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We study theoretically the stability of “active suspensions,” modeled here as a Stokesian fluid in which are
suspended motile particles. The basis of our study is a kinetic model recently posed by Saintillan and Shelley
#D. Saintillan and M. J. Shelley, Phys. Rev. Lett. 100, 178103 !2008"; D. Saintillan and M. J. Shelley, Phys.
Fluids 20, 123304 !2008"$ where the motile particles are either “pushers” or “pullers.” General considerations
suggest that, in the absence of diffusional processes, perturbations from uniform isotropy will decay for pullers,
but grow unboundedly for pushers, suggesting a possible ill-posedness. Hence, we investigate the structure of
this system linearized near a state of uniform isotropy. The linearized system is nonnormal and variable
coefficient, and not wholly described by an eigenvalue problem, in particular at small length scales. Using a
high wave-number asymptotic analysis, we show that while long-wave stability depends on the particular
swimming mechanism, short-wave stability does not and that the growth of perturbations for pusher suspen-
sions is associated not with concentration fluctuations, as we show these generally decay, but with a prolifera-
tion of oscillations in swimmer orientation. These results are also confirmed through numerical simulation and
suggest that the basic model is well-posed, even in the absence of translational and rotational diffusion effects.
We also consider the influence of diffusional effects in the case where the rotational and translational diffusion
coefficients are proportional and inversely proportional, respectively, to the volume concentration and predict
the existence of a critical volume concentration or system size for the onset of the long-wave instability in a
pusher suspension. We find reasonable agreement between the predictions of our theory and numerical simu-
lations of rodlike swimmers by Saintillan and Shelley #D. Saintillan and M. J. Shelley, Phys. Rev. Lett. 99,
058102 !2007"$.
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I. INTRODUCTION

Swimming mechanisms for self-locomoting microorgan-
isms range from flagellar rotation #1$, to ciliary and tail beat-
ing #1,2$, to actin-tail polymerization #3,4$. Recently, loco-
motion of artificial microswimmers, activated say by
chemical reactions #5–7$ or an external magnetic field
#8–11$, has also been demonstrated. These swimming modes
have the common feature that a self-propelling particle exerts
a propulsive force on the fluid which must be balanced by
the fluid drag. The hydrodynamics of motile suspensions, in
which many such microorganisms or artificial swimmers cre-
ate large-scale flows, has received much attention in recent
years. Of particular interest are the formations of large-scale
vortices and jets reported by Kessler and co-workers #12–15$
for fairly concentrated bacterial baths. These flow features
have been reproduced qualitatively in simulations of
Hernández-Ortiz and co-workers #16,17$ using a simple
swimming dumbbell model that includes only far-field hy-
drodynamics, as well as in simulations of more complicated
models of rodlike swimmers by Saintillan and Shelley #18$.
To study such phenomenon in a continuum setting, Saintillan
and Shelley #19,20$ developed a continuum theory for the
dynamics of a dilute suspension of active rodlike particles in
which fluid motions are driven by the “extra stress” gener-
ated by each particle’s induced far-field flow. This model is
closely related to classical models of rigid rod suspensions
#21$ and generalizes a phenomenological model of swim-

ming suspensions by Simha and Ramaswamy #22$. Saintillan
and Shelley showed, for rear-actuated swimmers, the exis-
tence of a long-wave instability to the isotropic state, and
nonlinear two-dimensional simulations showed that these in-
stabilities drove the system to a strong mixing dynamics with
features again qualitatively similar to experiment. Most re-
cently, Baskaran and Marchetti #23$ posed a coarse-grained,
in part phenomenological, hydrodynamic model for active
suspensions and classified various long-range isotropic and
nematic instabilities. Subramanian and Koch #24$ gave es-
sentially the same model as Saintillan and Shelley but in-
cluded the additional effect of run-and-tumble dynamics of
the swimmers.

The goal of this paper is to study the general stability of
an isotropic and uniform suspension of active swimmers. We
consider two broad categories: pushers and pullers. A pusher
is a swimming particle whose motion is actuated along the
posterior of the body, while for a puller, motion is actuated
along the anterior. These two actuation modes result in op-
positely signed extra-stress contributions to the fluid. Bacte-
ria such as B. subtilis, used by Kessler and co-workers in
their studies #12–15$, are pushers, while algae-like Chlamy-
domonas, when “rowing” with their leading flagella, are
pullers. This distinction is by no means exclusive, as certain
highly symmetric organisms such as spherical multicellular
algae !e.g., Volvox" may fall between the pusher-puller dis-
tinction, as would densely covered ciliates. For our model,
the uniform, isotropic state is a natural one to study, as it
provides the state of minimum configurational entropy, and
an entropy equality predicts that for pusher suspensions,
there will be an increase in fluctuations. In part, it is the
nature of these fluctuations that we seek to study. In our*choheneg@cims.nyu.edu
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analysis, we will focus !to a degree" on dynamics in the
absence of diffusive mechanisms, particularly rotational. The
mechanisms by which diffusion might arise are various—
pair interactions, run-and-tumble dynamics, thermal
fluctuations—and so this aspect is less universal, though cer-
tainly important, than bare hydrodynamic interactions. Fur-
ther, understanding the creation of fine-scale structure in the
absence of diffusive effects is important to understanding
basic model well-posedness as well as the actual effects of
diffusion.

