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a b s t r a c t 

The motion of a passive spherical particle in a fluid has been widely described via a balance of force 

equations known as a Generalized Langevin Equation (GLE) where the covariance of the thermal force 

is related to the time memory function of the fluid. For viscous fluids, this relationship is simply a delta 

function in time, while for a viscoelastic fluid it depends on the constitutive equation of the fluid memory 

function. In this paper, we consider a general setting for linear viscoelasticity which includes both solvent 

and polymeric contributions, and a family of memory functions known as the generalized Rouse kernel. 

We present a statistically exact algorithm to generate paths which allows for arbitrary large time steps 

and which relies on the numerical evaluation of the covariance of the velocity process. As a consequence 

of the viscoelastic properties of the fluid, the particle exhibits subdiffusive behavior, which we verify as 

a function of the free parameters in the generalized Rouse kernel. We then numerically compute the 

mean first passage time of a passive particle through layers of different widths and establish that, for 

the generalized Rouse kernel, the mean first passage time grows quadratically with the layer’s width 

independently of the free parameters. Along the way, we also find the linear scaling of the mean first 

passage time for a layer of fixed width as a function of the particle’s radius. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Many fundamental fluid processes arise through the interac-

tions between suspended microstructures and a viscous back-

ground fluid. For example, mucus is a suspension of oligomeric

mucin proteins in a water like fluid and whole blood is a sus-

pension of red blood cells in plasma. Therefore, biological fluids

have received a lot of attention recently, see for example [1–4] .

When studying the macroscale characteristics of these systems,

viscoelastic properties emerge [3,5] , in other words such systems

can display both elastic and viscous responses depending on the

applied forces. One of the most widely used experimental tech-

nique to probe these viscoelastic liquids is passive microrheology,

which records the fluctuations of a passive sphere and connects

measurable quantities like mean square displacement to bulk me-

chanical properties, see [6–8] for details. The most recognizable

signature of such viscoelastic liquids is that the mean square dis-

placement of the particle’s position scales sublinearly with time

for a certain period of time before transitioning to pure diffusion.

This subdiffusive behavior is usually refer to as anomalous diffu-

sion to contrast with the diffusion of Brownian particles where the

mean square displacement scales linearly with time. However, a
∗ Corresponding author. 
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uantity that remains poorly understood is the characterization of

he mean first passage time or the average time it takes a particle

o first traverse a layer of fluid. The classical theory of Brownian

otion [9] predicts that, for a spherical particle undergoing ther-

al motion in a viscous fluid, the mean first passage time scales

uadratically with the width of the layer. Recent progress has also

een made in characterizing first passage in lattice models [10,11] .

inally, a few theoretical and numerical characterizations of the

rst passage time distribution for processes that exhibit anoma-

ous diffusion and can be described by fractional Brownian mo-

ion or Lévy processes exist, see [4,12–14] . For example, Hill et al.

4] use experimental measurements in cultured mucus and a frac-

ional Brownian motion model to predict the time it would take

 particle to diffuse through a 25 μm thick mucus layer. While

ractional Brownian motion, which is a Gaussian process, has been

uggested as a better model than non-Gaussian continuous time

andom walk for a class of biological fluids, see [15,16] , the re-

ent work of Lysy et al. [17] shows that cultured mucus might

e better described by a generalized Rouse kernel and Generalized

angevin Equation (GLE). Therefore, motivated by both the original

uestion of Hill et al. [4] and the conclusion of Lysy et al. [17] , we

umerically study mean first passage time in a viscoelastic fluid

hat can be described by a GLE. Because of the choice of a gen-

ralized Rouse kernel to model the system’s memory, the Gaus-

ian particle’s position process becomes non Markovian and non

tationary. 

http://dx.doi.org/10.1016/j.jnnfm.2017.03.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.03.001&domain=pdf
mailto:choheneg@math.utah.edu
http://dx.doi.org/10.1016/j.jnnfm.2017.03.001
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There is a long tradition of using GLEs to model thermal mo-

ion of a particle in a viscoelatic fluid with or without external

orces [6–8,18–20] . However, none of these models consider the

urely viscous solvent contribution to the motion. This assumption

as lead to a singular behavior when taking the zero mass limit

s observed by Indei et al. [21,22] and McKinley et al. [23] . Fur-

hermore, the relative contribution of the solvent and of the sus-

ended polymers is statistically unclear [24] . In order to be able to

ake the zero mass limit and to interpolate between viscous and

iscoelastic diffusions, we consider both the solvent and the poly-

eric contributions, see also [25,26] . While Indei et al. [21] pre-

iously considered including the solvent viscosity (or inertia) in a

hree-parameter model of the dynamic modulus, their approach is

ot able to easily recover the classical Langevin equation for Brow-

ian motion. Our GLE, which uses superposition to include both

olvent and polymeric contributions independently in the deter-

inistic and stochastic forces, does recover Brownian motion by

etting a parameter to zero corresponding to the absence of poly-

ers. 

