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ABSTRACT

Let G = Spin(4n+ 1,C) be the connected, simply connected complex Lie group of

type B2n and let G = Spin(2n+ 1, 2n) denote its (connected) split real form. Then G

has fundamental group Z2 and we denote the corresponding nonalgebraic double cover

by G̃ = S̃pin(2n+ 1, 2n). The main purpose of this dissertation is to describe a latent

symmetry in the set genuine representation theoretic parameters for G̃ at certain half-

integral infinitesimal characters. This symmetry is then used to establish a duality of the

corresponding generalized Hecke modules and ultimately results in a character multiplicity

duality for the genuine characters of G̃.
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CHAPTER 1

INTRODUCTION

1.1 Duality for Verma Modules

Before stating the main result for which we are aiming (Theorem 2.4.1), we begin by

recalling a familiar case. Let G be a simple complex algebraic group with Lie algebra g and

write U(g) for its universal enveloping algebra. Choose a Cartan subalgebra h ⊂ g and let

∆ = ∆(g, h) be the corresponding root system. Write W = W (g, h) for the Weyl group of

∆ and fix a Borel subalgebra b ⊃ h. Then b induces a choice ∆+ = ∆+(g, h) of positive

roots for ∆ and we set ρ to be the half sum of the elements of ∆+. Finally, for w ∈ W we

define

Mw = U(g) ⊗
U(b)

Cwρ−ρ

to be the Verma module of highest weight wρ−ρ and we write Lw for its unique irreducible

quotient.

A fundamental problem in the representation theory of Verma modules is to determine

the composition factors (with multiplicities) of Mw. Each such factor is known to be of the

form Ly, for some y ∈W . On the level of formal characters we seek a decomposition of the

form

ch(Mw) =
∑
y∈W

ny,w ch(Ly) ny,w ∈ {0, 1, 2, . . .}

where it remains to compute the numbers ny,w. A related problem asks for a type of inverse

decomposition

ch(Lw) =
∑
y∈W

Ny,w ch(My) Ny,w ∈ Z

of an irreducible module in terms of Verma modules. A conjectural algorithm for computing

the multiplicities ny,w and Ny,w was first given by Kazhdan and Lusztig in [10]. Their

method uses the combinatorics of Hecke algebras to inductively build polynomials (now
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known to be) related to singularities of the corresponding Schubert varieties. The celebrated

Kazhdan-Lusztig conjecture asserts that evaluating these polynomials at one gives the

desired multiplicities. It was later proven correct in the work of Brylinski-Kashiwara and

Beilinson-Bernstein [7], [5].

A striking feature of the Kazhdan-Lusztig theory is the existence of a type symmetry

in the multiplicities ny,w and Ny,w. Let w0 denote the longest element of W and define the

duality map

Ψ : W −→ W

w 7−→ w0w.

Then Ψ is an involution of W that implements the familiar up-down symmetry of the

corresponding Coxeter graph. Moreover, Ψ defines a type of dual Hecke module whose

combinatorics are formally reversed. On the level of multiplicities this dualization induces

the equality

Ny,w = ±nΨ(w),Ψ(y) (1.1)

for all y, w ∈ W . In other words, the multiplicity of ch(My) in ch(Lw) is equal (up to

sign) to the multiplicity of ch(LΨ(w)) in ch(MΨ(y)), where the sign is explicitly computable.

Geometrically, this suggests the representation theory of Verma modules is dual to the

singular structure of certain Schubert varieties. This observation is central to [2], with

duality playing a key role in a reformulated version of the local Langlands conjecture.

1.2 Duality for Linear Groups

We now recall the analogous result for a large class of real Lie groups. Fix a real form

G ⊂ G of G and let Π(G) denote the set of equivalence classes of irreducible admissible

representations of G. For π̄ ∈ Π(G), write π for the standard representation (Section 2.2)

corresponding to π̄. For simplicity (and by analogy with the case above), we restrict our

attention to the finite set Πtriv(G) of representations with trivial infinitesimal character. If

π̄ ∈ Πtriv(G), we again seek to understand the composition factors of π as

π =
∑

η̄∈Πtriv(G)

m(η̄, π)η̄ m(η̄, π) ∈ {0, 1, 2, . . .}
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with the sum interpreted in an appropriate Grothendieck group. Similarly, the inverse

problem asks for an expression (again in a Grothendieck group) for π̄ in terms of standard

representations

π̄ =
∑

η̄∈Πtriv(G)

M(η, π̄)η M(η, π̄) ∈ Z.

