
Advances of Momentum in Optimization Algorithm and Neural
Architecture Design

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Partially supported by DoE, NSF, and Univ of Utah

Deep Learning (DL)

DL = Big Data + Deep Nets + SGD + HPC

Deep Learning: Revolution in Technology

Deep Learning: Revolution in Science

Deep Learning is Expensive!

1. Neural architecture design is mostly art instead of science!

2. Training deep neural networks is expensive:

2.1 No principled approach in selecting optimization algorithm!

2.2 Slow convergence!

Deep Learning is Very Expensive

Our Principle

Simple and principled approaches converge with working
machine learning algorithms!

A few examples:
Nesterov Accelerated SGD with Restart I

Integrate Momentum into Recurrent Neural Network II

I. Scheduled Restart Momentum for Accelerated Stochastic Gradient
Descent

B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, Scheduled Restart Momentum for Stochastic Gradient
Descent, arXiv:2002.10583, 2020.
Code: https://github.com/minhtannguyen/SRSGD

Blog: http://almostconvergent.blogs.rice.edu/2020/02/21/srsgd/

https://github.com/minhtannguyen/SRSGD
http://almostconvergent.blogs.rice.edu/2020/02/21/srsgd/

Empirical Risk Minimization (ERM)

Consider training a machine learning model

y = g(x,w), w ∈ Rd .

Empirical Risk Minimization (ERM)

min
w

f (w) :=
1
N

N∑
i=1

fi (w) :=
1
N

N∑
i=1

L(g(xi ,w), yi),

where L is the loss between the predicted label ŷi and the ground-truth label yi .

Classification: cross-entropy loss L(ŷi , yi) = −
∑c

j=1 y
j
i log(p

j
i). where pj

i is the predicted probability
that yi is belong to j-th class.

Regression: mean squared error L(ŷi , yi) = (yi − ŷi)
2.

Challenges: d ∼ 1010, N ∼ 1010, and f (w) is nonconvex.

Gradient Descent

Suppose f (w) is L-smooth, i.e., ‖∇f (w)−∇f (v)‖2 ≤ L‖w − v‖2.

Start from w0, gradient descent performs the following iteration

wk = wk−1 − s∇f(wk−1).

1. f (w) is µ-strongly convex (bounded below by a quadratic function), let s = 2/(µ+ L), we have

‖wk − w∗‖2 ≤
(
L/µ− 1
L/µ+ 1

)k

‖w0 − w∗‖2, w∗ is the minimum.

2. f (w) is convex, let s = 1/L, we have

f (wk)− f (w∗) ≤ 2L‖w0 − w∗‖22
k

.

3. f (w) is nonconvex, let s = 1/L, we have

‖∇f (wk)‖2 ≤
√

2L(f (w0)− f (w∗))
k

.

A. Cauchy, 1847

Gradient Descent

Consider
min
w

f (w) =
1
2
wTLw −wTe1,

where

L =

2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2

1000×1000

,

and e1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

A. Nemirovski et al, 1985

Gradient Descent

O (1/k) convergence rate! Very slow!

Gradient Descent + (Lookahead/Nesterov) Momentum

vk = wk−1 − s∇f (wk−1),

wk = vk + µ(vk − vk−1).

O (1/k) convergence rate!

Heavy Ball

wk = wk−1 − s∇f (wk−1) + µ(wk−1 −wk−2).

O (1/k) convergence rate!

B. Polyak, 1964

Why momentum works

High dimensional problem is usually ill-conditioned!

Figure: Top: no momentum; Bottom: with momentum.

Momentum smooths the trajectory and significantly speeds up gradient descent.

G. Goh, Why momentum really works. Distill, 2017

Nesterov Accelerated Gradient (NAG)

vk = wk−1 − s∇f (wk−1),

wk = vk +
k − 1
k + 2

(vk − vk−1).

O(1/k2) convergence rate! NAG oscillates.

Nesterov Accelerated Gradient (NAG)

One of the most beautiful and mysterious results in optimization!

Not a descent method! (ripples/bumps in the traces of cost values)

Continuous dynamics

Ẍ (t) +
3
t
Ẋ (t) +∇f (X (t)) = 0,

which satisfies f (X (t))− f (X ∗) ≤ O
(1
t2

)
.

We can prove the above result by considering the following Lyapunov function

E(t) := t2(f (X (t))− f (X ∗)) + 2‖X (t) +
t

2
Ẋ (t)− X ∗‖22.

Can we further accelerate NAG? NAG is not monotonically converge!

Y. Nesterov, 1983.
Su, Boyd, and Candes, 2014.

Adaptive Restart NAG (ARNAG)

vk = wk−1 − s∇f (wk−1),

wk = vk +
m(k − 1)− 1
m(k − 1) + 2

(vk − vk−1),

where

m(k) =

{
m(k − 1) + 1, if f (wk) ≤ f (wk−1),

1, otherwise.

O(αk), geometric convergence with convex and sharpness
assumption!

Sharpness: µ
r
d(w,w∗)r ≤ f (w)− f (w∗), µ > 0, r > 1.

V. Roulet et al. NIPS 2017

Scheduled Restart NAG (SRNAG)
Let (0,T] =

⋃m
i=1 Ii =

⋃m
i=1(Ti−1,Ti]. In each Ii , we restart the momentum after Fi iterations as

follows:

vk = wk−1 − s∇f (wk−1),

wk = vk +
(k mod Fi)

(k mod Fi) + 3
(vk − vk−1).

O(βk), geometric convergence with convex and sharpness
assumption!

V. Roulet et al. NIPS 2017

What If We Do Not Have Exact Gradient?

In ERM,

min
w

f (w) :=
1
N

N∑
i=1

fi (w) :=
1
N

N∑
i=1

L(g(xi ,w), yi),

when N � 1, compute ∇f (w) will be very expensive.

Stochastic Gradient:

∇f (w) ≈ 1
n

n∑
j=1

fij (w), with [n] ⊂ [N] and n� N.

Can NAG still accelerate convergence with Stochastic Gradient?

A Motivating Example – Gaussian Noise Corrupted Gradient – Case I: Decaying Variance

Consider
min

w
f (w) =

1
2
wTLw − wTe1,

where

L =

2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2

1000×1000

,

and e1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

Gaussian Noise Corrupted Gradient:

∇f (w) = Lw − e1 + n, n ∼ N (0, (
0.1

bk/100c+ 1
)2).

A Motivating Example – Gaussian Noise Corrupted Gradient – Case I: Decaying Variance

1 2 3 4 5
Iteration (k) #104

10-4

10-2

100

f(
xk)

-
f(

x*)

GD
GD + Momentum
NAG
ARNAG
SRNAG

NAG accumulates error when an inexact gradient is used. ARNAG restarts too often
and almost degenerates into GD. SRNAG performs the best.

A Motivating Example – Gaussian Noise Corrupted Gradient – Case II: Constant Variance

Consider
min

w
f (w) =

1
2
wTLw − wTe1,

where

L =

2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2

1000×1000

,

and e1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

Gaussian Noise Corrupted Gradient:

∇f (w) = Lw − e1 + n, n ∼ N (0, 0.0012).

A Motivating Example – Gaussian Noise Corrupted Gradient – Case II: Constant Variance

1 2 3 4 5
Iteration (k) #104

10-4

10-2

100

f(
xk)

-
f(

x*)

GD
GD + Momentum
NAG
ARNAG
SRNAG

NAG accumulates error when an inexact gradient is used. ARNAG restarts too often
and almost degenerates into GD. SRNAG performs the best.

A Motivating Example – Logistic Regression – Case III

200 400 600 800 1000
Iteration (x 10)

10-1

100

101

102

Lo
ss

SGD
SGD + Momentum
NASGD
ARSGD
SRSGD

Figure: Training loss of logistic regression for MNIST classification.

NAG still accumulates error, and SRNAG performs the best.