First, in Sec. II, we review the active suspension model of
Saintillan and Shelley. It is comprised of a Smoluchowsky
equation whose configuration variables are active particle
center-of-mass and orientation and whose fluxes for transla-
tion and rotation are driven by a background velocity field,
single-particle locomotion, and diffusional processes. The
velocity !and its gradients" is determined by a Stokes fluid
equation forced by the active particles’ extra stress. In Sec.
III, we derive the Smoluchowsky equation linearized about
uniform isotropy. We show that system instability can only
arise from the dynamics of the first azimuthal mode in swim-
mer orientation, itself described by an integral equation in
polar angle, that perturbations can only grow for suspensions
of pushers, and that concentration fluctuations are generi-
cally bounded. Shelley and Saintillan #19,20$ examined sta-
bility by solving the eigenvalue problem for exponential
growth and showed the existence of a long-wave instability
for pushers. We recapitulate that study and show further that,
in the absence of rotational diffusion, solutions to the eigen-
value problem only exist for a finite range of wave numbers
with the loss of solutions associated with an emerging singu-
larity in the associated eigenfunction. Hence, the eigenvalue
problem does not address stability at intermediate and small
length scales. To partially study this, we develop a high
wave-number asymptotic treatment for the linearized equa-
tions, showing that at small scales the system is well-
behaved independently of the nature of the suspension. This
construction shows that the growth of perturbations for
pusher suspensions is associated not with concentration fluc-
tuations, as these are generally bounded or decay, but with a
proliferation of oscillations in swimmer orientation. We con-
firm our basic results through numerical simulations. We
demonstrate also that the addition of rotational diffusion to
the eigenvalue problem apparently removes the singular be-
havior at intermediate length scales.

Finally, in Sec. IV, we relate our study to previous work,
particularly the swimming particle simulations of Saintillan
and Shelley #18$ and recent experiments of Sokolov et al.
#25$. In the former, the authors observed at low volume con-
centration that the dimensional rotational and translational
diffusion coefficients are proportional and inversely propor-
tional to the volume concentration, respectively. In this case,
we predict the existence of a critical volume concentration
and find reasonable agreement with their simulations. The
same analysis predicts a critical system size above which a
pusher suspension is unstable and below which it is stable.
Our analysis predicts critical lengths smaller than that re-
ported by Sokolov et al. #25$, though the experiment has
several complicating factors, such as possible oxygen taxis
by the swimmers.

II. KINETIC MODEL

We study a continuum model describing the dynamics of
a dilute suspension of self-propelled rodlike particles !see
Saintillan and Shelley #19,20$". Each particle is described by
two configuration variables: its center-of-mass position x and
orientation vector p !p ·p=1". Without any other flow ef-
fects, each particle swims along its axial direction p and
generates in the fluid a force dipole !stresslet" "0!pp−I /3".
Saintillan and Shelley #19,20$ noted that "0 can be related to
the swimming velocity U0 by "0 /U0#l2=$, where l is the
characteristic length of the swimmer, # is the viscosity of the
suspending fluid, and $ is a O!1" dimensionless geometric
constant which differentiates between pullers !$%0" and
pushers !$&0". A pusher swims by an actuating stress along
the posterior of the body, resulting in a negative force dipole
on the fluid, while a puller swims by an actuating stress
along the anterior, resulting in a positive force dipole on the
fluid !see also Hernández-Ortiz et al. #16$, Ishikawa and Ped-
ley #26$, Underhill et al. #17$, and Kanevsky et al. #27$".

Let '!x ,p , t" be the time-dependent probability distribu-
tion function associated with the configuration variables x
and p. ' evolves by the conservation !Smoluchowski" equa-
tion

!'

!t
= − "x · !ẋ'" − "p · !ṗ'" , !1"

where the nondimensional particle fluxes are

ẋ = p + v − D"x!ln '" , !2"

ṗ = !I − pp"!"xv p" − d"p!ln '" . !3"

Equation !2" for the position flux ẋ consists of three terms:
the self-locomotion velocity along the orientation direction
p, the background velocity v induced by the other swimmers,
and the center-of-mass diffusion where D is the translational
diffusion coefficient. Equation !3" is Jeffery’s equation for
the rotation of a rod by a linear flow #28$, including rota-
tional diffusion with diffusion coefficient d. Here, "p is the
gradient on the surface of the unit sphere S, "x is the gradient
in Cartesian coordinates, and spatially periodic boundary
conditions are assumed. Finally, the normalization of ' is
chosen as 1

V%dSp%dVx'=1, where V denotes the fluid vol-
ume in a cube of length L and '0=1 /4( is the probability
density for the uniform isotropic state. Here, velocity has
been scaled on swimmer velocity U0 and length on the in-
trinsic length lc=)−1l, where ) is the relative swimmer vol-
ume concentration )=Nl3 /Lp

3, with N the total number of
swimming particles in the system of dimensional volume Lp

3

#note that Shelley and Saintillan #18$ used )̃=N!l /2"3 /Lp
3

=) /8 as their definition$. Hence, L=Lp / lc is the dimension-
less system size.

Assuming low Reynolds number flow, as is characteristic
of the locomotion of small organisms, the fluid velocity v is
found by balancing the Newtonian fluid stress against the
active stress produced by the swimming particles

CHRISTEL HOHENEGGER AND MICHAEL J. SHELLEY PHYSICAL REVIEW E 81, 046311 !2010"

046311-2



"xq − *xv = "x · !a "x · v = 0, !4"

where q is the fluid pressure. The active stress tensor !a is
expressed as the distributional average of single-particle
stresses over orientations p,

!a = $& dSp'!x,p,t"!pp − I/3" !5"

!see Batchelor #29$ and Saintillan and Shelley #19,20$". It is
the choice of the intrinsic length scale lc that leaves only the
parameter $ in Eq. !5".

