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STATISTICAL RECONSTRUCTION OF VELOCITY PROFILES FOR
NANOPARTICLE IMAGE VELOCIMETRY∗
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Abstract. Velocities and Brownian effects at nanoscales near channel walls can be measured
experimentally in an image plane parallel to the wall by evanescent wave illumination techniques
[R. Sadr, M. Yoda, Z. Zheng, and A. T. Conlisk, J. Fluid Mech., 506 (2004), pp. 357–367], but
the depth of field in this technique is difficult to modify. Assuming mobility of spherical particles
dominated by hydrodynamic interaction between particle and wall, the out-of-plane dependence of
the mobility and in-plane velocity are clearly coupled. We investigate such systems computationally,
using a Milstein algorithm that is both weak- and strong-order 1. In particle image velocimetry
(PIV), image pairs are cross-correlated to approximate the mean displacement of n matched particles
between two windows. For comparison, we demonstrate that a maximum likelihood algorithm can
reconstruct the out-of-plane velocity profile, as specified velocities at multiple points, given known
mobility dependence and perfect mean measurements. We then test this reconstruction for noisy
measurements as might be encountered in experimental data. Physical parameters are chosen to be
as close as possible to the experimental parameters while we consider three types of velocity profiles
(linear, parabolic, and exponentially decaying).
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1. Introduction. Fluid velocities in a channel can be measured by illumina-
tion and imaging of tracer particles under the assumption that they follow the flow,
with corrections possibly applied for effects including, e.g., the near-wall relationship
between particle translation and rotation [6]. For laser-Doppler velocimetry, Fuller
et al. [3] showed that it is possible to reconstruct the velocity gradient in a laminar
flow using light-scattering spectroscopy. This requires the knowledge of the intensity
function and the technical capacity of turning the sample to get a proper angle of
illumination. At microscales, Meinhart et al. (see [15], [11], [10]) developed an illu-
mination technique, particle image velocimetry (PIV), to replace spectroscopy, where
the tracers are illuminated using multiple laser sheets and the velocity profile is com-
puted as means over successive windows using cross-correlation techniques. Again the
sample has to be properly illuminated so that particles remain in the focal plane. If
it is possible to turn the sample, all components of the mean velocity profile can be
obtained.

At nanoscales, including the near-wall region of microchannels, Sadr, Li, and
Yoda [12] and Sadr et al. [14] extend PIV to flows illuminated with evanescent waves
generated by total internal reflection at the wall. Image pairs are captured on a cam-
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Fig. 1.1. Experimental setup: Region of interest, flow direction, and wall location.

era with a time interval ∼ 2ms, and in-image-plane mean velocities are obtained using
cross-correlation techniques. Figure 1.1 illustrates the experimental setup around the
region of interest and some of the inherent experimental restrictions. While Sadr, Li,
and Yoda [12] show that Brownian diffusion can cause additional errors in the mea-
surements as particles drop in and out of the imaged window, only limited information
about the velocity along or dependence on the out-of-plane coordinate has been ex-
perimentally accessed recently from the brightness of the images and the decay of the
illumination function [6], [7], [9]. Questions remain about the accuracy and range
of validity of processing based on image intensity, especially in the presence of the
highly heterogeneous distribution of fluorescent dye on the tracer particle surfaces,
while background noise pollutes the images causing reconstruction of velocity profile
based solely on intensity to be extremely challenging (see Li, Sadr, and Yoda [9]).