Error Accumulation of NAG with Stochastic Gradient

Theorem Let f (w) be a convex and L-smooth function. The sequence {wk}k≥0 generated by NAG
with mini-batch stochastic gradient using any constant step size s ≤ 1/L, satisfies

E
(
f (wk)− f (w∗)

)
= O(k),

where w∗ is the minimum of f , and the expectation is taken over the random mini-batch samples.

Nesterov Accelerated SGD accumulates error, which diverges!

B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

NAG with Restart (Inexact Oracle)

Adaptive Restart NAG with Inexact Oracle: restart too often, degenerates to GD
without momentum.

Scheduled Restart NAG with Inexact Oracle: appropriate restart scheduling can lead to
an optimal trade-off between convergence and error accumulation.

Scheduled Restart SGD (SRSGD)

vk = wk−1 − s
1
m

m∑
j=1

∇fij (wk−1),

wk = vk +
(k mod Fi)

(k mod Fi) + 3
(vk − vk−1).

where m is the batch size.

SRSGD resets the Nesterov momentum according to a fixed schedule when stochastic
gradients are used.

B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

Convergence of SRSGD

Theorem Suppose f (w) is L-smooth. Consider the sequence {wk}k≥0 generated by SRSGD with
mini-batch stochastic gradient and any restart frequency F using any constant step size s ≤ 1/L.
Assume that the set A := {k ∈ Z+|Ef (wk+1) ≥ Ef (wk)} is finite, then we have

min
1≤k≤K

{
E‖∇f (wk)‖22

}
= O(s +

1
sK

).

Therefore for ∀ε > 0, to get ε error, we just need to set s = O(ε) and K = O(1/ε2).

SRSGD converges even when stochastic gradients are used.

B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

SRSGD for Deep Learning – CIFAR10/CIFAR100 Classification

SRSGD converges faster than SGD.

SRSGD for Deep Learning – ImageNet Classification

SRSGD converges faster than SGD.

Improving Testing Error

Figure: Error vs. depth of ResNet.

The improvement of SRSGD over SGD continues to grow with depth. Since SRSGD
oscillates, it can escape bad minima and avoid overfitting in very deep networks.

Reducing the Training EpochsReducing	the	Number	of	Training	Epochs
SRSGD	Training	in	100	epochs	
vs.	SGD	Training	in	200	epochs

Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent

Table 3. Comparison of classification errors on CIFAR10/100 (%)
between SRSGD training with only 100 epochs and SGD baseline
training with 200 epochs. Using only half the number of training
epochs, SRSGD achieves comparable results to SGD.

CIFAR10

Network SRSGD Improvement over

SGD baseline

Pre-ResNet-110 5.43 ± 0.18 �0.18

Pre-ResNet-290 4.83 ± 0.11 0.22

Pre-ResNet-470 4.64 ± 0.17 0.28

Pre-ResNet-650 4.43 ± 0.14 0.44

Pre-ResNet-1001 4.17 ± 0.20 0.67

Pre-ResNet-110 5.25 ± 0.10 (110 epochs) 0.00

CIFAR100

Network SRSGD Improvement over

SGD baseline

Pre-ResNet-110 23.85 ± 0.19 �0.10

Pre-ResNet-290 21.77 ± 0.43 0.01

Pre-ResNet-470 21.42 ± 0.19 0.01

Pre-ResNet-650 21.04 ± 0.20 0.23

Pre-ResNet-1001 20.27 ± 0.11 0.60

Pre-ResNet-110 23.73 ± 0.23 (140 epochs) 0.02

for 90 epochs and decrease the learning rate by a factor of
10 at the 30th and 60th epoch. We use an initial learning
rate of 0.1, momentum value of 0.9, and weight decay value
of 0.0001. Additional details are given in the Appendix.

We report single crop validation errors of ResNet models
trained with SGD and SRSGD on ImageNet in Table 4.
In contrast to our CIFAR experiments, we observe that for
ResNets trained on ImageNet with SRSGD, linearly decreas-
ing the restarting frequency to 1 at the last learning rate (i.e.,
after the 60th epoch) helps improve the generalization of
the models. Thus, in our experiments, we set the restarting
frequency to a linear schedule until epoch 60. From epoch
60 to 90, the restarting frequency is linearly decreased to 1.
We use (F1 = 40, r = 2).

Advantage of SRSGD continues to grow with depth:
Similar to the CIFAR experiments, we observe that SRSGD
outperforms the SGD baseline for all ResNet models that
we study. As shown in Fig. 1, the advantage of SRSGD
over SGD grows with network depth, just as in our CIFAR
experiments with Pre-ResNet architectures.

Avoiding Overfitting in ResNet-200: ResNet-200 is an
interesting model that demonstrates that SRSGD is better
than the SGD baseline at avoiding overfitting.5 The ResNet-
200 trained with SGD has a top-1 error of 22.18%, higher
than the ResNet-152 trained with SGD, which achieves

5By overfitting, we mean that the model achieves low training
error but high test error.

Te
st

 E
rr

or

Number of Epoch Reduction

Pre-ResNet-101 Pre-ResNet-290
Pre-ResNet-470 Pre-ResNet-650

Pre-ResNet-1001

Si
ng

le
Cr

op
Va

lid
at

io
n

Er
ro

r

ResNet-50 ResNet-101
ResNet-152 ResNet-200

CIFAR10 ImageNet

Figure 5. Test error vs. number of epoch reduction in CIFAR10
and ImageNet training. The dashed lines are test errors of the
SGD baseline. For CIFAR, SRSGD training with fewer epochs
can achieve comparable results to SRSGD training with full 200
epochs. For ImageNet, training with less epochs slightly decreases
the performance of SRSGD but still achieves comparable results
to the SGD baseline training.

a top-1 error of 21.9% (see Table 4). As pointed out in
(He et al., 2016b), it is because ResNet-200 suffers from
overfitting. The ResNet-200 trained with our SRSGD has a
top-1 error of 21.08%, which is 1.1% lower than the ResNet-
200 trained with the SGD baseline and also lower than
the ResNet-152 trained with both SRSGD and SGD, an
improvement by 0.21% and 0.82%, respectively.

Training ImageNet in Fewer Number of Epochs: As
in the CIFAR experiments, we note that when training on
ImageNet, SRSGD converges faster than SGD at the first
and last learning rate while quickly reaching a good loss
value at the second learning rate (see Fig. 4). This observa-
tion suggests that ResNets can be trained with SRSGD in
fewer epochs while still achieving comparable error rates to
the same models trained by the SGD baseline using all 90
epochs. We summarize the results in Table 5. On ImageNet,
we note that SRSGD helps reduce the number of training
epochs for very deep networks (ResNet-101,152,200). For
smaller networks like ResNet-50, training with fewer epochs
slightly decreases the accuracy.

5. Empirical Analysis
5.1. Error Rate vs. Reduction in Epochs

We find that SRSGD training using fewer epochs yield com-
parable error rate to both the SGD baseline and the SRSGD
full training with 200 epochs on CIFAR. We conduct an
ablation study to understand the impact of reducing the
number of epochs on the final error rate when training with
SRSGD on CIFAR10 and ImageNet. In the CIFAR10 ex-
periments, we reduce the number of epochs from 15 to 90
while in the ImageNet experiments, we reduce the number
of epochs from 10 to 30. We summarize our results in Fig. 5
and provide detailed results in the Appendix. For CIFAR10,
we can train with 30 epochs less while still maintaining a

Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent

Table 4. Single crop validation errors (%) on ImageNet of ResNets trained with SGD baseline and SRSGD. We report the results of
SRSGD with the increasing restarting frequency in the first two learning rates. In the last learning rate, the restarting frequency is linearly
decreased from 70 to 1. For baseline results, we also include the reported single-crop validation errors (He et al., 2016c) (in parentheses).