When diffusional processes are absent, the system Eqs.
!1"–!5" has several interesting aspects: !i" the swimmer con-
centration ) appears only through the normalized system size
L=Lp / lc; !ii" if t and x are rescaled as !x , t"→ !x , t" / '$', then
up to its sign, $ can be scaled out of the dynamics and so
only the cases $= +1 need be considered; and !iii" if $&0,
then the dynamics for $%0 is gotten by simply reversing
time, orientation, and velocity, i.e., !t ,p ,v"→−!t ,p ,v". This
reflects the reversibility of the single microswimmer. Rota-
tional or translational diffusion destroys this symmetry.

Equations !1"–!5" form the dynamical system we will
study. It is nearly identical to classical theories of the dynam-
ics of rigid rod suspensions #21$, with the exceptions being
that for passive rigid rods, $ is always positive and there is
no single-rod velocity term p in Eq. !2". As in classical rod
theory, the relative configurational entropy, S
=%dVx%dSp

'
'0

ln '
'0

, is a natural measure of system fluctua-
tions. It is nonnegative and only attains its minimum at zero
for '='0. Further, it obeys the evolution equation #20$

'0Ṡ = −
3
$
& dVx& dSpE:E

−& dSp& dVx#D'"x ln ''2 + d'"p ln ''2$' , !6"

where E= 1
2 !"xv+"xvT" is the symmetric rate-of-strain ten-

sor. The first term on the right-hand side is proportional to
the rate of viscous dissipation. Diffusional processes give the
second term, which is strictly negative and serves to drive S
toward its minimum. Hence, for suspensions of pullers,
where $%0, we have Ṡ&0 and fluctuations away from the
uniform isotropic state !'='0" are expected to decay. On
the other hand, for pushers !$&0", the leading term is now
positive, which allows the possibility of fluctuation growth
and eventual balance with diffusion. This is observed in
simulation where strongly mixing flows emerge through a
growth of fluctuations from near isotropy and which are
eventually balanced, though only on average, by diffusion
#19,20$. If there is no diffusional processes and $&0, Eq. !6"
predicts that fluctuations will grow.

III. LINEAR STABILITY ANALYSIS

We study the stability of the system under small perturba-
tions from uniform isotropy. Hence, let '= 1

4( !1+,-", where
%dVx%dSp-=0, v=,u, and q→.q, with ,/1. Keeping only
linear-order terms, Eqs. !1"–!5" become

-t + p · "x- − 3pp:"xu = D"x
2- + d"p

2- , !7"

− *xu + "xq = "x · ! "x · u = 0, !8"

with != !$ /4("%dSp-!pp−I /3". Here we have used the
equality

"p · !I − pp""xu p = − 3p · "xu p = − 3pp:"xu ,

which follows from the identity "p!f10̂+ f21̂"
= !1 /sin 1"#!0f1+!1!sin 1f2"$ and "x ·u=0.

This system can be much simplified. Equations !7" and !8"
have five degrees of freedom: three in space and two in
orientation. The first step of the stability analysis is to trans-
form the equations through a spatial Fourier transform Fx
in x and decouple Eqs. !7" and !8" according to the wave
vector k !k= 'k'". Here, f̃ k=Fx#f$=%dVe−ik·xf!x", where
k= !2( /L"k! and k!!Z3. From Eq. !8", with k=kk̂, we have
ũk= !i /k"!I− k̂k̂"!̃kk̂ and Eq. !7" then becomes

!t-̃k = − ikk̂ · p-̃k − Dk2-̃k + d"p
2-̃k − 3pp:!I − k̂k̂"!̃k!k̂k̂" .

!9"

The explicit dependence of Eq. !9" on the direction of
k̂ can be removed by a change of variables: p=Rq̂, where R
is the rotation matrix so that k̂=Rẑ and q̂
= !cos 0 sin 1 , sin 0 sin 1 , cos 1", with 0! #0,2($ the azi-
muthal angle and 1! #0,($ the polar angle on the unit
sphere. With these definitions, Eq. !9" becomes

!t-̃k = − ik cos 1-̃k − Dk2-̃k + d"q
2-̃k

− 3 cos 1q̂ · !I − ẑẑ"RT!̃kRẑ . !10"

To simplify Eq. !10", we note that

q̂ · !I − ẑẑ"RT!̃kRẑ

=
$

4(
sin 1ê!0" · &

0

2(

d0!ê!0!"

2&
0

(

d1!-̃k!0!,1!,t"sin2 1! cos 1!,

where ê!0"=cos 0x̂+sin 0ŷ+0ẑ.
While Eqs. !7" and !8" decoupled under a Fourier trans-

form in x, Eq. !10" retains a variable coefficient structure in
1. A further decoupling in 0 is achieved by introducing a
Fourier series expansion in 0: -̃k=(nAn,k!1 , t"ein0. After
some algebra, we find

!tAn,k + An,k!ik cos 1 + Dk2"

+ d) n2

sin2 1
An,k −

1
sin 1

!1!sin 1!1An,k"*
= −

3$

4
cos 1 sin 1F#An,k$3n,1, !11"

where the scalar F operator is
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F#h$ = &
0

(

d1!h!1!"sin2 1! cos 1!

and 3n,1 is the Kronecker delta symbol. As a technical aside,
note that -̃k becomes uniform in 0 as 1→0,(, implying that
An,k!0, t"=An,k!( , t"=0 for n#0.

The main feature of Eq. !11" is that the extra-stress con-
tribution !involving the operator F" arises only in the dynam-
ics of the n=1 azimuthal mode. As we now show, the re-
maining modes yield only temporal decay or saturation.