Another dominant difficulty of these measurements arises from the nonconstant
diffusion tensor induced by the proximity of the wall. Both the in-plane and out-of-
plane diffusion components strongly depend on the distance from the wall (see Figure
2.1(a)). While this dependence is well understood in terms of the hydrodynamic in-
teraction between particle and wall [1], the effect of such diffusion on the resulting
measurements has been only recently addressed experimentally (see, e.g., [14]). Mean-
while, significant effort has been put into extending the range of validity of particle
image velocimetry (PIV) and particle tracking velocimetry (PTV) to smaller ranges
of particles. For example, Guasto, Huang, and Breuer [4] use a statistical approach
assuming nearly constant diffusion to eliminate experimental noise (drop-in/-out, mis-
match, particles blinking) and obtain a distribution of velocities. Using a similar idea
with nonconstant diffusion, Jin et al. (see [6], [7]) notice in their attempts to assess
slip at the wall that a nonnegligible difference exists between the apparent measured
mean velocities and the imposed shear rate. Interpretations of such studies are further
complicated by the measured velocities representing those across a spatially extended
region away from the wall, typically with little mechanism for modifying the extent
of such a region.

In this work, we show that it is possible to reconstruct the out-of-plane depen-
dence of the in-plane velocity component as a collection of velocities at specified
out-of-plane distances (typically five points), based solely on in-plane images. The
unique assumption leading to the statistical reconstruction of the out-of-plane com-
ponent concerns the out-of-plane distribution of the particles between two window
measurements. For simplicity, here we assume that the computational and observa-
tional domains are the same, thereby eliminating errors due to particle drop-in/-out
for this proof-of-principle demonstration.
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The next two sections present the particle model incorporating the most impor-
tant parameters from the experiments and its numerical simulation with a strong
order 1 scheme. In the fourth section we develop the algorithm for the perfect case,
in which the mean displacements are known exactly. The reconstruction is illustrated
for three different specified velocity test profiles (see Figure 2.1(b)): a linear profile,
a parabolic profile, and a profile exponentially decaying to the bulk velocity. In the
fifth section we extend the idea to noisy mean displacements obtained through the
consideration of a measurement error similar to the one reported for cross-correlation
from simulated images (PIV techniques). Finally, we discuss the limitations of the
model and its possible improvement.

2. Particle model. We test the algorithmic reconstruction on a simple sto-
chastic model of particle motion. Each particle is assumed to have a fixed radius a
(a = 50 nm in the demonstrations here), and the hydrodynamic interaction between
the wall and a particle is captured by the model for mobility in terms of the out-of-
plane coordinate perpendicular to the wall, z. We ignore particle-particle hydrody-
namic interactions, which are relatively small for the dilute particle volume fractions of
the experiments. The tracer particles are dragged along with the fluid flow; additional
interactions between particles and the wall are feasible but not included here.

We consider a system of n (n = 64) Brownian particles obeying Stokes drag
relations, linearly dependent on the velocity. For time steps ∆t bigger than the force
relaxation time, Ermak and McCammon [2] show that the displacement ∆ri can be
expressed as

(2.1) ∆ri =
3n∑

j=1

∂Dij

∂rj
∆t +

3n∑

j=1

DijFj

kΘ
∆t + Wi(∆t), i = 1, . . . , 3n,

where Wi(∆t) is a random displacement with a Gaussian distribution function whose
average value is zero and whose variance-covariance matrix is 2D∆t, D is the dif-
fusion tensor, F are the external forces, k is the Boltzmann constant, and Θ is the
temperature. The Brownian displacement can be expressed as [2]

(2.2) Wi(∆t) =
i∑

j=1

σijdWj , σ =
√

2D, dWj = N (0,∆t), j = 1, . . . , 3n,

where N (µ,σ2) indicates Gaussian random variables of mean µ and variance σ2.
While we ignore particle-particle interactions, hindered Brownian diffusion due

to hydrodynamic particle-wall interactions is an important effect for the near-wall
conditions in the experiments. A first approximation of the nonconstant diffusion
tensor is obtained by the methods of image singularities for Stokes flows, valid for
particle center-to-wall distances, z, that are large compared to the particle radius,
a. For our model system here, we include for simplicity only the lowest-order a/z
corrections for diffusion components parallel to the planar wall but instead employ
the Bevan–Prieve relation [1] for the out-of-plane diffusion perpendicular to the wall,
both because of its experimental verification and because it includes the physically
impermeable property that the diffusion coefficient goes to zero for a spherical particle
touching the wall (z = a):