In the regime of linear viscoelasticity, where the stress tensor is

est described by a Lodge integral equation [27] , one of the most

sed three parameters family of memory relaxation kernel is the

eneralized Rouse kernel, an equally weighted sum of negatively

ecaying exponential kernels. Formally, for a number of kernels N ,

 relaxation time τ 0 and an exponent α, it is defined as 

(t) = 

1 

N 

N−1 ∑ 

n =0 

e −| t| /τn , (1) 

here the discrete relaxation spectrum is chosen according to

ome phenomenological model. Here, we set 

n = τ0 

(
N 

N − n 

)α

α > 1 n = 0 , . . . , N − 1 . (2)

n the above, α is the subdiffusive exponent, which is a function

f the decay rate of the memory kernel and determines the slope

f the subdiffusive phase [23] . On the other hand, N determines

he length of the subdiffusive phase. Since cultured mucus shows

ubdiffusive behavior on all length scales [4,17] , our ultimate goal

s to consider the case when N becomes large. 

The rest of this paper is organized as follows. In Section 2.1 ,

e provide the details of the model describing the motion of the

article as well as the relevant definitions, while in Section 2.2 ,

e develop a statistically exact algorithm which allows for the fast

imulation of paths of arbitrary large but constant time steps. The

lgorithm relies on the numerical approximation of the covariance

f the position process and is applicable to a larger set of pa-

ameters than the decomposition of the equation in a matrix of

rnstein-Uhlenbeck processes proposed by McKinley et al. [23] . In

ection 2.3 , we present a method for calculating the mean first

assage time that accounts for paths which have not exited the

ayer at the end of the simulation time. In Section 3.1 , we apply

he algorithm to the characterization of the subdiffusive behavior

nd of the increment auto-correlation of the position’s process for

ifferent set of free parameters. Finally, in Section 3.2 , we establish

he dependence of the mean first passage time on the width of the

ayer, of the particle’s radius and of the number of kernels. 

. Method 

.1. Model 

A spherical particle of mass m and radius r that diffuses freely

n a viscoelastic environment is subject to both drag forces via vis-

ous and elastic dissipation and diffusive forces via thermal fluc-

uations. The GLE for the one dimensional particle velocity V ( t ) is

hen (see also [26] ) 
 

dV (t) 

dt 
= −γs V (t) − γp 

τ

∫ t 

−∞ 

K(t − s ) V (s ) ds + 

√ 

k B T γp 

τ
F (t) 

+ 

√ 

2 k B T γs ˙ W (t) . (3) 

he GLE (3) is a balance of forces equation that relates the par-

icle’s acceleration to its velocity history and to thermal fluctua-

ions. Here k B is the Boltzmann constant, T is the absolute temper-

ture, γs = 6 π rηs is the Stokes drag coefficient for a sphere in a

uid with solvent viscosity ηs , and K ( t ) is a dimensionless mem-

ry kernel given by a constitutive law of viscoelasticity with vis-

osity ηp = η0 + ηs ( η0 is the zero shear rate viscosity) and poly-

eric time τ = 

∫ ∞ 

0 K(t ) dt . The introduction of a polymeric time in

3) results from a dimensional argument since integrating the ve-

ocity history introduces an extra time unit. In (3) , we also used

he fact that the microscopic memory function is proportional to

he bulk viscosity of the fluid with proportionality constant given

y the drag coefficient [8,18] . Furthermore, we set γp = 6 π rηp . Be-

ause energy is stored in the elastic component of the fluid, the

uctuation-dissipation theorem applied to the zero mean Gaussian

rocess F ( t ) leads to the following form of its covariance [28] 

 [ F (t) F (s )] = K(t − s ) . (4)

inally, ˙ W is a white noise in time with zero mean and covariance

 [ ˙ W (t) ˙ W (s )] = δ(t − s ) . (5)

or the generalized Rouse kernel in Eqs. (1) and (2) , the poly-

eric time τ in (3) is simply the average relaxation time τavg = 

1 
N 

 N−1 
n =0 τn . Eq. (3) does not include contributions that might results

rom surface roughness or chemical interactions at the particle’s

urface. 

In the language of continuum viscoelastic model, if N = 1 in (1) ,

hen the polymeric fluid stress in (3) satisfies the Oldroyd-B con-

titutive equation, see Appendix A for details. Further, we remark

hat the GLE (3) satisfies equipartition of energy [25,26] , namely 

 [ V (0) 2 ] = 

k B T 

m 

. 

he form of (3) is different from the traditional form of [6,8] in

hat it includes both solvent and polymeric contributions to the

uid and that it reduces easily, by setting ηp = 0 , to the classical

angevin equation of motion of a passive tracer in a viscous fluid. 

Ultimately, we are interested in the position process X ( t ) of the

article whose velocity satisfies the GLE (3) . We formally define

 ( t ) as the pathwise integral 

 (t) = 

∫ t 

0 

V (s ) ds X (0) = 0 . (6)

To simplify notation in Eq. (3) , we let a = γs /m, b = γp / (τavg m )

nd c = 

√ 

k B T /m , and we define K 

+ (t) = K(t ) u (t ) where u ( t ) is the

nit step function. The GLE (3) with noise (4) and (5) becomes 

dV (t) 

dt 
= −aV (t) − b 

∫ ∞ 

−∞ 

K 

+ (t − s ) V (s ) ds + c 
√ 

b F (t) + c 
√ 

2 a ˙ W (t)

(7) 

 [ F (t) F (s )] = K(t − s ) E [ ˙ W (t) ˙ W (s )] = δ(t − s ) . (8) 

e note that the integral in (7) is simply the time convolution of

 

+ (t) and V ( t ). As is common practice, we make sense of the solu-

ion of (7) and (8) in Fourier space. We use the following definition

f the Fourier transform, denoted by ̂  ·: 

ˆ f (ω) = 

∫ ∞ 

f (t) e −iωt dt f (t) = 

∫ ∞ 

ˆ f (ω ) e iωt dω . 