Once again, it remains to compute the numbers m(η̄, π) and M(η, π̄).

This problem was solved by Vogan for reductive linear Lie groups (see [14],[15],[18]) in

an extension of the results cited above. In this setting, Πtriv(G) is no longer parameterized

by elements of a Weyl group, but rather a collection of geometric parameters (roughly,

irreducible equivariant local systems on the flag manifold). These parameters form a natural

basis for a Hecke module whose combinatorics embody a generalized Kazhdan-Lusztig algo-

rithm. The resulting polynomials (sometimes called Kazhdan-Lusztig-Vogan polynomials)

again give the desired multiplicities through evaluation at one.

In a remarkable final paper [17], Vogan describes a generalization of the duality in (1.1).

If we write

π̄1 ∼ π̄2 ⇐⇒ m(π̄1, π2) 6= 0

then ∼ generates an equivalence relation whose equivalence classes are called blocks. Given

a block B = {π̄1, . . . , π̄n} ⊂ Πtriv(G), Vogan constructs a real form G∨ ⊂ G∨ of the complex

dual group, a block B∨ = {η̄1, . . . , η̄n} ⊂ Π(G∨), and a bijection Ψ : B → B∨. As before,

the map Ψ commutes with the combinatorics of the Hecke module for B allowing one to

define a dual Hecke module ([17], Definition 13.3) isomorphic to the one for B∨. On the

level of multiplicities, this implies

M(πi, π̄j) = ±m(Ψ(π̄j),Ψ(πi)) (1.2)

([17], Theorem 1.15) as desired.

1.3 Duality for Nonlinear Groups

There are several partial results extending the above ideas to the setting of nonlinear

groups. Recall G ⊂ G is a real form of a complex simple algebraic group G. For simplicity,
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we restrict our attention to nonalgebraic double covers G̃ of G, that is nonlinear central

extensions of the form

1→ {±1} → G̃→ G→ 1.

In general, the methods cited above fail when applied to the representation theory of

G̃. The main difficulty stems from the fact that disconnected Cartan subgroups in G̃

need not be abelian. In such cases, results of Adams (see [1], Proposition 2.2) imply it

suffices to understand the disconnected center of H̃. Since the identity component of H̃ is

automatically central, this reduces to understanding π0(Z(H̃)). Unfortunately computing

π0(Z(H̃)) for each Cartan subgroup of G̃ can be a subtle problem, requiring the development

of new techniques.

In this direction, the Kazhdan-Lusztig-Vogan algorithm has been generalized for a large

class of nonlinear groups by Renard and Trapa [13]. Their method builds extended Hecke

algebra structures to track nonintegral wall crossings and computes KLV-polynomials for a

potentially large number of infinitesimal characters simultaneously.

Alternatively, the duality of equation (1.2) has been extended to include nonlinear groups

in certain cases. In [4] Adams and Trapa establish a duality theory for those G̃ whose

corresponding root system is simply laced. Their results take advantage of the fact that

Z(H̃) = Z(G̃)H̃◦

for every Cartan subgroup H̃ ⊂ G̃. If G̃ is the metaplectic group (the nontrivial double

cover the symplectic group), then all Cartan subgroups are abelian and we have

π0(Z(H̃)) = π0(H̃).

Using this fact, Renard and Trapa build a general duality theory for G̃ in [12] by directly

extending ideas of [17].

For simple classical groups, this leaves type B. For several reasons, this turns out to

be a surprisingly subtle problem. First, there is no simple characterization of Z(H̃) — in

general there are often central elements of H̃ that are not central in G̃. A second difficulty

arises from the presence of short (type II) integral roots. The Hecke algebra action for such

roots is complicated (see [13], Chapter 6) and thus so is their role in any form of a duality

theory (for technical reasons these subtleties do not arise for the metaplectic group). The

final difficulty is an apparent dependence on the parity of the rank — certain self duality

results seem to hold only if the rank of G̃ is even.
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1.4 Duality for S̃pin(2n + 1, 2n)

Let G = Spin(4n+ 1,C) be the connected, simply connected complex Lie group of type

B2n and let G = Spin(2n+ 1, 2n) denote its (connected) split real form. The fundamental

group of G is Z2 and we denote the corresponding nonalgebraic double cover by G̃ =

S̃pin(2n+ 1, 2n). In this dissertation we confront the above difficulties and establish a

character multiplicities duality for G̃ at certain half integral infinitesimal characters (Section

6.2). Roughly speaking, a symmetric infinitesimal character is one for which the number of

genuine parameters is as large as possible. The techniques developed are original and not

simple generalizations of previous work. Moreover, it seems likely they can be extended to

handle other nonalgebraic forms in type B.