(2.3) D =
kΘ

6πµa




1 − 9

16
a
z 0 0

0 1 − 9
16

a
z 0

0 0 6z2−10az+4a2

6z2−3az−a2



 = D∞β(z),
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Fig. 2.1. (a) Dimensionless diffusion coefficients perpendicular β⊥ and parallel β|| to the wall.
(b) Dimensionless velocity profiles γ for the linear, parabolic, and exponentially decaying test cases.

for the three components of each individual particle, where D∞ = kΘ/(6πµa) is the
Stokes–Einstein relation in the bulk limit far from the wall, the z-component is along
the direction perpendicular to the wall, and z is the distance between the center of
the particle and the wall.

Here we consider a simulated channel of height H with three different test flows
u∞γ(z)ex with “bulk velocity” u∞, as might be encountered in shear flow, pressure-
driven flow, and electroosmotically pumped flow, respectively: linear flow γ(z) =

1
H−a (z − a), parabolic flow γ(z) = 4

(2H−a)2 z(2H − z), and an exponentially decaying

profile γ(z) = 1 − exp(1 − z/a) (Figure 2.1(b)). For simplicity, we consider the
above flows to be the force-free velocity profiles of the tracer particles themselves,
with the hydrodynamic balance given for the external forces on the particles F =
kΘD−1u∞γ(z)ex. In the physical experiments, additional corrections are required
to relate the force-free velocities of the tracers to those of the underlying flow (see,
e.g., [6]); we assume such corrections can be imposed if the particle velocities are
accurately measured, proceeding with simulations of imposed particle velocities whose
velocity profiles we will reconstruct. Here we include only flow along one (x) of the
two in-plane directions parallel to the wall, but since the statistical reconstructions
below will not process any displacements along the other in-plane direction (y), the
methods presented here can be equivalently applied to measure any in-plane flow
profile dependent on the out-of-plane (z-) direction.

Our model stochastic ODE Langevin equation for the displacement of an individ-
ual particle is then

dx = u∞γ(z) dt +
√

2D∞β||(z) dW1,(2.4)

dy =
√

2D∞β||(z) dW2,(2.5)

dz = D∞
dβ⊥(z)

dz
dt +

√
2D∞β⊥(z) dW3.(2.6)

Letting T be the time elapsed between two PIV-window observed images, we set T
and the radius a as the characteristic time and length scales, respectively. Letting
x = aX, y = aY , z = aZ, and t = T τ define the dimensionless variables, the resulting
dimensionless parameters are Π1 = u∞T

a and Π2 = D∞T
a2 . For our tests reported here,

we select T = 2−9s, giving Π2 = 4 at Θ = 300, with u∞ selected to give Π1 = 3, of
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a scale typical to those of the experiments. Our dimensionless Langevin model, with
dW = N (0, dτ), becomes

dX = Π1γ(aZ) dτ +
√

2Π2β||(aZ)dWX ,(2.7)

dY =
√

2Π2β||(aZ) dWY ,(2.8)

dZ = Π2
dβ⊥(aZ)

dZ
dτ +

√
2Π2β⊥(aZ) dWZ .(2.9)

3. Numerical simulation. Equations (2.7), (2.8), and (2.9) form a system of
stochastic differential equations of the form dX = f(X, t)dτ + g(X, t)dW. We solve
it with a Milstein scheme of weak and strong order of convergence one. The coupling
of the system through the Z-component yields a nondiagonal noise in the stochastic
differential equation sense. The resulting Milstein scheme is given by [8] (see also [5]):

Xj+1 = Xj + f1,j∆τ + g11,j∆W1,j +
1

2
g11,j

dg11(z)

dZ

∣∣∣∣
Z=Zj

I(3,1),(3.1)