−∞ −∞ 
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A stochastic process V ( t ) is a solution to (7) and (8) if its covariance

is [28] 

̂ ρV (ω) = 

c 2 (2 a + b ̂  K (ω)) 

| iω + a + b ̂  K 

+ (ω) | 2 . (9)

Using the definition (1) , the Fourier transform of the kernels in

(9) are 

ˆ K (ω ) = 

1 

N 

N−1 ∑ 

n =0 

2 λn 

λ2 
n + ω 

2 
̂ K 

+ (ω ) = 

1 

N 

N−1 ∑ 

n =0 

1 

λn + iω 

. 

where λn = τ−1 
n , n = 0 , . . . , N − 1 are the inverse of the relaxation

times. We note that V ( t ) is a non-Markovian stationary Gaussian

process and that, because of the inertial term i ω and the two-sided

Fourier transform in (9) , there is no simple analytical expression

for ρV (t) = E [ V (t) V (0)] . 

Since X ( t ) in (6) is a non Markovian, non stationary Gaussian

process, it is uniquely determined by its covariance function, de-

noted by ρX ( t, s ). Using (6) , the definition of ρX ( t, s ), and integra-

tion, we have 

ρX (t, s ) = 

∫ t 

0 

∫ s 

0 

ρV (| t ′ − s ′ | ) ds ′ dt ′ . (10)

For simplicity, we assume next that t > s . Breaking up the inte-

gral in (10) into two pieces and reversing the order of integration

yields 

ρX (t, s ) = t I 1 (t ) − (t − s ) I 1 (t − s ) + sI 1 (s ) 

− [ I 2 (t) − I 2 (t − s ) + I 2 (s )] t > s. (11)

In Eq. (11) , 

I 1 (t) = 

∫ t 

0 

ρV (u ) du I 2 = 

∫ t 

0 

uρV (u ) du 

are the first and second moments of ρV ( t ). Plugging ρV ( t ) in terms

of its inverse Fourier transform in I 2 ( t ) and using trigonometric

identities, we find 

I 2 (t) = tI 1 (t) − 2 

π

∫ ∞ 

0 

̂ ρV (ω) 
sin 

2 (ωt/ 2) 

ω 

2 
dω, 

so that (11) simplifies to 

ρX (t, s ) = J(t) + J(s ) − J(t − s ) , where 

J(t) = 

2 

π

∫ ∞ 

0 

̂ ρV (ω) 
sin 

2 (ωt/ 2) 

ω 

2 
dω. (12)

Since the second term in the integrand of J ( t ) is a rescaling of the

sinc function and since ̂ ρV (ω) decays at infinity by construction

(decay in memory of the system), the improper integral converges.

2.2. Algorithm 

We now describe the algorithm necessary to generate paths re-

alizations of X ( t ) with covariance given by (12) , assuming that J ( t )

in (12) can be numerically evaluated. The technical details of the

numerical integration of J ( t ) are given in Appendix B . We describe

the algorithm to create N P discrete paths realizations of length N T 

with time increment �t whose discrete covariance matrix is given

by R i j = ρX (i �t , j�t ) , i, j = 1 , . . . , N T . In general, R has full rank

and is positive semi-definite. If, however, numerical errors lead to

small negative eigenvalues of R , then they are replaced by small

positive eigenvalues and R is adjusted accordingly. The algorithm

follows [29] and is summarized below. 

1. Build R i j = ρX (i �t , j�t ) , i, j = 1 , . . . , N T , using (12) ; 

2. Find the lower Cholesky decomposition of R , such that R = CC 

T ;
3. Pick Y , a N T × N P matrix of N (0 , 1) distributed random vari-

ables; 

4. Set X = CY . 

The columns of X are then single path realizations. The above

lgorithm is statistically exact and the only errors are deterministic

ue to the approximation of the integral in (12) . We emphasis that

or a fixed N T , C only needs to be calculated once and steps 3 and

 can just be repeated to increase the number of paths. However,

he algorithm is not a forward marching scheme. In other words, to

enerate paths up to N T ′ with N T ′ > N T , the entire covariance ma-

rix has to be calculated. For large N T , steps 1 and 2 are the most

omputationally intensive. In particular, as the size of R increases,

anagement of memory becomes important and we implement a

lock Cholesky decomposition. 

Let B be a symmetric N T × N T matrix divided in blocks of size

 . The number of rows of blocks is k = M/N T and the total num-

er of Cholesky blocks is 1 + 2 + 3 + . . . + k = 

k (k +1) 
2 . Following the

deas of the construction of the Cholesky decomposition of a ma-

rix, the general Cholesky blocks of B are 

C ii = Chol (A ii ) −
i −1 ∑ 

k =1 

C ik C 

T 
ik i = 1 , . . . , k 

 i j = 

( 

A i j −
j−1 ∑ 

k =1 

C ik C 

T 
jk 

) 

C 

−T 
j j 

i = 1 , . . . , k, j = 1 , . . . , i − 1 . 

e use the structure of the block Cholesky decomposition of R to

alculate the path X by writing X and the random normal vector

 in block form as well. Let X i , Y i , i = 1 , . . . , k denote the block

ectors of length M of X and Y . Then, the path realization in block

orm becomes 

 i = 

i ∑ 

j=1 

L i j Y j i = 1 , . . . , k. 