The expanded entropy S yields the squared L2 norm of the
perturbation -: S=,2S2+O!,3", where S2= 1

2%dVx%dSp-2

and

Ṡ2 = −
3
$
& dVx"xu:"xu − D& dVx& dSp'"x-'2

− d& dVx& dSp'"p-'2. !12"

The Plancherel and Parsevaal theorems then yield

S2 = ((
k,n
&

0

(

d1! sin 1!'An,k!1!,t"'2 =
1
2(

k,n
+An,k!· ,t"+L2!S"

2 .

A straightforward substitution and integration by parts show
that for the n=1 azimuthal mode

d

dt
+A1,k!· ,t"+L2!S"

2

= − 3($'F#A1,k$'2

− 4(D&
0

(

d1! sin 1'A1,k!1!,t"'2

− 4(d&
0

(

d1! sin 1)'!1A1,k!1!,t"'2 +
'A1,k!1!,t"'2

sin2 1!
* .

!13"

Here, the only potential source of growth in this mode is the
extra-stress contribution when $&0, i.e., for pushers. For
$%0, the right-hand side is negative definite and the mode
will decay. We study in Sec. III B the n=1 mode at large k.

For the other azimuthal modes !n#1", a very similar cal-
culation yields

d

dt
+An,k!· ,t"+L2!S"

2 ,&0 for d % 0 and/or D % 0

=0 for d = D = 0
- !14"

and hence these contributions to the L2 norm decay or are
invariant in time. This is unsurprising: if d=0 and n#1, the
exact solution of Eq. !11" is An,k!1 , t"
=An,k!1 ,0"e−!ik cos 1+Dk2"t.

Finally, consider the swimmer concentration field c
=%dSp' for which c=1+,c1+O!,2" with c1= 1

4(%dSp-.
Hence,

c1̃k!t" =
1
2&0

(

d1! sin 1!A0,k!1!,t" . !15"

Applying the Hölder inequality gives 'c1̃k!t"'
42(+A0,k!1 , t"+L2!S" and since by Eq. !14" the upper bound is
strictly decaying for d#0, 'c1̃k!t"' is trapped in a decaying
envelope. Hence, for the linearized system and indepen-
dently of the sign of $, concentration fluctuations do not
grow. Saintillan and Shelley #19,20$ also reached this con-
clusion based on the form of eigenfunctions associated with
the more restricted eigenvalue problem, which we now re-
examine.

A. Eigenvalue problem

The first approach to study stability, following Saintillan
and Shelley #19,20$, is to make an exponential ansatz for the
solutions of Eq. !11". Only the first azimuthal mode with $
&0 is of interest and we focus on the special case when D
=d=0 and $&0 !pushers"

!tA1,k + ik cos 1A1,k = −
3$

4
cos 1 sin 1F#A1,k$ . !16"

Hence, assume that A1,k!1 , t"=5k!1"e"t. There is no a priori
expectation that A1,k can be represented in this fashion as Eq.
!16" is variable coefficient in 1. Indeed, we will see that
eigenvalues exist only for a finite range of k and other ap-
proaches are necessary to understand stability more gener-
ally. Note that if $&0, then the dynamics for $%0 is gotten
by reversing time !t→−t" and reflecting 1 across the equator
!1→(−1" in Eq. !16". Consequently, if " is an eigenvalue
for some $&0, then −" is an eigenvalue for −$. Rotational
diffusion destroys this symmetry, while translational diffu-
sion is accounted for trivially by shifting " down by Dk2.

Inserting the ansatz into Eq. !16" gives

5k!1" = −
3$ cos 1 sin 1

4!" + ik cos 1"
F#5k$ . !17"

Applying F to both sides then yields the eigenvalue relation

−
3
4

$&
0

(

d1!
sin3 1! cos2 1!
" + ik cos 1!

= 1. !18"

To evaluate this complex-valued integral, let u=cos 1 and
separate into real and imaginary parts. Some algebra pro-
duces the complex equation

− $.4i"k3 + 6i"3k − 3"2!"2 + k2"ln
" + ik

" − ik
/ = 4ik5,

!19"

where the complex logarithm is defined as ln!a+ ib"
=ln0a2+b2+ i arctanb

a . Note that Eq. !19" is only valid if
Re!""#0. Figure 1 shows the numerical solution of Eq.
!19", plotting the real and imaginary parts of " for $=−1.
For small k, there are two branches of unstable eigenvalues
with zero imaginary part. These two branches fuse into a
single unstable branch, now with an imaginary component,
with the decrease of growth rate suggesting a crossing of the
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k axis to become negative. Saintillan and Shelley #20$ gave
the asymptotic solution in k/1 for the upper branch in Fig.
1

"!k" = −
$

5
+ . 15

7$
− D/k2 + O!k3" . !20"

For a suspension of pushers !$&0", Eq. !20" implies the
existence of a long-wave instability with limk→0"!k"=−$ /5
%0. In contrast, for Pullers, there is no long-wave instability
and perturbations will generically decay as we argue in the
previous sections.

We now examine the eigenvalue problem more deeply.
Let k1 be the value of k where " approaches zero growth rate
and k0 be the first value of k where the two branches become
one !see Fig. 1". Having solved "!k" for k&k1 in Eq. !19"
and using that F#5k$ is a function of time only, the spatial
structure of the corresponding eigenvector 5k in Eq. !17" is
given by

uk!1" = −
3$ cos 1 sin 1

4#"!k" + ik cos 1$
.