Yj+1 = Yj + f2,j∆τ + g22,j∆W2,j +
1

2
g22,j

dg22(Z)

dZ

∣∣∣∣
Z=Zj

I(3,2),(3.2)

Zj+1 = Zj + f3,j∆τ + g33,j∆W3,j +
1

2
g33,j

dg33(Z)

dZ

∣∣∣∣
Z=Zj

(
(∆W3,j)

2 −∆τ

)
,(3.3)

where fi,j = fi(Zj), gii,j = gii(Zj), and I(3,i) (i = 1, 2) are the double Itô stochastic

integrals defined as I(3,i) =
∫ tk+1

tk

∫ tk+1

tk
dW3dWi. Since I(3,i) has no closed analytical

solution, we approximate I(3,i) as the solution of a stochastic differential system:

(3.4) I(3,i) = Xi(tk+1), where

{
dXi = X3dWi, Xi(tk) = 0,

dX3 = dW3, X3(tk) = 0.

Equation (3.4) is solved using Euler–Maruyama steps, the stochastic equivalent of a
forward Euler step, with strong order of convergence 1

2 . To ensure convergence to an
accurate solution for the entire system, we choose ∆τ = 2−10 in (3.1)–(3.3), resolving
each Itô integral I(3,i) with 210 time steps in (3.4).

4. Reconstruction with perfect means. We start our proof-of-principle cal-
culations by statistically reconstructing velocity profiles based on perfectly observed
mean displacements. By this we mean that the true position of each particle is known
and the mean displacement of the n particles between two image-pair windows is
computed exactly. Cross-correlation processing of image pairs in PIV extracts, up
to various sources of error, the mean displacement of the “matched” particles—those
that contribute to both images. If the true displacement of each particle could be ex-
perimentally determined, as in particle tracking, then the same reconstruction ideas
below do apply, but our various tests indicated that such particle tracking does not
improve the results, and may even require greater quantities of data than statistical
reconstruction based on mean displacements, presumably because of the statistical
reliance below on clearly characterized Brownian displacements.

Let f∆X be the probability distribution function of a displacement ∆X. From
(2.7) the X-displacement depends on the Z-position. Therefore we define f∆X|Z to
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be the probability density function of ∆X given Z. Then

(4.1) f∆X =

∫
f∆X|ZfZdZ,

where fZ is the probability density function of particles in Z. Because we restrict
ourselves to the case where the computation and observation domain are the same,
we make the following assumption about the Z distribution:

(4.2) fZ =
a

H − a
χ[1,H/a],

where χI is the characteristic function on an interval I.
Next we make a fundamental simplifying modeling assumption for the recon-

struction: that the particle displacements over the time T between two consecutive
windows can be approximated by an Euler step of the form

(4.3) ∆X ≈ Π1γ(aZ) +
√

2Π2β||(aZ)dW with dW = N (0, 1),

where γ(aZ) is the unknown velocity profile. From (4.3) we conclude that

(4.4) f∆X|Z =
1

2
√

πΠ2β||(aZ)
e
− (∆X−Π1γ(aZ))2

4Π2β||(aZ) .

Finally, using (4.1), (4.2), and (4.4) we find that

(4.5) f∆X =
a

2
√
πΠ2(H − a)

∫ H
a

1

1√
β||(aZ)

e
− (∆X−Π1γ(aZ))2

4Π2β||(aZ) dZ.

Let ∆X be the mean displacement of n matched particles over a window and let
fS be the probability density function of n∆X. Now let f be the joint probability
density function of N measured n∆X. A standard result of probability, together with
the assumption of independence between two windows measurement, yields

(4.6) fS = f∆X ∗ · · · ∗ f∆X and f =
N∏

i=1

fS ,

where ∗ denotes the convolution. This independence assumption is, of course, incor-
rect, since consecutive ∆X displacements are correlated by the continuity-in-time of
the particles z positions; we nevertheless proceed under this modeling assumption,
counting on the effect of the correlations to be sufficiently small.