.3. Mean first passage time calculation 

The mean first passage time (MFPT) is the average time that it

akes a particle to first exit a layer of width w . In other words, only

he first time that the particle reaches w is recorded and ulterior

ositions are discarded. For simplicity, we set X(0) = 0 and record

he first time T 1 
exit 

such that | X(T 1 
exit 

) | > w . Physically, this set-up

orresponds to a particle starting in the middle of a layer of width

 w and exiting through the top or bottom boundary. The MFPT is

hen taken to be the sample mean of T 1 
exit 

over N P paths. In or-

er to obtain accurate statistics, we need to properly account for

urvivor paths. We call a path a survivor at T final , if | X(T final ) | < w .

f there are too many survivor paths, then setting T 1 
exit 

= T final for

urvivor paths would skew the distribution of first passage times

nd give the wrong MFPT. If the simulation could be run to a very

arge time, then there should be no survivor paths. This method

s however computationally unrealistic. Instead, we develop a two

teps approach to both minimize the number of survivor paths and

djust the MFPT accordingly. 

First, we increase T final = N T �t so that the relative number of

urvivor paths is smaller than κ , where 0 < κ < 1 is a threshold

alue. In other words, up to a relatively small number of paths, all

aths have exited the layer before T final . Since the algorithm uses

he entire time history (see Section 2.2 ), increasing T final leads to

enerating new covariance matrices of size N T × N T . Therefore,

imply increasing N T and keeping �t fixed becomes unmanage-

ble in terms of the memory needed to store the covariance ma-

rices and find their Cholesky decompositions. Thus, we instead

ncrease �t to (1 + β)�t with β > 0, and we set N T = 2 13 . We

hen generate new paths, compute the relative number of survivors
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Fig. 1. (a) Relative number of survivors, N S (t; T ∗
final ,w 

) , as a function of time t for N = 16 , w = r = 1 μm, α = 2 . T ∗
final ,w 

= 303 min is chosen so that 98% of the paths have 

exited, all other parameters are given in Table 1 . The orange line is the exponential fit of the tail. (b) Histogram of the adjusted first passage time together with adjusted 

MFPT (red) and non-adjusted MFPT (black) for the same parameters as (a). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Table 1 

List of physical parameters. 

Parameter Symbol Values Units 

Tracer density ρ 1.05 and 105 1 × 10 −2 mg μm 

-3 

Tracer radius r 0.5, 1 and 2 μm 

Sol. viscosity ηs 1 1 × 10 −6 MPa ms 

a parameter a = 

γs 

m 
1.7, 0.4 and 0.1 1 × 10 4 ms -1 

b parameter b = 

γp 

τavg m 
1.7, 0.4 and 0.1 1 × 10 6 ms -1 

Boltz. x temp. k B T 4.1 1 × 10 −2 μm 

2 mg ms -2 

c parameter c = 

√ 

k B T 
m 

2.7, 1 and 0.3 μm 

2 ms -2 

Pol. viscosity ηp = 100 ηs 1 1 × 10 −4 MPa ms 

First relax. time τ 0 1 ms 

Rouse exponent α 2 and 4 
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nd repeat the process until T final is large enough to guarantee

hat (1 − κ)100% of the paths have exited the layer. We denote by

 

∗
final ,w 

the final simulation time found that satisfies the previous 

ondition and use the subscript w to emphasize the dependence

n the layer’s width w . 

Second, we adjust the values of the exit times for the survivor

aths. In order to do so, we calculate the relative number of sur-

ivor as a function of time, which is defined as 

 S (t; T ∗final ,w 

) 

= 

# { X (s ) , 0 ≤ s ≤ T ∗
final ,w 

: T 1 
exit 

> t and | X (T 1 
exit 

) | > w } 
N P 

. 

n the above, # denotes the number of elements in the set. For il-

ustrative purposes, we plot in blue, in Fig. 1 (a), N S (t; T ∗
final ,w 

) for

 = 16 , α = 2 , w = 1 μm and r = 1 μm and parameters given be-

ow in Table 1 . In this case, T ∗
final ,w 

= 303 min so that 98% of the

aths have exited. We observe that, for all tested choices of α, N,

, r , the tail of N S (t; T ∗
final ,w 

) is exponential, as shown in Fig. 1 (a).

herefore, it can be fitted by an exponential curve of the form

p(t) = a 1 exp (−a 2 t) for t sufficiently large. The exponential fit is

lotted as an orange line in Fig. 1 (a). This is equivalent to saying

hat for t large the probability density of the first passage time

s p ( t ). The mean first passage time conditioned on the fact that

he path survives can now be estimated from the definition of the

onditional expectation and p ( t ). The details of this calculation are

iven in Appendix C . We find that the adjusted exit time for sur-

ivor paths is T 1 
exit 

= T ∗
final ,w 

+ 1 /a 2 . Fig. 1 (b) shows the histogram

f the adjusted first passage time with the same parameters as in
ig. 1 (a). The vertical red line represents the adjusted MFPT (98

in), while the black line represents the MFPT (95 min) if the first

assage time for survivor paths is taken as T ∗
final ,w 

. In what follows,

e will simply refer to the adjusted MFPT as the MFPT. 

