
1. fast (linear) convergence at the very beginning
2. converges to some neighborhood of x∗ — variance in gra-
dient computation prevents further progress
3. when gradient computation is noiseless (i.e. σg = 0), it
converges linearly to optimal points
4. smaller stepsizes η yield better converging points

One practical strategy

Run SGD with fixed stepsizes; whenever progress stalls, reduce stepsizes and continue
SGD.

Figure: Whenever progress stalls, we half the stepsizes and repeat.

Stagewise stepsize.

Convergence with diminishing stepsizes

Theorem. [Convergence of SGD for strongly convex problems: diminishing stepsizes]
Suppose F is µ-strongly convex, and (2) holds with cg = 0. If ηt = θ

t+1 for some
θ > 1

2µ , then SGD (1) achieves

E[‖x t − x∗‖22] ≤ cθ
t + 1

where cθ = max
{

2θ2σ2
g

2µθ−1 , ‖x0 − x∗‖22
}
.

Remark. convergence rate O(1/t) with diminishing stepsize ηt ∼ 1/t.

Proof. Using the SGD update rule, we have

‖x t+1 − x∗‖22 = ‖x t − ηtg(x t ; ξt)− x∗‖22
= ‖x t − x∗‖22 − 2ηt(x t − x∗)>g(x t ; ξt) + η2

t ‖g(x t ; ξt)‖22.
(3)

Since x t is independent of ξt , apply the law of total expectation to obtain

E[(x t − x∗)>g(x t ; ξt)] = E[E[(x t − x∗)>g(x t ; ξt)|ξ1, · · · , ξt−1]

= E[(x t − x∗)>E[g(x t ; ξt)|ξ1, · · · , ξt−1]]

= E[(x t − x∗)>∇F (x t)]

(4)

Furthermore, strong convexity gives

〈∇F (x t), x t − x∗〉 = 〈∇F (x t)−∇F (x∗)︸ ︷︷ ︸
=0

, x t − x∗〉 ≥ µ‖x t − x∗‖22

⇒ E[〈∇F (x t), x t − x∗〉] ≥ µE[‖x t − x∗‖22].

(5)

Combine (3), (4), (5) and (2) (with cg = 0) to obtain

E[‖x t+1 − x∗‖22] ≤ (1− 2µηt)E[‖x t − x∗‖22] + η2
t σ

2
g︸︷︷︸

does not vanish unless ηt→0.

(6)

Take ηt = θ
t+1 and use induction to conclude the proof.

Optimality

Informally, when minimizing strongly convex functions, no algorithm performing t
queries to noisy first-order oracles can achieves an accuracy better than the order of 1/t
⇒ SGD with stepsizes ηt ∼ 1/t is optimal.

Optimality

[Nemirovski & Yudin 1983] More precisely, consider a class of problems in which f is
µ-strongly convex and L-smooth, and Var(‖g(x t ; ξt)‖2) ≤ σ2. Then the worst-case
iteration complexity for (stochastic) first-order methods:√

L

µ
log
(L‖x0 − x∗‖22

ε

)
+
σ2

µε
.

> For deterministic case: σ = 0, and hence the lower bound is√
L

µ
log
(L‖x0 − x∗‖22

ε

)
(achievable by Nesterov’s method)

> For noisy case with large σ, the lower bound is dominated by (1/t convergence rate)

σ2

µ
· 1
ε

Recap

Nesterov’s method for strongly convex problems:

x t+1 = proxηth(y t − ηt∇f (x t))

y t+1 = x t+1 +

√
κ− 1√
κ+ 1

(x t+1 − x t)

Theorem 4. [Convergence of accelerated proximal gradient methods for strongly
convex case] Suppose f is µ-strongly convex and L-smooth. If ηt ≡ 1/L, then

F (x t)− F opt ≤
(
1− 1√

κ

)t(
F (x0)− F opt +

µ‖x0 − x∗‖22
2

)
.

Comparison with batch GD

Figure: Empirical risk minimization with n samples.

SGD is more appealing for large n and moderate accuracy ε (in which case 1
ε < n log 1

ε)
– which often arise in the big data regime! (n is very big.)

Convex problems

What if we lose strong convexity?

min
x

F (x) := E[f (x ; ξ)]

1. F : convex
2. E[‖g(x ; ξ)‖22] ≤ σ2

g for all x
3. g(x t ; ξt) is an unbiased estimate of ∇F (x t) given {ξ0, · · · , ξt−1}.

Suppose we run SGD and return a weighted average

x̃ t :=
t∑

k=0

ηk∑t
j=0 ηj

xk .

Convex problems

Theorem. Under the assumption above, one has

E[F (x̃ t)− F (x∗)] ≤
1
2E[‖x0 − x∗‖22] + 1

2σ
2
g

∑t
k=0 η

2
k∑t

k=0 ηk
.

In particular, if ηt ∼ 1/
√
t, then

E[F (x̃ t)− F (x∗)] .
log t√

t
.

GD for cvx: ηt = 1/L and convergence rate is 1/t.

Proof. By convexity of F , we have

F (x) ≥ F (x t) + (x − x t)>∇F (x t)⇒ E[(x t − x∗)>∇F (x t)] ≥ E[F (x t)− F (x∗)].

This together with (3) and (4) implies

2ηkE[F (xk)− F (x∗)] ≤ E[‖xk − x∗‖22]− E[‖xk+1 − x∗‖22] + η2
kσ

2
g .

Sum over k = 0, · · · , t to obtain

t∑
k=0

2ηkE[F (xk)− F (x∗)] ≤ E[‖x0 − x∗‖22]− E[‖x t+1 − x∗‖22] + σ2
g

t∑
k=0

η2
k

≤ E[‖x0 − x∗‖22] + σ2
g

t∑
k=0

η2
k .