Figure 4.1 compares the histogram of a n∆X data set with Z ∈ [1, H/a] for
the parabolic test profile with the probability density function obtained with (4.5)
(dashed line). The integral in (4.5) is computed with a Gauss–Legendre quadrature
formula under the assumption of a uniform z-distribution. This demonstrates the rea-
sonable validity of assumption (4.3). Going even further, the dotted line in Figure 4.1
represents the probability density function obtained by fitting the data set n∆X for
Z ∈ [1, H/a] by a single Gaussian. The differences between the integrated Gaussian
(dashed line) and the fitted Gaussian (dotted line) are minimal in the height and lo-
cation of the peak. These minimal distinctions make the desired optimization highly
sensitive. Despite these expected difficulties, we nevertheless continue both with our
assumption (4.3) and the fundamental ideas of the velocity profile reconstruction.
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Fig. 4.1. Comparison of the parabolic profile between the histogram of the distribution of n∆X,
the probability density function (4.5), and a fitted Gaussian.

Given N measured mean values n∆X, Π1, Π2, and β||(aZ), the maximum like-
lihood estimate of γ(aZ) is the value of γ(aZ) that makes the observed means most
likely. Led by the independence assumption, we define the log-likelihood function

(4.7) φ({γj}Mj=1) = − ln f
(4.6)
= −

N∑

i=1

ln fS(n∆X),

where M is the number of discrete points Z at which we estimate γ. The most likely
values for γj , j = 1, . . . ,M , are obtained by minimizing the log-likelihood function φ
(4.7) of the M variables γ1, . . . , γM for a data set n∆X of size N .

The statistical reconstruction problem has thus been reduced to two numerical
algorithms. First, we evaluate the probability density function fS in (4.6) by repeated
convolution of the probability density function f∆X as in (4.5), computing the integral
by Gauss–Legendre quadrature for given γj values at the Legendre collocation points
Zj ∈ [1, H/a] for j = 1, . . . ,M . We subsequently minimize the function φ (4.7) with
a direct simplex algorithm penalizing solutions that do not produce an increasing
sequence, since we know that the velocity profile is increasing to the bulk velocity
away from the wall. We also experimented with the alternative scheme of minimizing
φ over low-order polynomials for γ(aZ) but did not obtain results any more promising
than those presented below. Not surprisingly, the minimization routine is highly
sensitive to the choice of the initial guess. Therefore, when reconstructing velocity
values for a small number of points M , we first search the M -dimensional space for a
suitable initial guess by evaluating the function at a fixed number of increasing grid
points. When reconstructing velocity values at M points for M larger (say, M ≥ 7),
we interpolate the initial guess from the reconstructed velocity values for smaller M .

Figure 4.2 illustrates the reconstruction for the linear and parabolic profiles at five
points (M = 5) for two different data sizes. Since the accuracy of the reconstructed
points does not appear to improve when N increases from 214 to 218, we are motivated
to instead consider breaking one block of data up into separate reconstructions over
each of B blocks of size 2b. Figure 4.3 contains semilog plots of the L2 relative error of
the reconstructed γj , j = 1, . . . ,M , with respect to the true γ(aZj), j = 1, . . . ,M , for
individual blocks, the errors averaged over the number of blocks B for four different
values of M (3, 5, 7, and 9 points). For the linear profile on the left, we observe
the same behavior as in Figure 4.2, namely, that increasing the data size does not
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Fig. 4.2. Velocity profile reconstruction at M = 5 points for the linear and parabolic test profiles
with data set sizes N = 214 and N = 218.
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Fig. 4.3. L2 relative error averaged over the number of blocks B of size 2b at M = 3, M = 5,
M = 7, M = 9.