After a brief discussion of notation and fundamental theory in Chapter 2, we redevelop

the construction of linear parameters for G = Spin(n+ 1, n) in Part I (Chapters 3–5).

Part II (Chapters 6–9) focuses on nonlinear parameters and in particular the structure of

nonabelian Cartan subgroups (Chapters 7 and 8). Finally, in Part III we specialize to even

rank and discuss the construction of the duality map Ψ for G̃. The difficulty is defining

a map on the level of nonlinear parameters with the appropriate representation theoretic

properties (Theorems 12.7.3, 12.7.4, and 12.7.5). Once these issue are overcome in Chapters

11 and 12, the desired character multiplicity duality is again a formal consequence of the

induced Hecke module duality described above (Theorem 12.8.4).

1.5 Future Directions

Unlike Vogan’s duality theory for linear groups, the results cited above establish nonlin-

ear duality on a case-by-case basis using special properties of the groups being considered.

We expect a more uniform approach to the duality theory of nonalgebraic double covers is

possible. In order to develop such a theory, we must first fill the remaining gaps not covered

by previous results.

The largest existing gap is odd rank groups of type B. Problems with this case arise

immediately, even for the split real forms (it is shown here a type of self-duality exists only

in the even rank case). At half integral infinitesimal character, such groups each possess two

genuine discrete series and two genuine principal series. Unfortunately, the central action

for these representations is not compatible with any kind of intrinsic definition of duality.

In particular, a dual block (possessing an opposite central action) must exist elsewhere, if it

exists at all. It is conjectured that such a block exists for a disconnected nonlinear covering
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group of the same type. Moreover, we are hopeful that allowing disconnected nonlinear

coverings will ultimately lead to a complete duality theory of type B.

The other remaining gap is F4 (for technical reasons G2 is included in the results of

[4]). It is expected a duality theory exists and should be related to (or perhaps even a

consequence of) the even rank duality for type B established here. With a complete (albeit

ad hoc) duality theory of simple nonlinear double covers at hand, the possibility of finding

a uniform approach (of the kind described for linear groups by Vogan) exists. Moreover, it

is reasonable to expect the duality for type B to take a leading role since this is the only

classical case that encompasses all of the nonlinear phenomenon of [13].

More broadly, we remark that some flavor of duality plays a key role in other important

results in the field. A second possibility then is to interpret nonlinear duality as a bridge

for extending existing theory to nonlinear groups. As mentioned above, Vogan duality is

central to the results of [2] suggesting a uniform duality theory might allow an extension of

the Langlands formalism to nonlinear groups. Foundations for this approach are described

by Adams and Trapa in [4]. Another example is the theory of character lifting. Adams and

Herb describe character lifting for nonlinear simply laced groups in [3]. Their work possesses

formal properties closely related to the duality of [4] suggesting one could use a nonlinear

duality theory to create a general notion of character lifting from linear to nonlinear groups.



CHAPTER 2

NOTATION AND PRELIMINARIES

2.1 Notation

Throughout this dissertation G = Spin(2n+ 1,C) will denote the connected, simply

connected complex simple Lie group of type Bn and G = Spin(n+ 1, n) will denote its

(connected) split real form. Corresponding Lie algebras will be denoted by g and gR with

similar notation used for subgroups and subalgebras. Let Θ be a Cartan involution for G

and K = GΘ be the corresponding maximal compact subgroup. If H is a Θ-stable Cartan

subgroup of G, write H = TA for its decomposition into compact and vector pieces. Let

∆(g, h) be the corresponding root system and W (g, h) the algebraic Weyl group. Finally,

the Killing form (·, ·) is a natural inner product on h allowing us to identify h ↔ h∗. For

some calculations it will be convenient to use (·, ·) to view roots and coroots as living in the

same vector space.