Network # Params SGD SRSGD Improvement

top-1 top-5 top-1 top-5 top-1 top-5

ResNet-50 25.56M 24.11 ± 0.10 (24.70) 7.22 ± 0.14 (7.80) 23.85 ± 0.0923.85 ± 0.0923.85 ± 0.09 7.10 ± 0.097.10 ± 0.097.10 ± 0.09 0.26 0.12

ResNet-101 44.55M 22.42 ± 0.03 (23.60) 6.22 ± 0.01 (7.10) 22.06 ± 0.1022.06 ± 0.1022.06 ± 0.10 6.09 ± 0.076.09 ± 0.076.09 ± 0.07 0.36 0.13

ResNet-152 60.19M 22.03 ± 0.12 (23.00) 6.04 ± 0.07 (6.70) 21.46 ± 0.0721.46 ± 0.0721.46 ± 0.07 5.69 ± 0.035.69 ± 0.035.69 ± 0.03 0.57 0.35

ResNet-200 64.67M 22.13 ± 0.12 6.00 ± 0.07 20.93 ± 0.1320.93 ± 0.1320.93 ± 0.13 5.57 ± 0.055.57 ± 0.055.57 ± 0.05 1.20 0.43

Table 5. Comparison of single crop validation errors on ImageNet
(%) between SRSGD training with fewer epochs and SGD training
with full 90 epochs.

Network SRSGD Epoch Improvement

Reduction over SGD

ResNet-50 24.30 ± 0.21 10 �0.19

ResNet-101 22.32 ± 0.06 10 0.1

ResNet-152 21.79 ± 0.07 15 0.24

ResNet-200 21.92 ± 0.17 30 0.21

comparable error rate to the full SRSGD training, and with
a better error rate than the SGD baseline. For ImageNet,
SRSGD training with fewer epochs decreases the accuracy
but still obtains comparable results to the 90-epoch SGD
baseline as shown in Table 5.

5.2. Impact of Restarting Frequency

We examine the impact of restarting frequency on the net-
work training. We choose a case study of training Pre-
ResNet-290 on CIFAR10 using SRSGD with a linear sched-
ule scheme for the restarting frequency. We fix the growth
rate r = 2 and vary the initial restarting frequency F1 from 1
to 80 in increments of 10. As shown in Fig. 6, SRSGD with
large F1, e.g. F1 = 80, approximates NASGD (yellow). As
discussed in Section 3, it suffers from error accumulation
due to stochastic gradients and converges slowly. SRSGD
with small F1, e.g. F1 = 1, approximates SGD without
momentum (green). It converges faster initially but reaches
a worse local minimum (i.e. greater loss). Typical SRSGD
(blue) converges faster than NASGD and to a better local
minimum than both NASGD and SGD without momentum.
It also achieves the best test error.

6. Additional Related Work
Momentum has long been used to accelerate SGD.
(Sutskever et al., 2013) showed that SGD with scheduled
momentum and a well-designed initialization can deal with
the curvature issues in training DNNs and enable the trained
models to generalize well. (Kingma & Ba, 2014; Dozat,
2016) integrated momentum with adaptive step size to accel-

Tr
ai

n
Lo

ss

Epoch

Te
st

 E
rr

or

Initial Restarting Frequency (F1)

Approximate
SGD without
momentum

Approximate
NASGD

Approximate
SGD without
momentum

Approximate
NASGD

Figure 6. Training loss and test error of Pre-ResNet-290 trained
on CIFAR10 with different initial restarting frequencies F1 (linear
schedule). SRSGD with small F1 approximates SGD without
momentum, while SRSGD with large F1 approximates NASGD.

erate SGD. These works all leverage constant momentum,
while our work utilizes NAG momentum with restart.

AR and SR have been used to accelerate NAG with exact
gradient (Nemirovskii & Nesterov, 1985; Nesterov, 2013;
Iouditski & Nesterov, 2014; Lin & Xiao, 2014; Renegar,
2014; Freund & Lu, 2018; Roulet et al., 2015; O’donoghue
& Candes, 2015; Giselsson & Boyd, 2014; Su et al., 2014).
These studies of restart NAG momentum are for convex
optimization with exact gradient. Our work focuses on SGD
for nonconvex optimization. Many efforts have also been
devoted to accelerating first-order algorithms with noise-
corrupted gradients (Cohen et al., 2018; Aybat et al., 2018).

7. Conclusions
We propose the Scheduled Restart SGD (SRSGD), with two
major changes from the widely used SGD with constant
momentum (without ambiguity we call it SGD). First, we
replace the momentum in SGD with the increasing momen-
tum in Nesterov accelerated gradient (NAG). Second, we
restart the momentum according to a schedule to prevent
error accumulation when the stochastic gradient is used.
For image classification, SRSGD can significantly improve
the accuracy of the trained DNNs. Also, compared to the
SGD baseline, SRSGD requires fewer training epochs to
reach to the same trained model’s accuracy. There are nu-
merous avenues for future work: 1) deriving the optimal
restart scheduling and the corresponding convergence rate of
SRSGD, 2) integrating the scheduled restart NAG momen-
tum with adaptive learning rate algorithms, e.g. Adam, and
3) integrating SRSGD with optimizers that remove noise on
the fly, e.g., Laplacian smoothing SGD (Osher et al., 2018).

SRSGD	Training	with	Fewer	Epochs
vs.	SGD	Training	in	90	epochs

ImageNet

SRSGD training with fewer epochs achieves comparable results to the SGD baseline.

II. MomentumRNN: Integrating Momentum into Recurrent Neural
Networks

T. Nguyen, A. Bertozzi, R. Baraniuk, S. Osher, and B. Wang, MomentumRNN: Integrating Momentum into Recurrent Neural
Networks, arXiv:2006.06919, 2020.

Code: https://github.com/minhtannguyen/MomentumRNN

https://github.com/minhtannguyen/MomentumRNN

Recurrent Neural Networks

ht︸︷︷︸
hidden state

= σ︸︷︷︸
e.g., sigmoid

 U︸︷︷︸
weight matrix

× ht−1︸︷︷︸
hidden state

+ W︸︷︷︸
weight matrix

× xt︸︷︷︸
input data

 .

Recurrent Cell

ht�1
<latexit sha1_base64="8aOEj4mL3Y2IJlKRFf5aZkfFFTI=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSQ+0GXRjcsK9gFtCJPppB06mYSZiVJiPsWNC0Xc+iXu/BunbRbaeuDC4Zx7ufeeIOFMacf5tpaWV1bX1ksb5c2t7Z1du7LXUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywupn47QcqFYvFvR4n1IvwQLCQEayN5NuVrBeEaJj7mT5xc2Tg21Wn5kyBFolbkCoUaPj2V68fkzSiQhOOleq6TqK9DEvNCKd5uZcqmmAywgPaNVTgiCovm56eoyOj9FEYS1NCo6n6eyLDkVLjKDCdEdZDNe9NxP+8bqrDKy9jIkk1FWS2KEw50jGa5ID6TFKi+dgQTCQztyIyxBITbdIqmxDc+ZcXSeu05p7VLu7Oq/XrIo4SHMAhHIMLl1CHW2hAEwg8wjO8wpv1ZL1Y79bHrHXJKmb24Q+szx80o5Kp</latexit>

U
<latexit sha1_base64="z9zg2iqwi9344t+IKexFb0YxuX4=">AAAB83icbVDLSsNAFL2prxpfVZduBovgqiQ+0GXRjcsKxhaaUCbTSTt0MgnzEErob7hxoYhbf8adf+O0zUJbD1w4nHMv994T55wp7XnfTmVldW19o7rpbm3v7O7V9g8eVWYkoQHJeCY7MVaUM0EDzTSnnVxSnMactuPR7dRvP1GpWCYe9DinUYoHgiWMYG2lsAjjBAUTF1n0anWv4c2AlolfkjqUaPVqX2E/IyalQhOOler6Xq6jAkvNCKcTNzSK5piM8IB2LRU4pSoqZjdP0IlV+ijJpC2h0Uz9PVHgVKlxGtvOFOuhWvSm4n9e1+jkOiqYyI2mgswXJYYjnaFpAKjPJCWajy3BRDJ7KyJDLDHRNibXhuAvvrxMHs8a/nnj8v6i3rwp46jCERzDKfhwBU24gxYEQCCHZ3iFN8c4L8678zFvrTjlzCH8gfP5A5PXkBQ=</latexit>