. Results and discussion 

We choose ms as the unit of time, μm as the unit of length and

g as the unit of mass. With these definitions the unit of force is

N, while the unit of stress is MPa. For the generalized Rouse ker-

el in Eqs. (1) and (2) , the viscosity ηp is related to the modulus

 0 by ηp = G 0 τavg [27] . At this point, we are faced with the choice

f fixing either the viscosity ηp or the modulus G 0 . Since fixing

 0 corresponds to a constant coefficient in the continuum fluid-

tress model [26] , we set G 0 = 1 × 10 −4 mg/ms 2 , which is com-

arable to the value of Indei et al. [21] for a single mode relax-

tion liquid. In particular, for N = 1 , we have ηp = 100 ηs , where

e take ηs to be the viscosity of water. We compute the mass

f the particle as m = 4 / 3 π r 3 ρ, where ρ is either the density

f polystyrene beads (comparable to that of water) or a hundred

imes denser than water. Recalling the definitions of Section 2.1 ,

e have a = γs /m = 9 ηs / (2 ρr 2 ) and b = γp / (τavg m ) = 9 G 0 / (2 ρr 2 ) .

able 1 summarizes the relevant parameters. 

.1. Mean square displacement and increment auto-correlation 

As a first check, we verify that the particle ensemble mean

quare displacement (MSD) defined as M(t) = 〈 X(t) 2 〉 , where 〈·〉
s the sample mean over N P = 3 × 10 3 paths realizations, exhibit

ubdiffusive behavior. Indeed, in Fig. 2 , we plot the MSD for a par-

icle of radius r = 1 μm for α = 2 and N = 1, 5, 20 and 40 in (a)

nd for α = 2 and 4 and N = 1 and 40 in (b). If N = 1 , it has been

reviously argued [30] that the MSD grows linearly as in the vis-

ous case, which is the case for the blue line in Fig. 2 (a) and for

he indistinguishable blue and orange lines in Fig. 2 (b). Because

he covariance based algorithm is statistically exact, we can choose

elatively large time steps and explore the transition from subd-

ffusive to diffusive behavior. To obtain Fig. 2 , we set �t = 2 ms

nd N T = 2 13 , corresponding to a maximum time of a little more

han 10 s. We observe two further expected facts, namely that as

 increases, the MSD becomes subdiffusive with slope 1/ α (dashed

ines in Fig. 2 ) and the subdiffusive phase lasts longer [23] . Increas-

ng N from 5 to 40 results in a growth of the subdiffusive phase
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Fig. 2. Particle MSD as a function of time on a log-log scale for N = 1, 5, 20 and 40 and α = 2 in (a) and for α = 2 and 4 and N = 1 and 40 in (b). The parameters are given 

in Table 1 with r = 1 μm. In (a), both dashed lines have slope 1/2, while in (b), the dashed lines have slope 1/2 (black) and 1/4 (red) respectively. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Particle MSD as a function of time on a log-log scale for N = 1 and 40 and r = 0.5 μm 1 μm and 2 μm for a neutrally buoyant particle in (a) and for a hundred times 

denser particle in (b). The parameters are given in Table 1 with α = 2 . The inset in (a) shows the rescaling of the MSD with the inverse of the radius. 
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from 0.05 s to 3 s (black dashed lines in Fig. 2 (a)). Furthermore,

we see in Fig. 2 (b) that the length of the subdiffusive phase also

depends on α. Indeed, for α = 2 the transition to pure diffusion

(black dashed line) happens about 1 s earlier than for α = 4 (red

dashed line). 

Next, in Fig. 3 , we focus on the role of the mass for α = 2 and

the small time regime, where we set �t = 0 . 01 ms and N T = 2 13 .

In Fig. 3 (a), we consider a neutrally buoyant particle with ρ =
1 . 05 × 10 9 mg/μm 

-3 and in Fig. 3 (b) a hundred times denser par-

ticle. We note that the inertia of the particle leads to the oscil-

latory behavior of the MSD at short times [21,23] , but its influ-

ence is only significant for a particle a hundred times denser than

water and at frame rates currently unattainable experimentally. In

this case, other effects like sedimentation might be important and

might need to be considered in the balance of forces equation. At

time scales longer than the first relaxation time τ0 = 1 ms, we see

similar behaviors for both set of particles and radii with the heav-

ier and larger particle diffusing more slowly than the lighter and

smaller particle. In writing down Eq. (3) , we used the fact that

the drag coefficient was proportional to the radius of the particle,

which for either the viscous case or the polymeric case translates

into a diffusion coefficient that is inversely proportional to the ra-

dius [6,18] . We verify numerically that this observation extends to
1  
he GLE (3) in the inset of Fig. 3 (a), where we rescaled the MSD by

he radius for both N = 1 and 40. 

Another useful empirical statistical measure to compare to ex-

erimental data is the ensemble increment auto-correlation func-

ion (ACF) of the particle’s position process. In Fig. 4 , we plot the

ncrement ACF for N = 1, 5, 20 and 40 and α = 2 and 4 for a par-

icle with ρ = 1 . 05 × 10 9 mg/μ-3 in 4 (a) and for a hundred times

enser particle in 4 (b). The lag times are multiples of �t = τ0 = 1

s, the smallest relaxation time. As in experimental data [4,17] ,

e show first lag anti-correlation in the increment ACF. However

ontrary to experimental data, the length of the anti-correlation

s independent of the subdiffusive exponent α. This behavior was

lso observed in numerical simulations of a fluid-particle system

26] . As opposed to the MSD data, the density of the particle plays

o role in the increment ACF and the exact same increment ACF

lots are observed in Fig. 4 (a) and (b). This fact suggest, as first

iscussed in [17] , that the increment ACF produces a less noisy and

ore robust statistical measurement and should be combined with

SD data to extract the fluid’s viscoelastic properties. 

