MATH 2270

Exam #3 - Fall 2008

Name: Answer Key

1. (4 points) Find the determinant of the following matrix. Show your work.

$$\left(\begin{array}{cccc}
0 & 3 & 1 & 0 \\
2 & 0 & 0 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right).$$

Expund across the bottom row:

2. (6 points) Consider a 3×3 matrix A with rows \vec{v}_1 , \vec{v}_2 , \vec{v}_3

$$A = \begin{pmatrix} - & \vec{v}_1 & - \\ - & \vec{v}_2 & - \\ - & \vec{v}_3 & - \end{pmatrix}$$

and suppose det(A) = 8.

- (a) Find det $\begin{pmatrix} 2\vec{v}_1 \\ \vec{v}_3 \\ \vec{v}_2 \end{pmatrix}$.
 - · Multiplying the Ist row by Z (Scales det (A) by Z)
 - · Swapping rows 2 and 3 | Sales def(A) by -1)

(b) Find $det(A^{-1}A^TA)$.

(c) Suppose the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 are orthogonal and have norm x, i.e.

$$\|\vec{v}_1\| = \|\vec{v}_2\| = \|\vec{v}_3\| = x.$$

Find x.

Since vi, vi, and vis one or theyonal, they span a cobe in P. We know this cobe has volume det (A) =8, so each side has length [2].

3. (8 points) For $\alpha \in \mathbb{R}$, let

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & \alpha \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

and observe that the only eigenvalues of A are $\lambda = 1$ and $\lambda = 2$.

(a) What is the algebraic multiplicity of the eigenvalue $\lambda = 1$?

(b) What is the geometric multiplicity of the eigenvalue $\lambda = 1$?

Scometric nult = din ter
$$(A - I) = din(ker (30002))$$

= $[Z]$

(c) For which values of α will the geometric multiplicity of $\lambda = 2$ and the algebraic multiplicity of $\lambda = 2$ be equal?

(d) If $\alpha = 0$, is A diagonalizable? Explain your answer.

4. (8 points) Suppose

$$A = \left(\begin{array}{cc} 3 & 4 \\ 4 & -3 \end{array}\right).$$

Find a diagonal matrix D and an orthogonal matrix S such that $D = S^T A S$. Show your work.

$$E_S = \ker \left(\frac{-2}{4} \frac{4}{-8} \right) = SPM \left\{ \left(\frac{2}{1} \right) \right\}$$

$$D = \begin{pmatrix} s & 0 \\ 0 - s \end{pmatrix} \text{ and } S = \frac{1}{15} \begin{pmatrix} z & 1 \\ 1 - 2 \end{pmatrix}$$

- 5. (10 points)
 - (a) Is the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ similar to the matrix $\begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$?

Not they don't have the same trace

(b) Is the matrix $\begin{pmatrix} -1 & 6 \\ -2 & 6 \end{pmatrix}$ similar to the matrix $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$?

TYES because they have the same eigenvalues and they are all distinct.

(c) Suppose \vec{v} is an eigenvector of an invertible $n \times n$ matrix A and let λ be the associated eigenvalue. Is \vec{v} an eigenvector of $A^{-1} + 2I_n$? If so, what is the associated eigenvalue? If not, explain why.

(d) Let $q(x_1, x_2, x_3) = 3x_1^2 + 4x_2^2 + 5x_3^2 - 6x_1x_2 + 7x_2x_3$ be a quadratic form. Find a symmetric 3×3 matrix A such that $q(\vec{x}) = \vec{x}^T A \vec{x}$.

$$A = \begin{pmatrix} 3 - 3 & 0 \\ -3 & 4 & 7 \\ 0 & 7 & 5 \end{pmatrix}$$

Symmetric

(e) Suppose A is an orthogonal $n \times n$ matrix. Find trace (A^2) .

The eigenvalues of A are ± 1 , so they eigenvalues of A^2 are all $(\pm 1)^2 = 1$. Therefore, the trave of A^2 to the sun of the eigenvalues = [N].

- 6. (4 points) Multiple choice. Choose the best answer to each of the following questions.
 - (a) If a 2×2 matrix A has eigenvalues $\lambda = 1$ and $\lambda = 2$, then $\operatorname{trace}(A^{(k)})$ is

i. 2^{100} ii. 2^{101} $A = SDS^{-1}$ iii. $2^{100} + 1$ iv. 3^{100} $A^{30} = SD^{30}S^{-1} = S(2^{30})S^{-1}$ true $A^{30} = SD^{30}S^{-1}$

v. Cannot be determined from the given information.

- (b) If A is a symmetric positive definite 2×2 matrix, which of the following must be true?
 - i. The algebraic multiplicity of every eigenvalue is 1.
 - ii. A^{-1} is negative definite.
 - iii. $\det(-A) < 0$
 - iv. The curve defined by the equation $\vec{x}^T A \vec{x} = 1$ is an ellipse.
 - v. none of the above.