W<latexit sha1_base64="cuHldFFiF77mAfOmFfAVYyONB6M=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0n8QI9FLx4rWFtoQtlsJ+3SzSbsboQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYthiiUhUJ6QaBZfYMtwI7KQKaRwKbIej26nffkKleSIfzDjFIKYDySPOqLGSn/thRNqTCrHoVWtu3Z2BLBOvIDUo0OxVv/x+wrIYpWGCat313NQEOVWGM4GTip9pTCkb0QF2LZU0Rh3ks5sn5MQqfRIlypY0ZKb+nshprPU4Dm1nTM1QL3pT8T+vm5noOsi5TDODks0XRZkgJiHTAEifK2RGjC2hTHF7K2FDqigzNqaKDcFbfHmZPJ7VvfP65f1FrXFTxFGGIziGU/DgChpwB01oAYMUnuEV3pzMeXHenY95a8kpZg7hD5zPH5brkBY=</latexit>xt
<latexit sha1_base64="zupcbLZHIMt/f+BOTq0HPMg47IE=">AAAB+XicbVDLSsNAFL3xWeMr6tLNYBFclcQHuiy6cVnBPqANYTKdtEMnkzAzKZaQP3HjQhG3/ok7/8Zpm4W2HrhwOOde7r0nTDlT2nW/rZXVtfWNzcqWvb2zu7fvHBy2VJJJQpsk4YnshFhRzgRtaqY57aSS4jjktB2O7qZ+e0ylYol41JOU+jEeCBYxgrWRAsfJe2GEnoog14WNDAKn6tbcGdAy8UpShRKNwPnq9ROSxVRowrFSXc9NtZ9jqRnhtLB7maIpJiM8oF1DBY6p8vPZ5QU6NUofRYk0JTSaqb8nchwrNYlD0xljPVSL3lT8z+tmOrrxcybSTFNB5ouijCOdoGkMqM8kJZpPDMFEMnMrIkMsMdEmLNuE4C2+vExa5zXvonb1cFmt35ZxVOAYTuAMPLiGOtxDA5pAYAzP8ApvVm69WO/Wx7x1xSpnjuAPrM8fo7OSWw==</latexit>

�
<latexit sha1_base64="cNUg6UhGCC7rWHB/yN0CSQAAHw0=">AAAB7XicbVDJSgNBEK2JW4xb1KOXxiB4CjMu6DHoxWMEs0AyhJ5OT9Kml6G7RwhD/sGLB0W8+j/e/Bs7yRw08UHB470qqupFCWfG+v63V1hZXVvfKG6WtrZ3dvfK+wdNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc1u4YNBO6VK37VnwEtkyAnFchR75W/un1FUkGlJRwb0wn8xIYZ1pYRTielbmpogskID2jHUYkFNWE2u3aCTpzSR7HSrqRFM/X3RIaFMWMRuU6B7dAselPxP6+T2vg6zJhMUkslmS+KU46sQtPXUZ9pSiwfO4KJZu5WRIZYY2JdQCUXQrD48jJpnlWD8+rl/UWldpPHUYQjOIZTCOAKanAHdWgAgUd4hld485T34r17H/PWgpfPHMIfeJ8/nqOPKg==</latexit>⊕ ht

<latexit sha1_base64="67GWtoV0Vvo6zoV8o9y9MCBbkfg=">AAAB+HicbVDJSgNBEK1xjXHJqEcvjUHwFGZc0GPQi8cIZoFkGHo6PUmTnoXuGiEO8yVePCji1U/x5t/YWQ6a+KDg8V4VVfWCVAqNjvNtrayurW9slrbK2zu7exV7/6Clk0wx3mSJTFQnoJpLEfMmCpS8kypOo0DydjC6nfjtR660SOIHHKfci+ggFqFgFI3k25W8F4RkWPg5FsTAt6tOzZmCLBN3TqowR8O3v3r9hGURj5FJqnXXdVL0cqpQMMmLci/TPKVsRAe8a2hMI669fHp4QU6M0idhokzFSKbq74mcRlqPo8B0RhSHetGbiP953QzDay8XcZohj9lsUZhJggmZpED6QnGGcmwIZUqYWwkbUkUZmqzKJgR38eVl0jqruee1y/uLav1mHkcJjuAYTsGFK6jDHTSgCQwyeIZXeLOerBfr3fqYta5Y85lD+APr8wdR9ZI3</latexit>

Universal Approximation Theorem of RNN (Informal). A
RNN with enough capacity and sigmoid activation can
approximate with arbitrary accuracy to the following nonlinear
dynamical system

ht = g(ht−1, xt),

where ht is the hidden state at time t and xt is the external
input. g(·) is a measurable function. a

aS. Haykin, Neural networks and learning machines, 2009.

Recurrent Neural Networks – Application I

Sequence to label: Input a sequence, output a label.

Applications: text classification (left – the label is inferred from the last hidden state), image
captioning (right – the label is inferred from all hidden states),...

Recurrent Neural Networks – Application II

Sequence to sequence (synchronized): Input a sequence, output a sequence.

Applications: sequence labeling, part-of-speech tagging,...

Recurrent Neural Networks – Application III

Sequence to sequence (asynchronized): Input a sequence, output a sequence.

Applications: text summarization, machine translation,...

Recurrent Neural Networks – Training Algorithm

Back-propagation through time (BPTT)!

Given any training sample (x, y) with x = (x1, x2, · · · , xT) being an input sequence of length T and
y = (y1, y2, · · · , yT) being the sequence of labels. Let Lt be the loss at the time step t and the total
loss on the whole sequence is

L =
T∑

t=1

Lt .

For any 1 ≤ t ≤ T , we can compute the gradient of the loss Lt with respect to the parameter U as

∂Lt

∂U
=

t∑
k=1

∂hk

∂U
· ∂Lt

∂ht
· ∂ht

∂hk
=

t∑
k=1

∂hk

∂U
· ∂Lt

∂ht
·
t−1∏
k=1

∂hk+1

∂hk
,

where ∂hk+1
∂hk

= DkUT with Dk = diag (σ′(Uhk + Wxk+1)).

t−1∏
k=1

∂hk+1
∂hk

affects learning long-term dependency.

Recurrent Neural Networks – Learning Long-Term Dependency?

t−1∏
k=1

∂hk+1

∂hk
=

t−1∏
k=1

DkUT

If ‖DkUT‖2 > 1,
∏t−1

k=1
∂hk+1
∂hk

→∞ as t − k →∞.

Solution: gradient clipping, regularize UT,...

If ‖DkUT‖2 < 1,
∏t−1

k=1
∂hk+1
∂hk

→ 0 as t − k →∞.

Major obstacle to learning long-term dependency!

Recurrent Neural Networks – Long Short-Term Memory (LSTM)

it = σ(Uihht−1 + Wixxt), (it : input gate)
c̃t = tanh (Uc̃hht−1 + Wc̃xxt), (c̃t : cell input)
ct = ct−1 + it � c̃t , (ct : cell state)
ot = σ(Uohht−1 + Woxxt), (ot : output gate)

ht = ot � tanh ct , (ht : hidden state)

where U∗ ∈ Rh×h and W∗ ∈ Rh×d are learnable parameters, and � denotes the Hadamard product.

After quite complicated computations, we can find that

∂hk+1

∂hk
= Dk

Instead of DkUT

Learning long-term dependency in LSTMs can be derived
using the similar approach as in RNNs.

S. Hochreiter, J. Schmidhuber, Long short-term memory, 1997.

State-of-the-Art Solution for Learning Long-Term Dependency – Unitary RNN

Enforce the matrix U to be unitary!