.2. Mean first passage time 

In the section, we only consider a particle with ρ = 1 . 05 ×
0 9 mg/μm 

3 . Following a numerical exploration of the different
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Fig. 4. Particle increment ACF as a function of lag time for N = 1, 5, 20 and 40 and α = 2 and 4 for a neutrally buoyant particle in (a) and for a hundred times denser 

particle in (b). The parameters are given in Table 1 with r = 1 μm. 

Fig. 5. Mean first passage time in minutes as a function of the layer width w ∈ [0.1, 2] μm with 95% confidence interval in (a) and on a log-log scale in (b) for N = 1, 2, 4, 8 

and 16 and α = 2 . The parameters are given in Table 1 with r = 1 μm. In (b), the dashed lines have slope 2 and the stars are values of the linear fit. 
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Table 2 

Values of the leading coefficient of the quadratic polynomial fit of the MFPT and 

root mean square error of the fit. 

( N, α) C 1 = exp (p 2 ) RMSE ( N, α) C 1 = exp (p 2 ) RMSE 

(1, 2) 3.97 0.015 (1, 4) 3.95 0.016 

(2, 2) 9.8 0.017 (2, 4) 33.4 0.016 

(4, 2) 22.2 0.012 (4, 4) 269.5 0.019 

(8, 2) 47.8 0.017 (8, 4) 2.166d3 0.02 

(16, 2) 98.7 0.017 (16, 4) 1.736d3 0.017 

i  

4  

t  

B  

t  

w  

F

M  

w  

d  

α  

r  
alues, we find that using large values of κ leads to a relative er-

or of 6–9%, while larger values of β or N P give relative errors of

–3%. As a result, we choose N P = 3 × 10 3 , β = 0 . 5 , and κ = 0 . 02 ,

orresponding to less than 2% survivor paths at T final . In Fig. 5 , we

lot the MFPT as a function of w , for w ∈ [0.1, 2] μm and N =
, 2, 4, 8 and 16. To account for the uncertainties in the estima-

ion of the MFPT discussed in Section 2.3 , we include error bars in

ig. 5 . Since the standard deviation of the first passage time is un-

nown, the length of the error bar is calculated as t ∗s/ 
√ 

N P where

 

∗ = 2 . 8 is the upper 0.025 critical value for the t distribution with

 P − 1 degrees of freedom and s is the sample standard deviation.

his choice of t ∗ corresponds to a 95% confidence interval. We note

hat the y axis has been rescaled to minutes, so that it takes a par-

icle with r = 1 μm about one hour to diffusive through a layer

wice its width if N = 16 , while it only takes about 10 min if N = 1

 Fig. 5 (a)). For comparison, the subdiffusive phase (see Fig. 2 ) lasts

bout one second if N = 16 . With the above parameters, it would

ake about 12 h if N = 16 and 2 h if N = 1 for a 1 μm particle to

iffuse through a 25 μm mucus layer. The discrepancy between the

bove prediction and the results of Hill et al. [4] can be explained

y the fact that we do not have a good estimate for ηp for cultured

ucus. 

When plotted on a log-log scale in Fig. 5 (b), we observe that the

FPT scales quadratically (the dashed lines have slope 2) with w ,
 u  
ndependently of the choice of N . This same results holds for α =
 , with the only difference being that the MFPTs are about twenty

imes bigger. We recall that the same scaling law was obtained for

rownian motion [9] . We further confirm this intuition by fitting

he natural logarithm of MFPT as a function of the logarithm of the

idth with a polynomial of degree one of the form p 1 ln (w ) + p 2 .

or all values tested, p 1 ≈ 2. Thus, we claim 

FPT (w ) = C 1 (N, α) w 

2 if r = 1 μm , (13)

here we used the notation C 1 (N, α) = exp (p 2 ) to emphasize the

ependence on the free parameters. Table 2 lists the values of C 1 ( N,

) and of the root mean square error of the linear fit of the loga-

ithm for N = 1, 2, 4, 8 and 16 and α = 2 and 4. From the C 1 col-

mn in Table 2 , we notice that, for α = 2 , the ratio between subse-
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Fig. 6. Mean first passage time in minutes as a function of the layer width w ∈ [0.1, 2] μm for r = 1 μm, 0.5 μm, and 2 μm, N = 4 and 16 in (a) and rescaled by the inverse 

of the radius in (b). The parameters are given in Table 1 with α = 2 . 
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quent C 1 -values is about 2, while it is about 8 for α = 4 . This fact

is further confirmed by Fig. 5 (b), where each line is about ln (2)

away from the line immediately below it. Since N was increased

by a factor of 2, we have C 1 (2 k , α) = 2 α−1 C 1 (2 k −1 , α) and the pro-

posed relationship for the MFPT (13) becomes 

MFPT (w ) = N 

α−1 C 1 (1 , α) w 

2 if r = 1 μm . (14)

Finally, we explore the dependence of the MFPT and of C 1 (1, α) on

the particle’s radius. In Fig. 6 (a), we plot the MFPT for r = 1 μm,

05 μm, and 2 μm, N = 4 and 16, and α = 2 . For each N , the collapse

of the data in Fig. 6 (b) is obtained by multiplying the MFPT by the

inverse of the radius. In other words, the MFPT scales linearly with

the radius, independently of α. 