Many of the results in this dissertation depend on the formal properties of ∆(g, h)

and W (g, h), and not on how these objects were constructed. For this reason we find it

convenient to treat these objects abstractly whenever possible, invoking the connection to

the above Lie groups only when necessary. Therefore we fix once and for all an abstract

Cartan subalgebra ha ⊂ g and view our calculations as taking place in ∆ = ∆(g, ha) and

W = W (g, ha). We then use conjugation in g to compare roots and Weyl groups from

different Cartan subalgebras in the usual way.

2.2 The Set Dχ
The discussion in this section is valid whenever G is a reductive linear group with

abelian Cartan subgroups. Let HC(g,K) denote the category of Harish-Chandra modules

for G and suppose Z(g) is the center of its universal enveloping algebra. Each irreducible

object X ∈ HC(g,K) has a corresponding infinitesimal character χ of Z(g) and we will only

consider X for which χ is nonsingular. For any maximal torus H ⊂ G, the Harish-Chandra

isomorphism
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ρ : Z(g)→ S(h)W (g,h)

allows us to identify infinitesimal characters with W (g, h) orbits in h∗.

Write HC(g,K)χ for the full subcategory of HC(g,K) consisting of modules with in-

finitesimal character χ and let KHC(g,K)χ denote its Grothendieck group. The irreducible

objects in HC(g,K)χ (or equivalently their distribution characters) form a natural basis

of KHC(g,K)χ that we wish to understand. Typically this is achieved with the help of a

second basis given by (distribution characters of) equivalence classes of standard modules

[16]. Loosely, standard modules are representations induced from discrete series on cuspidal

parabolic subgroups of G and for the purposes of this dissertation we assume these objects

are known. Each standard module in HC(g,K)χ has a canonical irreducible subquotient

creating a one-to-one correspondence between the standard and irreducible modules.

We will frequently need an explicit parameterization for the standard (or irreducible)

objects in HC(g,K)χ. To this end, let Dχ be the set of K-conjugacy classes of triples

(H,φ,Γ), where H = TA is a Θ-stable Cartan subgroup of G, φ is in the W (g, h)-orbit

determined by χ (viewed in h∗), and Γ is a character of T whose differential is determined

by φ. Specifically, we must have

dΓ = φ|t + ρφi − 2ρφic

where ρφi and ρφic are the half sums of positive (with respect to φ) imaginary and compact

imaginary roots respectively. We refer to ([19], Chapter 3) for more details. Although

technically redundant, we will occasionally write (H,φ,Γ)χ for a representative triple in Dχ
when we wish to emphasize the infinitesimal character χ.

The set Dχ exactly parameterizes the standard (or irreducible) elements in HC(g,K)χ

[16] and will be referred to as the set of linear parameters for G at χ. The following

proposition gets us started understanding the set Dχ.

Proposition 2.2.1 ([8]). The are finitely many K-conjugacy classes of Θ-stable Cartan

subgroups in G. Moreover there is a one-to-one correspondence between K-conjugacy classes

of Θ-stable Cartan subgroups and G-conjugacy classes of Cartan subgroups.

The proposition allows us to work with a finite set of Θ-stable Cartan representatives

{Hi}. We get a corresponding finite partition

Dχ =
∐
i

Diχ
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where Diχ is the set of all triples in Dχ whose first element is conjugate to Hi. Let Λi be the

set of elements in h∗i that are in the W (g, hi)-orbit determined by χ. Clearly the normalizer

NK(Hi) acts on Λi and the stabilizer of any element is ZK(Hi). Let

W (G,Hi) = NK(Hi)/ZK(Hi)

be the real Weyl group of Hi. Then |W (G,Hi)| is finite and W (G,Hi) can be viewed as a

subgroup of W (g, h). Since |Λi| = |W (g, h)| it follows

|W (g, h)/W (G,Hi)|

is the number of distinct pairs (Hi, φ) up to K-conjugacy. Conjugacy class of such pairs are

parameterized in Chapter 9.

Finally, the differential of Γ must be compatible with φ ∈ h∗i and depending on the pair

(Hi, φ), a compatible Γ need not exist. Assuming one does, there are as many choices for Γ

as there are connected components in Hi, and it is well known that π0(Hi) ∼= Zk2 for some

k. Therefore Diχ is finite and can be viewed as a product of W (G,Hi)-orbits in Λi with a

finite 2-group (assuming φ is sufficiently integral).