The real part of uk!1" for k=0.2, 0.4, 0.5 and Im!""%0 is
plotted in Fig. 2!a". As k→k1, a singularity in uk develops
around 112.2. The eigenfunctions are the same for Im!""
&0, but reflected across the equator. To understand this sin-
gular behavior, as well as the overall branch structure, we

rescale Eq. !19" in terms of the real and imaginary parts,
setting 6=" /k=#+ i7,

f!#,7" + ig!#,7" = −
$

4,4i!# + i7" + 6i!# + i7"3

− 3!# + i7"2#!# + i7"2 + 1$

2.1
2

ln
#2 + !7 + 1"2

#2 + !7 − 1"2 + i arctan
7 + 1

#

− i arctan
7 − 1

#
/- = ik . !21"

Since arctan x−1 is not a continuous function at x=0, Eq. !21"
implies the existence of a discontinuity in #!k" as # goes
through zero. For a suspension of pushers !$&0", the long-
wave asymptotics of Eq. !20" guarantees that for k&k1, # is
positive. Thus, k1 is obtained by taking the limit of the left
side of Eq. !21" as # decreases to zero

.− 47 + 673 − 372!72 − 1"ln
'7 + 1'
'7 − 1'

− 3i(!74 − 72"/ = 4ik1.

!22"

We find that k110.5597 and 7110.6232.
Taking the limit of the left side of Eq. !21", as # increases

to zero, changes the minus sign before the last term on the
left side of Eq. !22" and the resulting equation has no solu-
tion for k1. Therefore, the curve Re!"" in Fig. 1!a" cannot be
continued past k1.

In Fig. 2!b", we plot the contour lines of g!# ,7", the
imaginary part of the left side of Eq. !21" and the zero-level
curves of f!# ,7", the real part !thick black line". In the res-
caled coordinates # ,7, the solutions "!k"=k6!k" of Eq. !19"
are found by simultaneously satisfying f!# ,7"=0 and
g!# ,7"=k. The maximum value of g is k1 and it is attained
for the purely imaginary solutions 6!k1"= + i71. Hence, there
are no solutions for k%k1. As k decreases, the solution 6!k"
moves from 6!k1" along the level curves f!# ,7"=0 toward
their intersection with the real axis at the saddle point of g at
height k0. From there, two real branches emerge as k is fur-
ther decreased toward zero. The branch to the left goes to the
origin where g reaches a minimum of zero and corresponds
to the lower branch in Fig. 1!a". Recalling that # /k=Re!"",
the right branch, characterized by #→8 and k→0, yields
the upper branch in Fig. 1!a". This can be formally shown by
an asymptotic expansion similar to the one yielding Eq. !20".
The arrows in Fig. 2!b" follow the bifurcation diagram as k
decreases to zero. Note that since the values of g are negative
for #&0, there can be no intersection between g and the k
plane in the second and third quadrants. Hence, the solution
to the eigenvalue problem Eq. !18" exists only for the finite
range of wave numbers 04k&k1. Thus, the set of eigenvec-
tors cannot describe general solutions of the linearized prob-
lem and, in particular, does not give information on small-
scale behavior, important for well-posedness. Furthermore,
since we find an apparently finite number of branches, an
arbitrary initial perturbation cannot be decomposed into a
linear combination of eigenfunctions. Note that the same sin-
gular behavior in eigenfunctions is observed for pullers !$
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FIG. 1. Real and imaginary parts of the growth rate "!k" for
$=−1 !pushers" with D=d=0.
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FIG. 2. !a" Real part of the eigenvector uk!1" for k=0.2, 0.4,
0.55, with $=−1 !pushers" and D=d=0. Note the nearly singular
structure for k slightly below k110.56. !b" Contour plots of the
imaginary part of the left side of Eq. !21" as a function of # ,7
!maximum value 10.56". The intersection of the !# ,7" surface with
the k planes and the contour line of the real part of Eq. !21" !thick
black" give the solution set of Eq. !19". Arrows follow the bifurca-
tion diagram.
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%0" as # increases toward zero.
Note that if k=k1 indeed marks a point of stability transi-

tion !though the eigenvalue problem has no solution for k
%k1", then one concludes immediately that there exists a
critical system size Lp or volume concentration ) above
which the system becomes unstable. This follows from hav-
ing scaled on the intrinsic length lc, so that k= !2( /L"k!
= !2(l" / !)Lp"k!, with k!!Z3. Hence, k1!= !k1 /2("!)Lp / l".
As the first allowable mode in the periodic box has k!=1, the
system is unstable if k1!10.089!)Lp / l"%1 and is stable oth-
erwise. For negative $#−1, the instability condition be-
comes 0.089!'$')Lp / l"%1. We will consider the effect of
diffusion shortly.

B. Large k analysis of the first azimuthal mode

To gain a more general understanding, we now consider
the asymptotic behavior of the first azimuthal mode !n=1" in
Eq. !16" for large k. We will show that for k large and inde-
pendently of $, the solutions develop a proliferation of os-
cillations under a fixed envelope. After some algebraic ma-
nipulations, Eq. !16" may be rewritten as

Ct!x,t" = −
3$

4
h!x"eiktx&

−1

1

C!y,t"e−iktydy , !23"

where x=cos 1, h!x"=x2!1−x2", and C!x , t"
=0h!x"eiktxA1,k!x , t". Upon extending C and h to zero outside
#−1,1$, Eq. !23" becomes in Fourier space

C̃t!9,t" = −
3$

4
h̃!9 − kt"C̃!kt,t" . !24"

Next, we integrate Eq. !24" with respect to time, letting 9

=kt and b!t"= C̃!kt , t",

b!t" = C̃!kt,0" −
3$

4
&

0

t

h̃#k!t − s"$b!s"ds . !25"

That is, we have reduced the stability question to analysis of
a scalar integral equation in one variable. Since h!x" is zero
outside #−1,1$, its Fourier transform can be computed. It
satisfies lim9→0h̃!9"=4 /15 and h̃!9" is O!9−2" for 9:1.

