MATH 2270

Quiz #5 - Fall 2008

DUE: In class Friday (10/31)

Name:		

NOTES:

- Work individually, but feel free to use books, notes, etc.
- In order to receive full credit on a problem, you must clearly show each step used to obtain the solution.
- The quiz is due at (or before) the *beginning* of class on Friday 10/31. If you cannot attend class on Friday (or choose not to), drop your quiz off at my office (JWB 213) or put it in my mailbox (JWB 228) sometime *before* the start of class.
- I will post the solutions on the course webpage

http://www.math.utah.edu/~crofts

immediately following class on Friday. Consequently, I cannot accept late quizzes.

1. (3 points) Let

$$V = \operatorname{span} \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix} \right\}$$

be a subspace of \mathbb{R}^4 and suppose $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. Then $\vec{v} = \vec{v}^{\parallel} + \vec{v}^{\perp}$ with respect to the subspace

V. Find \vec{v}^{\parallel} and \vec{v}^{\perp} .

2. (3 points) Find the QR factorization of the matrix

$$M = \left(\begin{array}{cc} 6 & 2\\ 3 & -6\\ 2 & 3 \end{array}\right).$$

3. (2 points) Find the 3×3 matrix A of the orthogonal projection onto the line in \mathbb{R}^3 spanned by the vector $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$.

- 4. (3 points) True/False. Indicate whether the following statements are true or false.
 - (a) If the matrices A and B commute, then the matrices $A^{\rm T}$ and $B^{\rm T}$ also commute.

(b) If A is a square matrix, then $\frac{1}{2}(A-A^{\rm T})$ is a skew-symmetric matrix.

(c) There exists a subspace $V \subset \mathbb{R}^5$ such that $\dim(V) = \dim(V^{\perp})$.