Efficient numerical algorithm: exponential parameterization.

M. Arjovsky, A. Shah, and Y. Bengio, Unitary Evolution Recurrent Neural Networks, ICML, 2016.
L. Mario, Trivializations for Gradient-Based Optimization on Manifolds, NIPS, 2019.

Our solution

Integrating momentum into RNNs!

Background: Momentum Accelerated Dynamical System for Optimization
Consider

min
x

f (x), x ∈ Rd .

Start from x0, gradient descent (GD) iterates as follows

xt = xt−1 − s∇f (xt), s > 0 is the step size.

Momentum accelerated gradient descent

p0 = x0; pt = µpt−1 + s∇f (xt); xt = xt−1 − pt , u ≥ 0.

0 2500 5000 7500 10000
Iterations

10 8

10 5

10 2

|f(
x)

 -
f(x

*)
|

GD
GD + Momentum

f (x) =
1
2
xTLx− xTe1, x ∈ R500.

where L is the Laplacian of a cycle graph.

Momentum accelerates gradient descent.

Background: Momentum Accelerated Dynamical System for Sampling
Consider sampling the distribution

π ∝ exp(−f (x)), x ∈ Rd .

Langevin Monte Carlo (LMC)

xt = xt−1 − s∇f (xt) +
√
2sεt , s ≥ 0, t ≥ 1, εt ∼ N (0, Id×d).

Hamiltonian Monte Carlo (HMC)

p0 = x0; pt = pt−1 − γspt−1 − sη∇f (xt−1) +
√

2γsηεt ; xt = xt−1 + spt , t ≥ 1.

0 200 400 600 800
Epochs

10 1

Lo
ss

 (T
ra

in
in

g)

LMC
HMC

0 200 400 600 800
Epochs

10 1

100

NL
L

(T
ra

in
in

g)

LMC
HMC

Figure: LMC vs. HMC in training Bayesian neural network for MNIST classification.

Momentum accelerates MCMC sampling.

MomentumRNN: Integrating Momentum into RNN
Let φ(·) := σ(U(·)) and ut := U−1Wxt , we can rewrite the recurrent cell as

ht = φ(ht−1 + ut︸︷︷︸
regard −ut as “gradient”

).

Add momentum to the recurrent cell yields

pt = µpt−1 − sut ; ht = φ(ht−1 − pt).

Let vt := −Upt , we get the following momentum cell

vt = µvt−1 + sWxt ; ht = σ(Uht−1 + vt).

MomentumRNN replaces the gradient update in RNN by a momentum-based update.

MomentumRNN: Alleviating the Vanishing Gradient Issue

BPTT for RNN
∂L
∂ht

=
∂L
∂hT

· ∂hT

∂ht
=

∂L
∂hT

·
T−1∏
k=t

∂hk+1

∂hk
=

∂L
∂hT

·
T−1∏
k=t

(DkUT).

BPTT for MomentumRNN

∂L
∂ht

=
∂L
∂hT

· ∂hT

∂ht
=

∂L
∂hT

·
T−1∏
k=t

∂hk+1

∂hk
=

∂L
∂hT

·
T−1∏
k=t

D̂k [UT + µΣk],

where D̂k = diag(σ′(U(hk + µhk−1) + µσ−1(hk) + sWxk+1)) and Σ = diag((σ−1)′(hk)). For
mostly used σ, e.g., sigmoid and tanh, (σ−1(·))′ > 1 and µΣk dominants UT.

Σk is the dominating term, and choose a proper momentum constant µ in
MomentumRNN helps alleviate the vanishing gradient problem.

MomentumRNN: Alleviating the Vanishing Gradient Issue – Illustration

Figure: `2 norm of the gradients of the loss L w.r.t. the state vector ht at each time step t for RNN
(left) and MomentumRNN (right). Experiment: training RNN for pixel-by-pixel MNIST classification.

`2 norm of the gradients in MomentumRNN is more significant than in RNN and,
therefore, helps alleviating the vanishing gradient issue.

Other MomentumRNNs – From Different Parameterizations

Let vt = −pt in

pt = µpt−1 − sut ; ht = φ(ht−1 − pt),

we get

vt = µvt−1 − sŴxt ; ht = φ(Uht−1 + Uvt),

where Ŵ := U−1W is the trainable weight matrix.

Different parameterizations can result in different momentum RNN architectures.

Other MomentumRNNs – From Different Optimization Algorithms
Nesterov Accelerated Gradient (NAG): Replace µ with t mod F

(t mod F)+3 with F being the restart frequency.

Adam:

vt = µvt−1 + sWxt ; mt = βmt−1 + (1− β)(Wxt �Wxt); ht = σ

(
Uht−1 +

vt√
mt + ε

)
.

Our momentum-based framework can take advantage of advanced optimizers to
further improve RNN.

Wang, et al. Scheduled restart momentum for accelerated SGD, arXiv:2002.10583.

MomentumLSTMs

The momentum can also be integrated into LSTM and other RNN models easily!

Experimental Results: MomentumRNN
Improves the Performance of RNN on

Various Data Modalities

MomentumRNNs – Converge Faster (MNIST)
We flatten the MNIST image and feed it into the model as sequence of length 784. The original one
denoted as MNIST, and we also permute the sequence and get the PMNIST dataset.

AdamLSTM and RMSPropLSTM converge fastest on MNIST tasks.

MomentumRNNs – Converge Faster (TIMIT)
TIMIT speech dataset is a collection of real-world speech recordings. The recording are downsampled
to 8kHz and then transformed into log-magnitudes via a short-time Fourier transform (STFT). The
task accounts for predicting the next log-magnitude given the previous ones.

Vanilla MomentumLSTM and Scheduled Restart LSTM (SRLSTM)
converge fastest on TIMIT tasks.

MomentumRNNs – Converge Faster (Word-Level Penn TreeBank)
We perform language modeling over a preprocessed PTB dataset (predict the next word). We use a
three-layer LSTM model, which contains three concatenated LSTM cells.Word-Level	Penn	TreeBank

Test	and	Validation	Perplexity	on	the	Word-Level	Penn	TreeBank

MomentumLSTM vs. LSTM: Training Loss on
Penn TreeBank Word and Character Level

MomentumLSTM LSTM
Tr

ai
n

Lo
ss

Iteration

Te
st

 Lo
ss

Epoch

SRLSTM

Table 13: Best test accuracy on the PMNIST tasks (%) for MomentumDTRIV and the baseline DTRIV,
as well as for AdamDTRIV, RMSPropDTRIV, and SRDTRIV. We provide both our reproduced
baseline results and those reported in [6]. All of our momentum-based models outperform the baseline
DTRIV. When using N = 512 hidden units, SRDTRIV yields the best result.

MODEL N # PARAMS PMNIST

DTRIV 170 ⇡ 16K 95.21 ± 0.10 (95.20 [6])
DTRIV 360 ⇡ 69K 96.45 ± 0.10 (96.50 [6])
DTRIV 512 ⇡ 137K 96.62 ± 0.12 (96.80 [6])

MOMENTUMDTRIV 170 ⇡ 16K 95.37 ± 0.09
MOMENTUMDTRIV 360 ⇡ 69K 96.73 ± 0.08
MOMENTUMDTRIV 512 ⇡ 137K 96.89 ± 0.08

ADAMDTRIV 512 ⇡ 137K 96.77 ± 0.21
RMSPROPDTRIV 512 ⇡ 137K 96.75 ± 0.12
SRDTRIV 512 ⇡ 137K 97.02 ± 0.09

Table 14: Model test perplexity at the end of the epoch with the lowest validation perplexity for
the Penn TreeBank language modeling task (word level). Both MomentumLSTM and SRLSTM
outperform the baseline LSTM.