We now consider the asymptotic limit where k is large
and t is fixed and we show that the integral in Eq. !25"
decays like O!k−2" and thus b!t" is essentially determined by
C̃!kt ,0". To achieve this, we transform Eq. !25" to Laplace
space and use the convolution and shift theorems to get

L#b$!r" =
L#C̃!kt,0"$!r"

1 +
3$

4k
L#h̃$!r/k"

,

where L#h̃$!r" = r&
−1

1 h!x"
r2 + x2dx . !26"

The complex-valued integral in Eq. !26" can be evaluated by
separating the real and imaginary parts and for k large, its
leading-order behavior is !4r" / !3k". Therefore, the behavior
of the Laplace transform becomes

L#b$!r" 1 L#C̃!kt,0"$!r"
1

1 + $r/k2

1 L#C̃!kt,0"$!r")1 − $
1
k

r

k
* for k large.

Since L#C̃!kt ,0"$!r" also scales like g!r /k" /k for some func-
tion g, the reminder term in the previous approximation is
O!k−2" and L#b$!r"1L#C̃!kt ,0"$!r".

Back substitution to A1,k!1 , t" then gives

A1,k!1,t" 1 e−ikt cos 1A1,k!1,0" !27"

for k large and t fixed. This analysis shows that solutions
of Eq. !16" for k large exhibit an oscillatory behavior inde-
pendently of $ and its sign. The envelope is given by the
initial condition and the number of oscillations increases
with t. Finally, numerical simulations !see Sec. III C" show
that for values of k in between the exponential growth and
the large k analysis, solutions for t large are of the form

A1,k!1,t" 1 e−ikt cos 1A1,k!1,t!" ,

where t! corresponds to the time at which the transition from
growth to saturation occurs.

C. Numerical simulations

We simulate Eq. !16" with a second-order Crank-Nicolson
scheme. First, we consider a single sinusoidal initial condi-
tion A1,k!1 ,0"=sin!1" and recalling the analysis of Secs.
III A and III B, we neglect diffusion and set d=D=0. In Fig.
3, the real and imaginary parts of A1,k for k=0.4, k=0.8, and
k=10 are plotted at t=50 and t=100 for pushers !$=−1". For
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FIG. 3. Real and imaginary parts of first Fourier modes
A1,k!1 , t" for $=−1 !pushers" and D=d=0 from a single mode si-
nusoid initial condition. The increasing wave numbers k show
growth !upper left", saturation with an increasing number of oscil-
lations in time !upper right, bottom left", and convergence of the
wave envelope to that of the initial condition.
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k=0.4, the real and imaginary parts #Fig. 3!a"$ are growing
as would be predicted by the eigenvalue analysis. The values
k=0.8 and k=10 are out of the range of exponential growth
and both real and imaginary parts of the solution show os-
cillations with constant L2!S" norm !see also Fig. 6". The
number of oscillations increases with time as illustrated in
Figs. 3!b" and 3!c", and Fig. 3!d" shows that for k large, the
envelope of the oscillations is determined by the initial con-
dition.

Next, Fig. 4 illustrates the time evolution of both Re!c1̃k"
and 'F#A1,k$', again starting from a single sinusoidal wave, in
the absence of any diffusion. The time evolution of c1̃k, the
Fourier transform of the linearized concentration, is shown in
Fig. 4!a" together with an inset showing the short-time be-
havior. As expected, fluctuations in the linearized concentra-
tion decay to zero for all Fourier modes. The time evolution
of 'F#A1,k$' for k=10 and both pullers !$=1" and pushers
!$=−1" in Fig. 4!b" together with the inset where 'F#A1,k$' is
multiplied by !kt"2 confirm that for k large, 'F#A1,k$' decays
to zero like !kt"−2. Thus, the small-scale behavior is indepen-
dent of $ and its sign as predicted in Sec. III B.

The influence of the rotational diffusion !i.e., d%0" on a
suspension of pushers !$=−1", without translational diffu-
sion !D=0", is explored in Fig. 5. Here, the initial condition
is of the form A1,k!1 ,0"=(m=1

M e−m;m7m sin!m1", where ;m
and 7m are randomly chosen and M =20. For k=0.2 and d
=0 #Fig. 5!a" solid line$, 'A1,k' is growing, while for k=5 and
d=0 #Fig. 5!b" solid line$, the perturbation locks into the
large k oscillatory behavior. Both curves confirm the analysis
of Secs. III A and III B showing growth for k&k1 and oscil-
lation in the absence of diffusion. For k=0.2 and d=10−3

#Fig. 5!a" dashed line$, 'A1,k' is growing at a smaller rate than
for d=0. For k=5 #Fig. 5!b" dashed line$, the solution rapidly
decays.

Another way to illustrate the behavior of solutions for
larger k is to look at the time evolution of +A1,k!· , t"+L2!S"

2 !see
Fig. 6". From Eq. !14", only the first 0-Fourier mode can
produce growth in S2, as all other terms are either decaying
or saturating, and is thus plotted in Fig. 6, where $=−1, k
=0.1, 0.4, 0.6, 0.8, D=0, d=0, and d=10−3. The initial con-
dition is A1,k!1 ,0"=sin!1". For k&k1, S2 grows, a sign of
the long-wave instability. For d%0, the contribution at k
large is eventually decaying as opposed to constant. If d is
further increased, then the L2!S" norm of every mode decays.