The upshot of this discussion is that Dχ is a finite set that can be parameterized in terms

of certain structure theoretic information for G. In Chapters 3, 4, and 5 we recall how to

determine the number of conjugacy classes of Cartan subgroups in G, their component

groups, and their corresponding real Weyl groups.

2.3 The Set D̃χ
The complex group G is simply connected, however the real form G = Spin(n+ 1, n) has

fundamental group Z2. In particular, the unique nonlinear double cover G̃ = S̃pin(n+ 1, n)

is a central extension of G and we have a short exact sequence

1→ {±1} → G̃→ G→ 1.

Let π : G̃ → G be the projection map and follow the usual convention that preimages of

subgroups under π are denoted by adding a tilde. For example, K̃ := π−1(K) is a maximal

compact subgroup of G̃.
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A Cartan subgroup H̃ ⊂ G̃ is defined to be the centralizer of a Cartan subalgebra h ⊂ g.

As the notation suggests, H̃ = π−1(H) where H is a Cartan subgroup of G and the real

Weyl group

W (G̃, H̃) = N
G̃

(H̃)/Z
G̃

(H̃)

is naturally isomorphic to W (G,H). These facts allow us to reduce many questions about

Cartan subgroups in G̃ to equivalent ones about Cartan subgroups in G.

Let HC(g, K̃) denote the category of Harish-Chandra modules for G̃ and fix a triple

(H̃, φ, Γ̃) for G̃ as in Section 2.2. We say a module (respectively triple) is genuine if the

action of −1 (respectively Γ̃(−1)) is nontrivial. Let HC(g, K̃)gen ⊂ HC(g, K̃) denote the

full subcategory of genuine modules in HC(g, K̃). The following proposition implies the

irreducible genuine objects in HC(g, K̃)gen are parameterized in the same fashion as G (see

[13] for the appropriate general statement).

Proposition 2.3.1 ([13], Proposition 6.1). The genuine standard (or irreducible) objects

in HC(g, K̃)gen are parameterized by K̃-conjugacy classes of genuine triples (H̃, φ, Γ̃).

For nonsingular χ, let HC(g, K̃)gen
χ denote the full subcategory of genuine modules with

infinitesimal character χ. Our goal is to understand the set D̃χ of K̃-conjugacy classes of

genuine triples (H̃, φ, Γ̃), where the orbit of φ ∈ h∗ is determined by χ. The set D̃χ will

be referred to as the set of genuine parameters for G̃ at infinitesimal character χ. We

will mainly be interested in certain symmetric half-integral infinitesimal characters whose

description we postpone for now.

Although understanding D̃χ will ultimately require different techniques, for some aspects

our results for G are sufficient. For example, since G̃ is a central extension of G, the

K̃-conjugacy classes of Cartan subgroups in G̃ are in one-to-one correspondence with the K-

conjugacy classes of Cartan subgroups in G. These conjugacy classes will be parameterized

in Chapter 3.

Given a Cartan subgroup H̃i, the infinitesimal character χ determines a W (g, hi)-orbit

Λi ⊂ h∗i . The group W (G̃, H̃i) stabilizes H̃i and thus acts on Λi with finitely many orbits.

In the linear case, assuming χ was sufficiently integral each such orbit corresponded to at

least one irreducible module. In the nonlinear case, stronger (half) integrality conditions

on χ prevent this from happening in general. We address these issues in Chapter 6.

Finally we note that Cartan subgroups of G̃ need not be abelian. Hence their repre-

sentations may be more complicated than the characters of Cartan subgroups in G. In
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particular, if we fix a Cartan subgroup H̃ ⊂ G̃ and φ ∈ h∗, we cannot necessarily count

genuine triples (H̃, φ, Γ̃) by simply counting the connected components of H̃. We are thus

forced to confront nonabelian Cartan subgroups and their (genuine) representations. We

handle these issues in Chapters 7 and 8.

2.4 Character Multiplicity Duality

If γ ∈ D̃χ is a genuine parameter for G̃, we will denote by std(γ) and irr(γ) the corre-

sponding standard and irreducible modules in HC(g, K̃)gen
χ respectively. Write m(γ, δ) ∈ N

for the number of times irr(γ) appears as a subquotient of std(δ). In the group KHC(g, K̃)gen
χ

we have

std(δ) =
∑
γ∈D̃χ

m(γ, δ)irr(γ).