In summary, we propose the following scaling of the MFPT as

a function of the number of kernel N , the radius r and the layer’s

width w 

MF P T (w, r) = CN 

α−1 rw 

2 . (15)

The constant C , obtained for N = 1 , depends on the physical pa-

rameters of the viscoelastic constitutive equation ( ηs , G 0 , τ 0 , α) of

the generalized Rouse kernel in Eqs. (1) and (2) . 

3.3. Conclusion 

In this paper, we presented a covariance based algorithm for

the realizations of paths for a particle which obeys a Generalized

Langevin Equation that includes both solvent and polymeric contri-

butions. The algorithm only relies on the Gaussian structure of the

processes and it is used to generate paths with arbitrary large time

steps and for a wide range of physical parameters described by a

generalized Rouse kernel. Using simulated data, we demonstrated

that the mean square displacement is subdiffusive with slope in-

versely proportional to the exponent in the Rouse kernel and that

the increment auto-correlation shows first lag anti-correlation. Fi-

nally, we established that the mean first passage time of simulated

paths grows quadratically with the width of the layer and linearly

with the radius of the particle. Both in the generation of the paths

and in the estimation of the mean first passage time careful atten-

tion was paid to the underlying stochastic processes to guarantee

statistical accuracy. 

Understanding the role inertia plays in passive microrheology

remains an open challenge [21,23] . While we were able to establish

the traditional signature of inertia at small time scales in the mean

square displacement, we only achieved this for particles that are a

hundred times denser than water. For such heavy particles, the one
imensional balance of forces considered here might not be valid

nymore. On the other hand, we pointed out that the increment

uto-correlation function is independent of the mass, which sug-

ests that it might serve as a better statistical estimator for the

echanical characteristics of the fluid. However, we are not aware

f any protocol that connects the increment auto-correlation to the

oss and storage moduli in a simple way as the one point microrhe-

logy of [6] does. 

Our results have been presented for one dimensional motion,

ince the diffusion’s coefficient of a sphere is the same in all di-

ections. However, if ellipsoids or rods that have different diffusion

oefficients were considered, then the GLE (3) can be vectorized

nd generalized to three dimensional motion and potentially used

o probe anisotropic diffusion, see also [31] . 

In this paper, we presented the first exploration and character-

zation of the mean first passage time of a particle described by a

eneralized Langevin Equation. Nevertheless, much work remains

o be done both on the theoretical and experimental sizes to val-

date the above predictions and to better understand the distribu-

ions of first passage times and of hitting probabilities. 
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ppendix A. Relationship to continuum models 

In this appendix and in [26] , we show the relationship between

he form of the memory kernel and continuum model of extra

tress. Following Larson [27] , the deterministic stress tensor can

e decomposed into a solvent contribution �det,s and a polymeric

ontribution �det,p . The solvent stress is the Newtonian stress ten-

or 

det,s = −pI + 2 ηs E , (A.1)

here p is the pressure, I is the identity matrix, E = (∇u + ∇u 

T ) / 2

s the rate-of-strain tensor, and ηs is the solvent dynamic viscosity.

s in [8,18,27] , we consider the small strain limit for the polymeric

tress tensor resulting in a linear viscoelastic model. In this setting,

he constitutive equation for �det,p is known as the Lodge equation
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nd it has the form 

det,p = G avg I + 2 

∫ t 

−∞ 

G (r) (t − t ′ ) E (t ′ ) dt 
′ 
, (A.2)

here G avg is the modulus and G ( r ) ( t ) is the relaxation modu-

us (units of [ stress ]). The response is causal in the sense that

 (r) (t) = 0 for t < 0. Combining (A.1) and (A.2) , we have 

det = −(p − G avg ) I + 2 ηs E + 2 

∫ t 

−∞ 

G (r) (t − t ′ ) E (t ′ ) dt 
′ 
. (A.3)

he zero shear-rate viscosity η0 is related to G ( r ) ( t ) by η0 = ηs +
 ∞ 

0 G (r) (t ′ ) dt 
′ 
. If G ( r ) ( t ) is a single mode Maxwell model, G (r) =

ηp 

τ e −t/τ , where τ is the relaxation time and ηp is the polymeric

ynamic viscosity related to G avg by ηp = G avg τ [27] , then σset =
det + (p − G avg ) I satisfies the Oldroyd-B equation 

� 
σdet + σdet = 2 η0 

(
E + 

τηs 

η0 

� 
E 

)
, 

here η0 = ηs + ηp , and 

� · is the upper convected time derivative

efined as 
� 

S = 

dS 
dt 

− ∇u 

T S − S ∇u . If the solvent viscosity is negligi-

le, ηs = 0 , then σdet satisfies the Upper Convected Maxwell equa-

ion 

� 
σdet + σdet = 2 ηp E . 

ppendix B. Calculation of J ( t ) 

We present a numerical method for the evaluation of J ( t ) in

12) , which relies on residue calculus as opposed to a quadrature

cheme. We let γ = b/N, λ j = τ−1 
j 

, j = 0 , . . . , N − 1 and we define

he polynomials 

p(x ) = 

N−1 ∏ 

j=0 

(x + λ j ) q (x ) = (x + a ) p(x ) + γ p ′ (x ) , 

here ′ denotes the derivative of p ( x ) with respect to x . From these

efinitions and (9) , it is easy to see that 

̂ V (ω) = c 2 
[

p(iω) 

q (iω) 
+ 

p(−iω) 

q (−iω) 