In order to find exponentially decaying solutions in the
presence of rotational diffusion as suggested by Figs. 5 and
6, we revisit the eigenvalue problem. Again, we assume that
A1,k!1 , t"=5k!1"e"t in Eq. !11" and renormalize the problem
so that F#5k$=1. Upon substitution into Eq. !11", this leads
to the system

5k!" + ik cos 1 + Dk2" + d) 1
sin2 1

5k −
1

sin 1
!1!sin 1!15k"*

= −
3$

4
cos 1 sin 1 , !28"

&
0

(

d1!5k!1!,t"sin2 1 cos 1 = 1. !29"

Equations !28" and !29" are solved by discretizing the 1
derivatives and solving the resulting nonlinear system via
Newton iteration starting from the known solution for d=0.

In Fig. 7, the real part of "!k" from Eqs. !28" and !29"
with d=0 and d=0.01 is plotted. For this moderate degree of
rotational diffusion, a downward shift of the branches is
seen, leaving the long-wave instability intact but suppressing
the lower branch. Not only does rotational diffusion reduce
growth rates, it also suppresses the eigenfunction singularity
seen in Fig. 2!a". In contrast to Fig. 2!a", 5k!1" is now
smooth along the zero crossing of the k axis and a stable
branch of exponentially decaying solutions can be found for
k%k1.
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FIG. 4. Starting from a single initial sinusoidal wave with d
=D=0 and for pushers !$=−1". !Left" Evolution of Re#c1̃k!t"$ for
various k; !inset" short-time evolution. !Right" Evolution of
'F#A1,10$'; !inset" 'F#A1,10$'!kt"2.
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wave numbers k show growth !unstable, left" and decay !stable,
right".

0 10 20 30 40 50

10
0

10
2

t

‖A
1
,k
‖2 L

2
(S

)

black: d = 0
gray: d = 0.001

k = 0.1

k = 0.4

k = 0.6

k = 0.8

FIG. 6. Evolution of the squared L2!S" norm of the first azi-
muthal Fourier mode contribution to S2 for $=−1 !pushers" with
D=0. It shows the effect of rotational diffusion at differing wave
numbers k.

STABILITY OF ACTIVE SUSPENSIONS PHYSICAL REVIEW E 81, 046311 !2010"

046311-7



We also looked at the effect of rotational diffusion for a
suspension of pullers; while the branch structure is more
complex, we found no positive growth rates for d<0, as
would be expected from generic decay of the entropy. There-
fore, numerical simulations confirm the analysis of Secs.
III A and III B, namely, that in the absence of any diffusion,
growth happens only for a finite range of wave numbers and
the dynamics at small scales is controlled. Moreover, rota-
tional diffusion reduces the strength of the long-wave insta-
bility and smooths out rapid oscillations at small scales.

IV. COMPARISONS TO SIMULATION
AND EXPERIMENT

We conclude by comparing the results of our theory to the
numerical results of Saintillan and Shelley #18$ and recent
experiments that, in part, look at the onset of complex flow
structures in motile suspensions of B. subtilis #25$. A simple
approximation to the swimming rod model of Saintillan and
Shelley gives $= +( / 'ln .2e', where .=a / l is the body as-
pect ratio with a the particle radius. For a pusher, this is
found using local slender-body theory #30,31$ for a swimmer
that is actuated on its rear half by a constant motive tangen-
tial stress −g+p and with a no-slip condition on its front half.
A straightforward calculation yields U0==2lg+ /#, with =2
=.'ln .2e' /2, and "0=−=1l3g+, with =1=(. /2. These deter-
mine $ as $="0 /U0#l2=−=1 /=2. Taking .=0.1 gives $
1−0.9, close to the value of −1 we have used thus far in our
studies. Letting $=−1 and neglecting diffusions, we can use
the estimate derived at the end of Sec. III A to get the pre-
diction of )̃10.14 for the critical volume concentration
above which instability occurs.

However, in their simulations of rodlike swimmers, Sain-
tillan and Shelley #18$ observed that at low volume concen-
tration !up to effective volume concentrations somewhat
greater than )̃=1=) /8", the dimensional rotation diffusion
dp was proportional to volume concentration ), while the
dimensional translational diffusion Dp was inversely propor-
tional. That is, dp1)d̄p and Dp1)−1D̄p. They conjectured
that orientational dispersion resulted mostly from pair inter-
actions, giving the linear dependence of dp upon ), while
center-of-mass dispersion was consistent with Brenner’s gen-
eralized Taylor dispersion analysis #32$ where Dp
=U0

2 / !6dr". In their force dipole simulations, Hernández-

Ortiz et al. also found a decrease in the translational diffu-
sion coefficient with volume concentration, albeit a slower
one. Recall that Eqs. !1"–!5" are scaled on velocity U0 and
intrinsic length lc=)−1l. If one assumes the observed scalings
of dp and Dp with ), the adimensional diffusion coefficients
become

d =
ld̄p

U0
and D =

D̄p

lU0
.

That is, d and D depend only on swimmer speed and length,
while system size and swimmer volume concentration appear
only in the normalized system size L=Lp / lc and hence in the
normalized wave number k= !2(l" / !)Lp"k!.

Using the numerical values for d̄p and D̄p gleaned from
Saintillan and Shelley #18$, we solve the eigenvalue problem
in Eqs. !28" and !29" and plot in Fig. 8 the growth rate Re!""
as a function of k. This yields the crossing value k110.086
and hence instability is found if k1!= !k1 /2("!)Lp / l"%1. Tak-
ing l=1 and Lp=10 !as in #18$", the figure predicts the exis-
tence of a critical volume concentration, )̃=0.9 as defined by
Saintillan and Shelley !)̃=) /8" for the emergence of a long-
wave instability. This is consistent with their result that or-
ganized dynamics emerges at volume concentrations in the
neighborhood of )̃=0.5 ##38$; also, see Fig. 2!b" of #18$$.