Setting vt = ηt∑t
k=0 ηk

yields

t∑
k=0

vkE[F (xk)− F (x∗)] ≤
1
2E[‖x0 − x∗‖22] + 1

2σ
2
g

∑t
k=0 η

2
k∑t

k=0 ηk
.

By convexity of F , we arrive at

E[F (x̃ t)− F (x∗)] ≤
1
2E[‖x0 − x∗‖22] + 1

2σ
2
g

∑t
k=0 η

2
k∑t

k=0 ηk
.

Reducing variance via iterate averaging

Stepsize choice O(1/t)?

Two conflicting regimes:
1. The noiseless case (i.e. g(x ; ξ) = ∇F (x)): stepsizes ηt ∼ 1/t are way too
conservative.

2. The general noisy case: longer stepsizes (ηt � 1/t) might fail to suppress noise
(and hence slow down convergence).

Can we modify SGD so as to allow for larger stepsizes without compromising
convergence rates?

Acceleration by averaging

Motivation for iteration averaging. SGD with long stepsizes poorly suppresses noise,
which tends to oscillate around the global minimizers due to the noisy nature of
gradient computation. One may, however, average iterates to mitigate oscillation and
reduce variance.

Run SGD and return

x̄ t :=
1
t

t−1∑
i=0

x i , (7)

with larger stepsizes ηt ∼ t−α with α < 1.

Key idea: average the iterates to reduce variance and improve
convergence.

Example: a toy quadratic problem

Consider minx∈Rd
1
2‖x‖

2
2 using constant stepsizes ηt ≡ η < 1. Assume the unbiased

stochastic gradient satisfies

g(x t ; ξt) = x t + ξt with E[ξt |ξ0, · · · , ξi−1] = 0 and E[ξtξt>|ξ0, · · · , ξt−1] = I.

SGD iterates:

x1 = x0 − η(x0 + ξ0) = (1− η)x0 − ηξ0

x2 = x1 − η(x1 + ξ1) = (1− η)2x0 − η(1− η)ξ0 − ηξ1

...

x t = (1− η)tx0 − η(1− η)t−1ξ0 − η(1− η)t−2ξ1 − · · ·

Example: a toy quadratic problem

i.e.,

x̄ t ≈ 1
t

t−1∑
k=0

(1− η)kx0

︸ ︷︷ ︸
= 1

t
1−(1−η)t

η
x0→0

− η{1 + (1− η) + · · · }1
t

t−1∑
k=0

ξk︸ ︷︷ ︸
imprecise: but close enough for large t

≈ −1
t

t−1∑
k=0

ξk (since 1 + (1− η) + · · · = η−1)

→ 1√
t
N (0, I) as t →∞ (the central limit theorem for martingale)

Other popular SGD variants: SGD with momentum

v t+1 = γvt + ηg(x t ; ξt)

x t+1 = x t − v t+1.
(8)

How it is related to the heavy-ball method?

From the second equation, we have v t+1 = x t − x t+1, and therefore we have

x t − x t+1 = γ(x t−1 − x t) + ηg(x t ; ξt),

i.e.
x t+1 = x t − ηg(x t ; ξt) + γ(x t − x t−1).

Other popular SGD variants: SGD with Nesterov momentum

v t+1 = γvt + ηg(x t − γvt ; ξt)
x t+1 = x t − v t+1.

(9)

In practice, SGD with Nesterov momentum performs similar to SGD with momentum.

Other popular SGD variants: Adagrad

Let g t
i = g(x ti), SGD update for every parameter xi at each time step t then becomes

x t+1
i = x ti − ηg t

i .

Adagrad modifies the general learning rate η at each time step t for every parameter xi
based on the past gradients that have been computed for xi :

x t+1
i = x ti −

η√
G t
ii + ε

· g t
i ,

where G t ∈ Rd×d is a diagonal matrix where each diagonal element i , i is the sum of
the squares of the gradients w.r.t. xi up to time step t, while ε (e.g. 10−8) is a
smoothing term that avoids division by zero. In vector form, we have

x t+1 = x t − η√
G t + ε

� g t .

Adagrad eliminates the tuning of learning rate, but G t + ε can go to infinity.

Other popular SGD variants: Adadelta or RMSprop

Instead of taking the sum of the squares of the gradients w.r.t. xi up to time step t,
Adadelta or RMSprop takes the following moving average

E [g t]2 = γE [g t−1]2 + (1− γ)[g t]2,

where 0 < γ < 1 is a constant, and then we update x t as follows:

x t+1 = x t − η√
E [g t]2 + ε

g t .

Other popular SGD variants: Adam

Adam further integrates momentum into RMSprop. In particular, we compute the
decaying averages of past and past squared gradients mt and v t as follows:

mt = β1mt−1 + (1− β1)g t ; v t = β2v t−1 + (1− β2)[g t]2,

where we typically set β1 = 0.9 and β2 = 0.999. Next, we do the following
bias-correction

m̂t =
mt

1− βt1
; v̂ t =

v t

1− βt2
.

Finally, we update the parameter as follows:

x t+1 = x t − η√
v̂ t + ε

m̂t .

Batch Normalization

To facilitate learning, we typically normalize the initial values of our parameters by
initializing them with zero mean and unit variance. As training progresses and we
update parameters to different extents, we lose this normalization, which slows down
training and amplifies changes as the network becomes deeper.

Batch normalization reestablishes these normalizations for every mini-batch and changes
are back-propagated through the operation as well. By making normalization part of
the model architecture, we are able to use higher learning rates and pay less attention
to the initialization parameters. Batch normalization additionally acts as a regularizer.

Early Stopping

Monitor error on a validation set during training and stop (with some patience) if your
validation error does not improve enough.