predictably improve the accuracy of the reconstruction after some point. For the
parabolic profile on the right, we find a decay of the relative error in the function of the
data size b which appears to be roughly (2b)−1/4 up to another apparent stagnation
of the decaying error for data sizes larger than 214 or 215. We next consider the
plot of the L2-norm of the relative error of the block-averaged reconstructed values
γj = 1

B

∑B
k=1 γ

k
j , j = 1, . . . ,M (where γk

j is the reconstructed value at Zj for the
block Bk), with respect to the true γ(aZj), j = 1, . . . ,M (Figure 4.4). We deduce
from the relative errors of the block-averaged values, especially for the parabolic test
profile, that errors can be reduced by such averaging over a limited number of blocks.
As above, the parabolic profile follows a decay close to (2b)−1/4 up to 215. We do not
at present have any explanation for this particular power law of decay. We conclude
that the best reconstruction on a data set of the size N = 218 will be achieved when
the average of the reconstructed profile is done over 8 or 16 blocks. We also notice
that increasing the number of discrete points to M = 7 or M = 9 does not produce
significantly different normed errors but provides more detail about the calculated
profile at the cost of a lengthier computation.

In practice, of course, the goal of the reconstruction is to obtain an approximation
of the velocity profile, the true profile being unknown. So, finally, we compare the L1-
norm of the variance of the reconstructed profiles from the individual blocks, plotted
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Fig. 4.4. L2 relative error with γ averaged over the number of blocks B of size 2b at M = 3,
M = 5, M = 7, M = 9.
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Fig. 4.5. L1-norm of the variance of γ averaged over the number of blocks B at M = 3, 5, 7, 9
for the linear and parabolic profile.

versus the exponent b in the block size 2b. Again, we note for both the linear and
the parabolic profiles that the variance increases for data sizes bigger than 215. That
is, the L1-norm of the variance of reconstructed values from individual data blocks
appears to trend very similarly to the true L2-norm errors, and so we propose using
the former as a stand-in for the latter in deciding how to block-divide the data in the
present setting. Figure 4.5 thereby confirms that a better result can be both obtained
and recognized here when averaging over B = 8 or B = 16 blocks corresponding to
blocks of size 215 or 216. We remark that there are numerous sources of error in the
present reconstruction, including errors in the numerical integration, the numerical
convolution, and the minimization itself.

Using the result of the block-averaging technique investigated in the previous three
error plots (Figures 4.3, 4.4, and 4.5) we can now reconstruct the velocity profile at
five points, M = 5, for the linear case with B = 16 blocks. In Figure 4.6 we examine
both the spread of the values obtained for each block and the average γj , j = 1, . . . ,M ,
and standard deviation (plotted as 90% confidence interval error bars for the block
reconstruction values).

Finally, we apply the block-averaging technique on the parabolic (Figure 4.7(a))
and exponentially decaying (Figure 4.7(b)) test velocity profiles at M = 5 points and
B = 16 blocks. During our proof-of-principle calculations, we sometimes encountered
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and block-averaged γj , j = 1, . . . ,M , with 90% confidence interval for the linear test profile with
B = 16 and M = 5.
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(a) Parabolic profile
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(b) Exponentially decaying profile

Fig. 4.7. Errorbar reconstruction for the parabolic and exponentially decaying profile with
B = 16, M = 5, and 90% confidence interval.

data sets for which the reconstruction performed particularly poorly, as evidenced
by clear jumps in the reconstructed values as might suggest discontinuous velocity
profiles. Such poorly performing data was a simple consequence of the state of the
random number generator in the simulations; presumably similarly quirky experi-
mental data is not wholly uncommon, and so such reconstructions must therefore,
of course, always be questioned, particularly if they indicate highly unlikely results.
Finally, we additionally remark that the near-wall region velocity profile is usually
assumed to be linear or parabolic, and the exponential case is experimentally unlikely
for the present purposes except when the imaged region is large compared to the scale
of electroosmotic layers.