This analysis alternatively predicts, for fixed ), a critical
system size above which a pusher suspension is unstable and
below which it is stable. Recent experiments of Sokolov et
al. #25$ investigated the dynamics of motile B. subtilis sus-
pended in free-standing water films. They find, among other
things, a transition from what they describe as a state of
essentially two-dimensional collective swimming to one with
fully three-dimensional complex dynamics. This transition
occurs as film thickness is increased and, in particular, for
number concentrations of n12.5210−2 #m−3, they report a
critical film thickness of Lp1200 #m. They also report that
at film thicknesses less than 100 #m, the bacterial concen-
tration is nearly uniform with some slight depletion in the
center. Plainly, this observed transition is from a different
base state !two-dimensional collective dynamics" than that
studied here !isotropic and uniform" and their experiment is
complicated by bacterial taxis, possibly oxygen mediated,
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toward the free surfaces as well as by gravitational effects.
Further, in these experiments, the bacterial concentrations are
quite high !)̃12" and perhaps out of the range of validity of
our theory. Our analyses—using either a stability threshold
calculated in the absence of diffusive effects or using the
relation used for comparison to Saintillan and Shelley—
predict critical length scales considerably smaller, on the or-
der of 50 #m or less.

V. CONCLUSION

In this work, we used a kinetic model #19,20$ to investi-
gate the stability of suspensions driven by the active swim-
ming of particles. We analyzed the generalized linear prob-
lem about an isotropic and uniform state. As previously
shown by Saintillan and Shelley #19,20$, the eigenvalue
problem shows that in the case of pushers, fluctuations at
long scales are exponentially amplifying. Additionally, we
find that in the absence of any diffusion, short-scale pertur-
bations lock into an oscillatory behavior, set by the initial
condition, independently of the swimming mode. In particu-
lar, a small wavelength analysis, as well as numerical simu-
lation, shows that the contribution resulting from the active
extra stress decays to zero in time. While concentration fluc-
tuations are generically bounded in the linear stability analy-
sis, numerical simulations of Saintillan and Shelley #19,20$
show that large-amplitude nonlinear flow structures are asso-
ciated with concentration fluctuations and hence are not cap-
tured by the present study. We also investigate the effect of
rotational diffusion and find, as expected, that it reduces
growth at long waves and also allows the existence of eigen-
values past the zero growth-rate boundary. Furthermore, if
rotational diffusion scales with swimmer concentration and
translational diffusion inversely, then we predict a critical
volume concentration or system size characterizing the onset
of the long-wave instability. This analysis gives a reasonable
accounting of the particle simulations of Saintillan and Shel-
ley #18$ and a less satisfactory one for the experiments of
Sokolov et al. #25$, though the experiments are complicated
by other factors, as discussed.

This study is an attempt at understanding the stability of
suspensions of active swimmers and the structure of their
mathematical characterizations. With respect to the kinetic
theory, it would be interesting to study the more general
stability of perturbations about an evolving state. Further, our
analysis is an approximate one and these systems await a
rigorous analysis approach to stability and well-posedness
!as in #33$ for rigid rod suspensions". We found it interesting
that the stability problem could be wholly reduced to the
dynamics of the first azimuthal mode.

The kinetic model is itself an idealization. For example, it
is a dilute theory that does not capture close or steric inter-
actions that may be important in determining the emergence

of collective swimming states #39$. Near body interactions of
two swimmers have been studied theoretically and numeri-
cally by Ishikawa et al. #34$ among others for squirming
spheres with prescribed tangential velocities. These hydrody-
namic effects lead to complex dynamics !attraction, repul-
sion" in the near field, but do not change the dipolar far-field
flow structure. Hydrodynamics of nearby swimmers was also
considered theoretically by Pooley and co-workers #35,36$
for the three-linked sphere model of Najafi-Golestanian #37$,
whose net displacement is achieved via a periodic and time-
irreversible motions. They found a similar complicated local
dynamics !attractive, repulsive, or oscillatory" and further
showed that the time-averaged dipolar contribution to the
far-field flow disappears. While both of these studies are per-
haps relevant in understanding collective swimming, they are
beyond the scope of this work which is a dilute theory with
a dipolar far-field flow.

These studies do raise the question of what extensions the
theory can accommodate. For example, consider cyclic
swimmers such as Chlamydomonas whose two pulling fla-
gella are expected to produce a temporally modulated stress
dipole of positive average strength !a puller". If the relative
temporal phase of the swimming stroke is introduced as a
configuration variable, with each swimmer having an inde-
pendent phase !i.e., asynchronous swimming, perhaps con-
sistent with far-field interactions", then the distributional av-
erage over phase for the macroscale extra stress will
eliminate any dependence on phase and renormalize the
term’s coefficient. Similarly, the single-particle flux will be
modified and then renormalized by a distributional average.
Moreover, the present study only considers rodlike swim-
mers, where the shape parameter 5, in a generalized Jeffrey’s
equation #see Eq. !3" in #19$$, equals 1. Following Saintillan
and Shelley #19$, it can been seen that the introduction of 5
is equivalent to replacing $ by $5. Therefore, nearly spheri-
cal !510" pullers such as Chlamydomonas are not expected
to show instabilities away from the isotropic state, even were
they pushers. Our analysis is also restricted to spatially peri-
odic states and perturbations, and boundaries and boundary
conditions are undoubtedly determinants of stability. Finally,
recent experimental observations #9$ have motivated theoret-
ical work #11$ on the hydrodynamics of single magnetically
driven microswimmers. The stability of clouds of such
swimmers, in which there will be interacting hydrodynamic
and magnetic couplings, is a very interesting question.
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