MODEL # PARAMS VAL. PPL TEST PPL

LSTM ⇡ 24M 61.96 ± 0.83 59.71 ± 0.99, 58.80

MOMENTUMLSTM ⇡ 24M 60.71 ± 0.24 58.62 ± 0.22

SRLSTM ⇡ 24M 61.12 ± 0.68 58.83 ± 0.62

MomentumDTRIV vs. DTRIV: Loss

Iteration

Tr
ai

n
Lo

ss PMNIST

Te
st

 Lo
ss

Epoch

PMNIST

MomentumDTRIV AdamDTRIV
RMSPropDTRIV SRDTRIV DTRIV

Figure 9: Train and test loss of MomentumDTRIV (blue), AdamDTRIV (green), RMSPropDTRIV
(orange), SRDTRIV (cyan), and DTRIV (red) for PMNIST task. Our momentum-based models
converge faster than the baseline DTRIV.

MomentumLSTM vs. LSTM: Training Loss on
Penn TreeBank Word and Character Level

MomentumLSTM LSTM

Tr
ai

n
Lo

ss

Iteration

Te
st

 Lo
ss

Epoch

SRLSTM

Figure 10: Train (left) and test loss (right) of MomentumLSTM (blue), SRLSTM (cyan), and LSTM
(red) for the Penn Treebank language modeling tasks at word level. Both MomentumLSTM and
SRLSTM converge faster than the baseline LSTM. SRLSTM converges the fastest.

17

Both MomentumLSTM and SRLSTM converges faster
than the baseline LSTM on PTB tasks.

MomentumRNNs – Improve Accuracy (MNIST)

All momentum-based models achieve better accuracy than the baseline LSTM.

MomentumRNNs – Improve Accuracy (MNIST)

Table 1: Best test accuracy at the MNIST and PMNIST tasks (%). We use the baseline results reported
in [21], [58], [56]. All of our proposed models outperform the baseline LSTM. Among the models
using N = 256 hidden units, RMSPropLSTM yields the best results in both tasks.

MODEL N # PARAMS MNIST PMNIST

LSTM 128 ⇡ 68K 98.70[21],97.30 [56] 92.00 [21],92.62 [56]
LSTM 256 ⇡ 270K 98.90 [21], 98.50 [58] 92.29 [21], 92.10 [58]

MOMENTUMLSTM 128 ⇡ 68K 99.04 ± 0.04 93.40 ± 0.25
MOMENTUMLSTM 256 ⇡ 270K 99.08 ± 0.05 94.72 ± 0.16

ADAMLSTM 256 ⇡ 270K 99.09 ± 0.03 95.05 ± 0.37
RMSPROPLSTM 256 ⇡ 270K 99.15 ± 0.06 95.38 ± 0.19
SRLSTM 256 ⇡ 270K 99.01 ± 0.07 93.82 ± 1.85

MomentumLSTM vs. LSTM: Loss

Iteration

Tr
ai

n
Lo

ss MNIST

Te
st

 Lo
ss

Epoch

MNIST
Tr

ai
n

Lo
ss

Iteration

TIMIT

Te
st

 Lo
ss

Epoch

TIMIT

MomentumLSTM AdamLSTM RMSPropLSTM SRLSTM LSTM

Figure 3: Train and test loss of MomentumLSTM (blue), AdamLSTM (green), RMSPropLSTM
(orange), SRLSTM (cyan), and LSTM (red) for MNIST (left two panels) and TIMIT (right two
panels) tasks. MomentumLSTM converges faster than LSTM in both tasks. For MNIST, AdamLSTM
and RMSPropLSTM converge fastest. For TIMIT, MomentumLSTM and SRLSTM converge fastest.

scheduled restart LSTM (SRLSTM) and show their advantage over MomentumLSTM in specific184

tasks. Computation time and memory cost of our models versus the baseline LSTM are provided in185

Appendix D. All of our results are averaged over 5 runs with different seeds. We include details on186

the models, datasets, training procedure, and hyperparameters used in our experiments in Appendix A.187

For MNIST and TIMIT experiments, we use the baseline codebase provided by [5]. For PTB188

experiments, we use the baseline codebase provided by [51].189

3.1 Pixel-by-Pixel MNIST190

In this task, we classify image samples of hand-written digits from the MNIST dataset [31] into one191

of the ten classes. Following the implementation of [30], we flatten the image of original size 28 ⇥192

28 pixels and feed it into the model as a sequence of length 784. In the unpermuted task (MNIST),193

the sequence of pixels is processed row-by-row. In the permuted task (PMNIST), a fixed permutation194

is selected at the beginning of the experiments and then applied to both training and test sequences.195

We summarize the results in Table 1. Our experiments show that MomentumLSTM achieves better196

test accuracy than the baseline LSTM in both MNIST and PMNIST digit classification tasks using197

different numbers of hidden units (i.e. N = 128, 256). Especially, the improvement is significant on198

the PMNIST task, which is designed to test the performance of RNNs in the context of long-term199

memory. Furthermore, we notice that MomentumLSTM converges faster than LSTM in all settings.200

Figure 3 (left two panels) corroborates this observation when using N = 256 hidden units.201

3.2 TIMIT Speech Dataset202

We study how MomentumLSTM performs on audio data with speech prediction experiments on the203

TIMIT speech dataset [15], which is a collection of real-world speech recordings. As first proposed204

by [58], the recordings are downsampled to 8kHz and then transformed into log-magnitudes via a205

short-time Fourier transform (STFT). The task accounts for predicting the next log-magnitude given206

the previous ones. We use the standard train/validation/test separation in [58, 32, 6], thereby having207

3640 utterances for the training set with a validation set of size 192 and a test set of size 400.208

The results for this TIMIT speech prediction are shown in Table 2. Results are reported on the test209

set using the model parameters that yield the best validation loss. Again, we see the advantage210

of MomentumLSTM over the baseline LSTM. In particular, MomentumLSTM yields much better211

prediction accuracy and faster convergence speed compared to LSTM. Figure 3 (right two panels)212

shows the convergence of MomentumLSTM vs. LSTM when using N = 158 hidden units.213

Remark: The TIMIT dataset is not open for public, so we do not have access to the preprocessed214

6

RMSPropLSTM achieves the best accuracy on MNIST tasks.

MomentumRNNs – Improve Accuracy (TIMIT)

Table 2: Test and validation MSEs at the end of the epoch with the lowest validation MSE for the
TIMIT task. All of our proposed models outperform the baseline LSTM. Among models using
N = 158 hidden units, SRLSTM performs the best.

MODEL N # PARAMS VAL. MSE TEST MSE

LSTM 84 ⇡ 83K 14.87 ± 0.15 (15.42 [21, 32]) 14.94 ± 0.15 (14.30 [21, 32])
LSTM 120 ⇡ 135K 11.77 ± 0.14 (13.93 [21, 32]) 11.83 ± 0.12 (12.95 [21, 32])
LSTM 158 ⇡ 200K 9.33 ± 0.14 (13.66 [21, 32]) 9.37 ± 0.14 (12.62 [21, 32])

MOMENTUMLSTM 84 ⇡ 83K 10.90 ± 0.19 10.98 ± 0.18
MOMENTUMLSTM 120 ⇡ 135K 8.00 ± 0.30 8.04 ± 0.30
MOMENTUMLSTM 158 ⇡ 200K 5.86 ± 0.14 5.87 ± 0.15

ADAMLSTM 158 ⇡ 200K 8.66 ± 0.15 8.69 ± 0.14
RMSPROPLSTM 158 ⇡ 200K 9.13 ± 0.33 9.17 ± 0.33
SRLSTM 158 ⇡ 200K 5.81 ± 0.10 5.83 ± 0.10

Table 3: Model test perplexity at the end of the epoch with the lowest validation perplexity for the
Penn Treebank language modeling task (word level).