]
:= c 2 �(ω) . 

ince the roots of p ( x ) are −λN−1 < . . . < −λ0 < 0 , q ( x ) has N − 1

oots located between the extrema of p ( x ). For practical applica-

ions, we assume that either −a < −λN−1 or −a > −λ0 . In the first

ase, q ( x ) has an extrema between −λN−1 and −a and depend-

ng on the magnitude of γ , the last pair of roots is either a com-

lex conjugate pair with negative real part or two purely real neg-

tive roots. In the latter case, q ( x ) has an extrema between −a

nd −λ0 and the same conclusions can be reached about the lo-

ation of the last two roots. We denote by ω 0 , . . . , ω N the N + 1

oots of q ( i ω) in the upper half plane with ω 0 , . . . , ω N−2 ∈ i R 

+ ,
m (ω N−1 and ω N ) ∈ R 

+ with Re (ω N−1 ) = −Re (ω N ) or Re (ω N−1 ) =
e (ω N ) = 0 . Here, Im( z ) denotes the imaginary part of z , while

e( z ) is the real part of z . The roots of q (−iω) are the complex

onjugates of ω 0 , . . . , ω N . Since a  = λj , j = 0 , . . . , N − 1 , the poles

f �( ω) are simple. In [25] , we derived an integral formula for in-

egrals of the type 
∫ ∞ 

0 G (ω) sinc a (x ) dx, where a is even, sinc is the

inc function, and G ( ω) has simple poles, appropriate decay and

o real poles. The formula is a result of careful integration and the

esidue theorem. Letting a = 2 , G (ω) = �(ω) , and changing vari-

bles from ω to ˜ ω = ωt/ 2 yield [25] 

(t) = c 2 

[ 

t 

2 

�(0) + 

N ∑ 

n =0 

Im 

[
Res (�, ω n ) 

e itω n − 1 

ω 

2 
n 

]] 

. (B.1) 
n the above, Res( � , ω n ) denotes the residue of � evaluated at ω n ,

 = 0 , . . . , N. 

If the poles were analytically known, then (B.1) would be ex-

ct. However, there is no simple analytical formula for the poles if

 ≥ 2. Therefore, using (B.1) to evaluate J ( t ), we have replaced an

mproper integration problem with a root finding problem. While

his poses a restriction on how big N can be, Eq. (B.1) is numeri-

ally advantageous over an adaptive integration scheme of (12) for

wo reasons. First, the roots and residues can be precomputed and

 only needs to be plugged into the right-hand side of (B.1) . Sec-

nd, because of the sinc function, the integrand is highly oscilla-

ory and many subintervals are required to guarantee accuracy of

 quadrature scheme. 

To compute the residues, we first expand p ( i ω) and q ( i ω) into

heir series expansion using Vieta’s formula. We have 

p(iω) = i N 
N ∑ 

j=0 

(−1) j ω 

N− j t j q (iω) = i N+1 
N+1 ∑ 

j=0 

(−1) j s j ω 

N+1 − j . 

(B.2) 

ere t 0 , . . . , t N are the elementary symmetrical polynomials of i λj ,

j = 0 , . . . , N, in other words 

 0 = 1 t 1 = i 

N−1 ∑ 

j=0 

λ j t 2 = −
N−1 ∑ 

0= j 1 

N−1 ∑ 

j 2 = j 1 +1 

λ j 1 λ j 2 . . . 

rom the definition of q ( x ), we derive a recurrence relationship for

he elementary symmetrical polynomials of ω j , j = 0 , . . . , N which

oes not require knowledge of the poles: 

s 0 = t 0 s 1 = t 1 + iat 0 s N+1 = iat N − γ t N−1 

 n = t n + iat n −1 − γ (N − n + 2) t n −2 n = 2 , . . . , N. 
(B.3) 

sing (B.2) and the residue definition, we find 

es (�, ω j ) = 

1 

i 

∑ N 
k =0 (−1) k ω 

N−k 
j ∑ N 

k =0 (−1) k s k (N + 1 − k ) ω 

N−k 
j 

j = 0 , . . . , N. 

(B.4) 

herefore, the algorithm to compute J ( t ) in (12) can be summarized

s follows. 

1. Compute t j the elementary symmetrical polynomials of i λj , j =
0 , . . . , N; 

2. Compute s 0 , . . . , s N+1 using (B.3) ; 

3. Numerically find ω j , j = 0 , . . . , N, the roots of q ( i ω); 

4. Compute the residues using (B.4) ; 

5. Evaluate the integral with (B.1) . 

ppendix C. Adjusted MFPT 

Let T 1 
exit 

be the first exit time for a certain layer and T final be the

nal time of the simulation. Assuming that for t sufficiently large

he probability density p ( t ) of T 1 
exit 

has the form p(t) ≈ a 1 e 
−a 2 t for

ome positive constants a 1 , a 2 , then the expected first passage time

onditioned on the fact that the path survives beyond T final satisfies

24] 

 [ T 1 exit | T 1 exit > T final ] = 

∫ ∞ 

T final 
t p(t ) dt ∫ ∞ 

T final 
p(t) dt 

≈
∫ ∞ 

T ta 1 e 
−a 2 t dt ∫ ∞ 

T a 1 e −a 2 t dt 
= T final + 

1 

a 2 
. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.jnnfm.2017.03.001 . 

http://dx.doi.org/10.1016/j.jnnfm.2017.03.001
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