To conclude this section we plot the averaged reconstructed mean γj , j = 1, . . . ,M
(full symbols), compared to their true values (open symbols) at three (M = 3) and
seven (M = 7) points for both the linear (square) and the parabolic (circle) test pro-
files together in the same figure (Figure 4.8). Figures 4.7 and 4.8 clearly demonstrate
that we are able to statistically reconstruct the main behaviors of and distinguish
between different profiles (linear, parabolic, and exponentially decaying test profiles)
using multiple collocation points (M = 3, 5, 7) across the measured region.
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(b) M = 7

Fig. 4.8. Block-averaged reconstruction (B = 16) at M = 3 and M = 7 points for the linear
(square) and parabolic (circle) test profiles (full symbols) together with their respective exact values
(empty symbols), with 90% confidence intervals on the reconstructed values.

5. Reconstruction with cross-correlated velocities. In the previous section
we used perfect mean displacements between two image windows. In this section, first
we describe the idea behind PIV approximate mean measurements and then how they
influence the reconstruction algorithm.

PIV is an illumination technique combined with image processing to obtain com-
ponents of the mean velocity by measuring the mean displacement over a lag time.
At microscales, the sample is illuminated with laser sheets and cross-correlation tech-
niques (see [15], [11], [10]) producing a three-dimensional velocity profile. In nano-PIV
(nPIV), total internal reflection fluorescence microscopy is used to image tracer par-
ticles [12], [14]. When light undergoes total internal reflection for angle of incidence
larger than the critical angle, an evanescent wave is created and propagates paral-
lel to the interface with an exponentially decaying intensity. Zettner and Yoda [16]
report errors in the approximation of the mean of the order of 10%, while Sadr, Li,
and Yoda [13] estimate that nPIV leads to an error of about 6% in the approxima-
tion of the mean x-displacement. We remark that for the well-established technique
of µPIV, Meinhart, Wereley, and Santiago [11] conclude that the ensemble-averaged
displacements lie within 2% of their true values.

The parameters in our computer simulations are chosen to closely match experi-
mental parameters [12]: the sizes of the region of interest are δx = 25µm, δy = 5µm,
and δz = 450 nm, the radius of a particle is a = 50 nm, and the number of particles
is 64. We note that both background image noise and particle drop-in/-out between
the two images also degrade the PIV measurement, but we ignore both effects here
for simplicity. Therefore the particles are uniformly distributed in the z-direction
between two measurements. Once the image matrix is generated, the approximate
x- and y-displacement over a window is determined using cross-correlation [15], [11],
[10]. The cross-correlation function is the two-dimensional discrete convolution of
two image matrices. The location of the maximum peak of the cross-correlation func-
tion gives the mean x- and y-displacement between two windows. To gain subpixel
accuracy, a Gaussian surface fitting algorithm with 8 to 11 neighbors is typically used.

Because the previously described technique requires significant experimental agil-
ity in the choice of the size of the window over which the displacements are obtained
and in the ratio of overlapping of the windows, a threshold criteria for eliminating
bad displacement vectors has to be adopted (see [7]). Instead of using a computer
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(a) PIV data with 5% relative error
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(b) PIV data with 10% relative error

Fig. 5.1. Reconstruction with 5% and 10% approximated PIV means averaged over B = 16
blocks and compared with reconstruction from perfect means for the linear case.
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(a) PIV data with 5% relative error
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(b) PIV data with 10% relative error

Fig. 5.2. Reconstruction with 5% and 10% approximated PIV means averaged over B = 16
blocks and compared with reconstruction from perfect means for the parabolic case.