MODEL # PARAMS VAL. PPL TEST PPL

LSTM ⇡ 24M 61.96 ± 0.83 59.71 ± 0.99 (58.80 [34])

MOMENTUMLSTM ⇡ 24M 60.71 ± 0.24 58.62 ± 0.22

SRLSTM ⇡ 24M 61.12 ± 0.68 58.83 ± 0.62
MomentumLSTM vs. LSTM: Training Loss on
Penn TreeBank Word and Character Level

MomentumLSTM LSTM

Tr
ai

n
Lo

ss

Iteration

Te
st

 Lo
ss

Epoch

Figure 4: Train (left) and test loss (right) of Mo-
mentumLSTM (blue) and LSTM (red) for the Penn
Treebank language modeling tasks at word level.

data from previous papers. We followed the data215

preprocessing in [58, 32, 6] to generate the pre-216

processed data for our experiments and did our217

best to reproduce the baseline results. In Table 2218

and 5, we include both our reproduced results219

and the ones reported from previous works.220

3.3 Word-Level Penn TreeBank221

To study the advantage of MomentumLSTM222

over LSTM on text data, we perform language223

modeling over a preprocessed version of the224

PTB dataset [36], which has been a standard benchmark for evaluating language models. Unlike the225

baselines used in the (P)MNIST and TIMIT experiments which contain one LSTM cell, in this PTB226

experiment, we use a three-layer LSTM model, which contains three concatenated LSTM cells, as the227

baseline. The size of this model in terms of the number of parameters is also much larger than those228

in the (P)MNIST and TIMIT experiments. Table 3 shows the test and validation perplexity (PPL)229

using the model parameters that yield the best validation loss. Again, MomentumLSTM achieves230

better perplexities and converges faster than the baseline LSTM (see Figure 4).231

3.4 NAG and Adam Principled Recurrent Neural Nets232

We evaluate AdamLSTM, RMSPropLSTM and SRLSTM on (P)MNIST classification and TIMIT233

speech recognition tasks. We summarize the test accuracy of the trained models in Tables 1 and 2234

and provide the plots of train and test losses in Figure 3. We observe that though AdamLSTM and235

RMSPropLSTM work better than the MomentumLSTM at (P)MNIST task, they yield worse results236

at the TIMIT task. Interestingly, SRLSTM shows an opposite behavior - better than MomentunLSTM237

at TIMIT task but worse at (P)MNIST task. This is somewhat expected, given the connection between238

our model and its analogy to optimization algorithm. An optimizer needs to be chosen for each239

particular task, and so is for our MomentumRNN. All of our models outperform the baseline LSTM.240

4 Additional Results and Analysis241

Beyond LSTM. Our interpretation of hidden state dynamics in RNNs as GD steps and the use of242

momentum to accelerate the convergence speed and improve the generalization of the model apply243

to many types of RNNs but not only LSTM. We show the applicability of our momentum-based244

design approach beyond LSTM by performing PMNIST and TIMIT experiments using the orthogonal245

RNN equipped with dynamic trivialization (DTRIV) [6]. DTRIV is currently among state-of-the-art246

7

SRLSTM achieves the best accuracy on TIMIT tasks.

MomentumRNNs – Improve Accuracy (Penn TreeBank)

Table 2: Test and validation MSEs at the end of the epoch with the lowest validation MSE for the
TIMIT task. All of our proposed models outperform the baseline LSTM. Among models using
N = 158 hidden units, SRLSTM performs the best.

MODEL N # PARAMS VAL. MSE TEST MSE

LSTM 84 ⇡ 83K 14.87 ± 0.15 (15.42 [21, 32]) 14.94 ± 0.15 (14.30 [21, 32])
LSTM 120 ⇡ 135K 11.77 ± 0.14 (13.93 [21, 32]) 11.83 ± 0.12 (12.95 [21, 32])
LSTM 158 ⇡ 200K 9.33 ± 0.14 (13.66 [21, 32]) 9.37 ± 0.14 (12.62 [21, 32])

MOMENTUMLSTM 84 ⇡ 83K 10.90 ± 0.19 10.98 ± 0.18
MOMENTUMLSTM 120 ⇡ 135K 8.00 ± 0.30 8.04 ± 0.30
MOMENTUMLSTM 158 ⇡ 200K 5.86 ± 0.14 5.87 ± 0.15

ADAMLSTM 158 ⇡ 200K 8.66 ± 0.15 8.69 ± 0.14
RMSPROPLSTM 158 ⇡ 200K 9.13 ± 0.33 9.17 ± 0.33
SRLSTM 158 ⇡ 200K 5.81 ± 0.10 5.83 ± 0.10

Table 3: Model test perplexity at the end of the epoch with the lowest validation perplexity for the
Penn Treebank language modeling task (word level).

MODEL # PARAMS VAL. PPL TEST PPL

LSTM ⇡ 24M 61.96 ± 0.83 59.71 ± 0.99 (58.80 [34])

MOMENTUMLSTM ⇡ 24M 60.71 ± 0.24 58.62 ± 0.22

SRLSTM ⇡ 24M 61.12 ± 0.68 58.83 ± 0.62
MomentumLSTM vs. LSTM: Training Loss on
Penn TreeBank Word and Character Level

MomentumLSTM LSTM

Tr
ai

n
Lo

ss
Iteration

Te
st

 Lo
ss

Epoch

Figure 4: Train (left) and test loss (right) of Mo-
mentumLSTM (blue) and LSTM (red) for the Penn
Treebank language modeling tasks at word level.

data from previous papers. We followed the data215

preprocessing in [58, 32, 6] to generate the pre-216

processed data for our experiments and did our217

best to reproduce the baseline results. In Table 2218

and 5, we include both our reproduced results219

and the ones reported from previous works.220

3.3 Word-Level Penn TreeBank221

To study the advantage of MomentumLSTM222

over LSTM on text data, we perform language223

modeling over a preprocessed version of the224

PTB dataset [36], which has been a standard benchmark for evaluating language models. Unlike the225

baselines used in the (P)MNIST and TIMIT experiments which contain one LSTM cell, in this PTB226

experiment, we use a three-layer LSTM model, which contains three concatenated LSTM cells, as the227

baseline. The size of this model in terms of the number of parameters is also much larger than those228

in the (P)MNIST and TIMIT experiments. Table 3 shows the test and validation perplexity (PPL)229

using the model parameters that yield the best validation loss. Again, MomentumLSTM achieves230

better perplexities and converges faster than the baseline LSTM (see Figure 4).231

3.4 NAG and Adam Principled Recurrent Neural Nets232

We evaluate AdamLSTM, RMSPropLSTM and SRLSTM on (P)MNIST classification and TIMIT233

speech recognition tasks. We summarize the test accuracy of the trained models in Tables 1 and 2234

and provide the plots of train and test losses in Figure 3. We observe that though AdamLSTM and235

RMSPropLSTM work better than the MomentumLSTM at (P)MNIST task, they yield worse results236

at the TIMIT task. Interestingly, SRLSTM shows an opposite behavior - better than MomentunLSTM237

at TIMIT task but worse at (P)MNIST task. This is somewhat expected, given the connection between238

our model and its analogy to optimization algorithm. An optimizer needs to be chosen for each239

particular task, and so is for our MomentumRNN. All of our models outperform the baseline LSTM.240

4 Additional Results and Analysis241

Beyond LSTM. Our interpretation of hidden state dynamics in RNNs as GD steps and the use of242

momentum to accelerate the convergence speed and improve the generalization of the model apply243

to many types of RNNs but not only LSTM. We show the applicability of our momentum-based244

design approach beyond LSTM by performing PMNIST and TIMIT experiments using the orthogonal245

RNN equipped with dynamic trivialization (DTRIV) [6]. DTRIV is currently among state-of-the-art246

7

MomentumLSTM achieves the best accuracy on PTB tasks.