Similarly write M(γ, δ) ∈ Z for the multiplicity of std(γ) in irr(δ) and

irr(δ) =
∑
γ∈D̃χ

M(γ, δ)std(γ)

in KHC(g, K̃)gen
χ . The uniqueness of the above expressions implies∑

π∈D̃χ

M(γ, π)m(π, δ) =
{

1 γ = δ
0 γ 6= δ

so that the matrices m and M are inverses. The integers M(γ, δ) are thus of fundamental

importance. We can now state the main theorem we aim to prove (see Theorem 12.8.5).

Theorem 2.4.1. Let λ be a symmetric infinitesimal character (Section 6.2) and suppose

the rank of G̃ = S̃pin(n+ 1, n) is even. Fix a genuine central character Γ̃ of Z(G̃) and let

B = {γ1, . . . , γr} ⊂ D̃λ be the collection of genuine parameters in D̃λ with central character

Γ̃. If B′ = D̃λ \ B, then there is a bijection Ψ : B → B′ such that

M(γi, γj) = εijm(Ψ(γj),Ψ(γi))

where εij = ±1.

Central characters are discussed in Section 11.4 and the map Ψ will be defined on various

sets throughout the course of these notes (Definitions 3.2.4, 12.7.1, and Proposition 11.5.2).

Theorem 2.4.1 will be proved in Section 12.8 and is essentially a formal consequence of the

structure and representation theoretic properties of the map Ψ (Theorems 12.7.3, 12.7.4,

and 12.7.5).



PART I

LINEAR PARAMETERS



CHAPTER 3

INVOLUTIONS IN W

We begin with the structure theory necessary for describing the set Dχ. Let H be a

Θ-stable Cartan subgroup of G = Spin(n+ 1, n). The complexified Lie algebra h ⊂ g is also

Θ-stable and Θ acts on ∆(g, h). Since G contains a compact Cartan subgroup, the action

of Θ on ∆(g, h) is equivalent to the regular action of an order two element τ ∈W (g, h) [8].

Choose a conjugation map

i : h→ ha

(Section 2.1) and write i(τ) = τah ∈ W (g, ha) for the induced involution on ∆(g, ha). Then

τah and τah′ are conjugate in W (g, ha) if and only if H and H ′ are K-conjugate in G [8].

Therefore we have a well-defined injection from K-conjugacy classes of Θ-stable Cartan

subgroups of G into conjugacy classes of W (g, ha) consisting of elements of order two.

Since the group G is split, this map is also surjective and conjugacy classes of involutions

in W (g, ha) exactly parameterize K-conjugacy classes of Cartan subgroups of G. In this

section we study involutions in an abstract Weyl group W of type Bn.

3.1 Abstract Root System and Weyl Group

Let ∆ ⊂ (ha)∗ be a root system of type Bn with the usual choice of coordinates and

inner product on (ha)∗, i.e.,

∆ = {±ei ± ej | 1 ≤ i < j ≤ n} ∪ {±ei | 1 ≤ i ≤ n}

with (ei, ej) = δij . We have

|∆| = 4
(
n

2

)
+ 2n = 4

n(n− 1)
2

+ 2n = 2n2 − 2n+ 2n = 2n2.

Let ∆+ denote the usual choice of positive roots

∆+ = {ei ± ej | 1 ≤ i < j ≤ n} ∪ {ei | 1 ≤ i ≤ n}
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and Π the corresponding set of simple roots

Π = {ei − ei+1 | 1 ≤ i ≤ n− 1} ∪ {en}.

Note that all of the simple roots are long except one. If W denotes the Weyl group, then

W ∼= Zn2 o Sn ∼= 〈sα | α ∈ Π〉

where sα is the root reflection in the simple root α. We will write an element w ∈ W as

(ε1ε2 . . . εn, σ), where εi ∈ {0, 1} and σ ∈ Sn. The εi appearing in such an expression will

be referred to as bits.

Definition 3.1.1. Given w ∈W define

Sw = {εi | σ(i) = i and εi = 0}

Rw = {εi | σ(i) = i and εi = 1}

Cw = {εi | σ(i) 6= i}

and

nws = |Sw|

nwr = |Rw|

nwc = |Cw|.

Then nws counts the number of bits fixed by σ that are equal to zero, nwr counts the number

fixed bits equal to one, and nwc counts the number of bits not fixed by σ. Note that

n = nws + nwr + nwc . When the element w ∈ W is clear from context, we may write ns for

nws and so forth.