analogue to PIV techniques with a threshold which will lead to the generation of
more data, here we mimic the effect of these additional experimental errors by adding
normally distributed relative errors with standard deviations of 5% and 10% with
respect to the overall mean of the perfect mean displacements from our simulations.
Then we apply the statistical reconstruction algorithm at M = 5 with averaging over
B = 16 blocks on those two distinct noisy data sets to obtain the results of Figure 5.1
for the linear case and Figure 5.2 for the parabolic test profile. The increasing spread
in the extent of the confidence intervals with increasing measurement error demon-
strated in Figures 5.1 and 5.2 shows that, while error in the measurement of the mean
x-displacement on the scale of that described in the PIV literature definitely affects
the reconstructed results and confidence intervals, even at 10% relative errors the
reconstructed values are promising. Moreover, if experimental uncertainties can be
reduced to about 5%, as pursued in the literature [12], [14], then the block-averaging
statistical reconstruction here appears to perform essential as well as with perfectly
measured displacements, as illustrated in both Figures 5.1(a) and 5.2(a). We remark
that the approximation at the last point ZM is the worst. This might be caused by
some numerical artifacts imposed by the artificial upper wall elastic boundary con-
dition, but we have not been able to pinpoint it precisely so far. However, since the
goal is to obtain a better approximation of the velocity profile in the very near-wall
region, this is not a major drawback.
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6. Discussion. We have successfully demonstrated that it is possible to use the
correlation between unknown velocity profiles γ(aZ) and known wall-hindered diffu-
sion coefficient D(z) to reconstruct the velocity values with reasonable precision at
multiple collocation points within the depth of an imaged window, reconstructing the
out-of-plane z-dependence using only measured in-plane displacements, with examples
from three basic test flows (linear, parabolic, and exponentially decaying).

We emphasize that all previously reported experimental values, except the re-
cently developed multilayer nPIV (see [9]), obtain a single value for the velocity over
the entire region of observation, namely the mean located in the center of the field
of focus. The present reconstruction algorithm, approximating the behavior of the
deterministic velocity at M (typically M = 3, 5, 7) points scattered over the imaged
region, is thus a significant improvement.

The reconstruction uses block averaging, and the error plots have demonstrated
that it is better to approximate the profile individually over data set blocks of size 214

and to average the result over 8 or 16 consecutive blocks than processing all of our
simulated data at once. Importantly, this is computationally fast: the mimimum
of the likelihood function φ in (4.7) is found in less than 30 minutes on a desktop
machine. In contrast, each Milstein-scheme simulation used to generate data here
required on the order of 10 days on the same processor. This reconstruction does not
use any information about the intensity function and offers an alternative approach
to the recently developed multilayer PIV techniques [6], [9] which attempt to infer
distance from the wall from image intensities. An interesting direction for future
development is the possibility of combining the imperfect (from polydispersity) out-
of-plane intensity information with the present statistical method.

The amount of data used in the reconstruction process may seem staggering,
but a comparison with data actually captured in experiments indicates that such
data sets can be achieved in a reasonable time. For example, Guasto, Huang, and
Breuer [4] track over 140000 single quantum dots from 900 image pairs to obtain a
single approximation over the entire region. Li, Sadr, and Yoda [9] cite a framing rate
of about 26Hz leading to a sequence of 100 frames of about 30 particles recorded within
5 seconds. Keeping the same interframe ratio, it will take between 20 minutes and
4 hours to obtain the necessary 218 frames. Moreover, Li et al. report using in their
computer simulated multilayer nPIV 2000 frames with 120 particles and 3 windows
for each one of their three layers. In other words they use, after having thrown away
an unquantified amount of bad data, about 214 mean displacements for 27 particles.

The present demonstration assumes that the particles are uniformly distributed
between two measurements; once the computational and observation domain are no
longer the same, the uniform distribution assumption will be broken due to particle
drop-in and drop-out from the window between two measurements. Provided that
this distribution can be computed a priori [13], the reconstruction is simply modified
to include the nonuniform probability density function of matched particles. The
present results are, of course, only a computer-simulated proof of concept, and more
physical effects need to be included for proper use on experimental data, perhaps
including the effects of background noise in the images, particle polydispersity, and
particles dropping in and out of the field of vision.
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