MomentumRNNs – Converge Faster and Achieve Better Loss (Copying Task)

Copying	Task

MomentumLSTM vs. LSTM: Copying Task

Iteration

Tr
ai

n
Lo

ss

Te
st

 Lo
ss

Iteration

Tr
ai

n
Lo

ss

Iteration

Te
st

 Lo
ss

Iteration

MomentumLSTM AdamLSTM RMSPropLSTM SRLSTM LSTM

Sequence of Length 1K Sequence of Length 2K

Input:				14221--------------------:----
Output:	-------------------------14221

1.	Consider	set	A	of	N	alphabets,	e.g.	A	=	{1,2,3,4},	N=4
2.	The	alphabet	character	sequence	of	length	K	is	sampled	i.i.d.	
uniformly	from	A,	e.g.	14221,	K=5
3.	The	input	is	the	character	sequence	followed	by	L	“blank”	
characters,	a	“start”	character,	and	then	K-1	“blank”	characters.
Task: output	a	sequence	containing	K	+	L	“blank”	characters	
followed	by	the	alphabet	character	sequence,	e.g.	14211

L	“blank” K-1	“blank”

L	+	K	“blank”

:	“start”

AdamLSTM significantly outperforms other models.

MomentumDTRIV – Integrate Momentum into Orthogonal RNN

MomentumDTRIV converges faster than DTRIV.

MomentumDTRIV – Integrate Momentum into Orthogonal RNN

MomentumDTRIV achieves better accuracy than DTRIV.

Computational Time Analysis

Total	computation	time	to	reach	the	same	92.29%	test	accuracy	of	
LSTM	when	Evaluating	on	PMNIST	

Table 15: Computation time per sample at training and evaluation for PMNIST classification task
using models with 256 hidden units.

MODEL TRAINING TIME (µs/SAMPLE) EVALUATION TIME (µs/SAMPLE)

LSTM 6.18 2.52

MOMENTUMLSTM 7.43 3.16
ADAMLSTM 10.34 4.07
RMSPROPLSTM 9.94 3.96
SRLSTM 8.34 3.16

Table 16: Memory cost per sample at training and evaluation for PMNIST classification task using
models with 256 hidden units.

MODEL TRAINING MEMORY (MB/SAMPLE) EVALUATION MEMORY (MB/SAMPLE)

LSTM 15.93 7.51

MOMENTUMLSTM 15.95 7.51
ADAMLSTM 25.13 7.52
RMSPROPLSTM 25.13 7.52
SRLSTM 15.95 7.51

Table 17: Total computation time to reach the same 92.29% test accuracy of LSTM (see Tab. 1) for
PMNIST classification task using models with 256 hidden units.

MODEL TIME (seconds)

LSTM 46015

MOMENTUMLSTM 33036
ADAMLSTM 13484
RMSPROPLSTM 24931
SRLSTM 20881

E Additional Information about the Figures in the Main Text508

In Figure 3, the MNIST plots are for models with 256 hidden units, and the TIMIT plots are for509

models with 158 hidden units.510

In Figure 5, the PMNIST plots are for models with 512 hidden units, and the TIMIT plots are for511

models with 322 hidden units. We have corrected the legends and the right-most plot of the test512

loss vs. training epoch for MomentumDTRIV and DTRIV trained on the TIMIT dataset for speech513

prediction at the beginning of the Appendix.514

F MomentumLSTM Cell Implementation in Pytorch515

i m p o r t t o r c h516

i m p o r t t o r c h . nn as nn517

from t o r c h . nn i m p o r t f u n c t i o n a l a s F518

519

c l a s s MomentumLSTMCell (nn . Module) :520

521

" " "522

An i m p l e m e n t a t i o n o f MomentumLSTM C e l l523

524

Args :525

i n p u t _ s i z e : The number o f e x p e c t e d f e a t u r e s i n t h e i n p u t ‘ x ’526

h i d d e n _ s i z e : The number o f f e a t u r e s i n t h e h i dd en s t a t e ‘ h ’527

mu : momentum c o e f f i c i e n t i n MomentumLSTM C e l l528

s : s t e p s i z e i n MomentumLSTM C e l l529

b i a s : I f ‘ ‘ F a l s e ’ ’ , t h e n t h e l a y e r does n o t use b i a s w e i g h t s ‘530

b_ ih ’ and ‘ b_hh ’ . D e f a u l t : ‘ ‘ True ’ ’531

532

I n p u t s : i n p u t , h idden0 =(h_0 , c_0) , v0533

18

Table 15: Computation time per sample at training and evaluation for PMNIST classification task
using models with 256 hidden units.

MODEL TRAINING TIME (µs/SAMPLE) EVALUATION TIME (µs/SAMPLE)

LSTM 6.18 2.52

MOMENTUMLSTM 7.43 3.16
ADAMLSTM 10.34 4.07
RMSPROPLSTM 9.94 3.96
SRLSTM 8.34 3.16

Table 16: Memory cost per sample at training and evaluation for PMNIST classification task using
models with 256 hidden units.

MODEL TRAINING MEMORY (MB/SAMPLE) EVALUATION MEMORY (MB/SAMPLE)

LSTM 15.93 7.51

MOMENTUMLSTM 15.95 7.51
ADAMLSTM 25.13 7.52
RMSPROPLSTM 25.13 7.52
SRLSTM 15.95 7.51

E Additional Information about the Figures in the Main Text508

In Figure 3, the MNIST plots are for models with 256 hidden units, and the TIMIT plots are for509

models with 158 hidden units.510

In Figure 5, the PMNIST plots are for models with 512 hidden units, and the TIMIT plots are for511

models with 322 hidden units. We have corrected the legends and the right-most plot of the test512

loss vs. training epoch for MomentumDTRIV and DTRIV trained on the TIMIT dataset for speech513

prediction at the beginning of the Appendix.514

F MomentumLSTM Cell Implementation in Pytorch515

i m p o r t t o r c h516

i m p o r t t o r c h . nn as nn517

from t o r c h . nn i m p o r t f u n c t i o n a l a s F518

519

c l a s s MomentumLSTMCell (nn . Module) :520

521

" " "522

An i m p l e m e n t a t i o n o f MomentumLSTM C e l l523

524

Args :525

i n p u t _ s i z e : The number o f e x p e c t e d f e a t u r e s i n t h e i n p u t ‘ x ’526

h i d d e n _ s i z e : The number o f f e a t u r e s i n t h e h i d d en s t a t e ‘ h ’527

mu : momentum c o e f f i c i e n t i n MomentumLSTM C e l l528

s : s t e p s i z e i n MomentumLSTM C e l l529

b i a s : I f ‘ ‘ F a l s e ’ ’ , t h e n t h e l a y e r does n o t use b i a s w e i g h t s ‘530

b_ ih ’ and ‘ b_hh ’ . D e f a u l t : ‘ ‘ True ’ ’531

532

I n p u t s : i n p u t , h idden0 =(h_0 , c_0) , v0533

� i n p u t o f shape ‘ (ba tch , i n p u t _ s i z e) ’ : t e n s o r c o n t a i n i n g i n p u t534

f e a t u r e s535

� h_0 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e536

i n i t i a l h idd en s t a t e f o r each e l e m e n t i n t h e b a t c h .537

� c_0 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e538

i n i t i a l c e l l s t a t e f o r each e l e m e n t i n t h e b a t c h .539

� v0 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e540

i n i t i a l momentum s t a t e f o r each e l e m e n t i n t h e b a t c h541

542

O u t p u t s : h1 , (h_1 , c_1) , v1543

� h_1 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e n e x t544

h i dd e n s t a t e f o r each e l e m e n t i n t h e b a t c h545

18

Computation	Time	per	Sample	when	Evaluating	on	PMNIST	

Taking the whole training into account, Momentum-based LSTMs are much more
efficient than the baseline LSTM.

Thank You

I. Scheduled Restart NAG Momentum

Accelerate convergence
Better generalization accuracy

II. MomentumRNN

Mitigating the vanishing gradient issue
Speed-up training of RNNs
Improve performance of the trained RNNs

1. B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, arXiv:2002.10583, 2020.

2. T. Nguyen, R. Baraniuk, A. Bertozzi, S. Osher, and B. Wang, arXiv:2006.06919, 2020.