It is often important to know when w possesses certain properties. For this purpose we

define the following indicator bits

εws =
{

0 nws = 0
1 nws 6= 0

εwr =
{

0 nwr = 0
1 nwr 6= 0

εwp =
{

0 nws is even
1 nws is odd

εwm =
{

0 nwr is even
1 nwr is odd

.
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The root reflection corresponding to the simple root α = ei − ei+1 is (0 . . . 0, sα), where

sα = (i i+1). Therefore the long simple roots correspond to simple transpositions and thus

generate the Sn piece of W . The remaining simple root is short and maps to (0 . . . 01, 1).

In general let I ⊂W denote the elements of order two in W . The elements of I are called

involutions. In the next section we discuss convenient ways of representing involutions.

3.2 Representations of Involutions

Since we have chosen coordinates for our root system, we get a corresponding faithful

matrix representation of the Weyl group. At times it will be convenient to treat elements

of I as matrices, so we quickly describe the correspondence. Given an involution θ =

(ε1ε2 . . . εn, σ) ∈ I the corresponding matrix Mθ is

M ij
θ =


1, σ(i) = j and εi = εj = 0
−1, σ(i) = j and εi = εj = 1

0, otherwise
.

The matrices arising this way are clearly symmetric and it is easy to deduce the following

equalities

nθs = |
{
i |M ii

θ = 1
}
|

nθr = |
{
i |M ii

θ = −1
}
|

nθc = |
{
i |M ii

θ = 0
}
|.

Example 3.2.1. If θ = (0001, (23)) then

Mθ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 .

Although the matrix representation of an involution is straightforward, it is somewhat

cumbersome for large values of n. We now introduce a way of representing involutions in

terms of diagrams. The idea is to represent the action of an involution on the standard

basis of (ha)∗ (equivalently the short roots in ∆+) in terms of a picture. Let θ ∈ I and let

ei denote the ith standard basis vector. A diagram will be a sequence of symbols (read left

to right) where the ith symbol represents the action of θ on ei.
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Example 3.2.2. The diagram for θ = (0001, (23)) is given by

+ 3 2 − .

Here the symbol + represents that e1 is fixed by θ and the symbol − represents that e4 is

sent to −e4 by θ. The vectors e3 and e2 are interchanged by θ and this is represented by

placing the number 3 in position 2 and the number 2 in position 3.

It is also possible for θ to interchange and negate two standard basis vectors. Negation

of interchanged vectors will be represented in diagrams by placing parentheses around the

corresponding numbers.

Example 3.2.3. If θ = (1110, (23)) then

Mθ =


−1 0 0 0

0 0 −1 0
0 −1 0 0
0 0 0 1


and the corresponding diagram is

− (3) (2) + .

Given θ ∈ I, let Dθ denote its corresponding diagram. Then the number of + signs

appearing in Dθ is nθs, the number of − signs appearing in Dθ is nθr, and the number of

numbers appearing in Dθ is nθc (Definition 3.1.1). We now come to an important definition.

Definition 3.2.4. Let θ = (ε1ε2 . . . εn, σ) ∈ I and define

Ψ(θ) = (ε̃1ε̃2 . . . ε̃n, σ)

where ε̃i = εi+1. Then Ψ is an involution of I called the bit flip involution. For matrices we

have −Mθ = MΨ(θ) and for diagrams Ψ interchanges + and − signs as well as changes the

parentheses on transpositions. The examples above represent two diagrams interchanged

by Ψ.

In particular, Ψ is a natural involution on the set I. Extending Ψ to other representation

theoretic data is a major focus of this dissertation.

3.3 Properties of Involutions

We have seen it is important to understand the W -conjugacy classes of I. We begin

with the following proposition whose proof is left to the reader.
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Proposition 3.3.1. Two involutions θ1 = (ε1ε2 . . . εn, σ1) and θ2 = (ε1′ε2′ . . . εn′, σ′2) are

conjugate in W if and only if σ1 and σ2 are conjugate in Sn and nθ1s = nθ2s (equivalently

nθ1r = nθ2r ). In other words the conjugacy class of θ is uniquely determined by the numbers

nθc and nθs.

In particular, each conjugacy class of involutions in Sn has a corresponding set of

conjugacy classes in I. Fix θ = (ε1ε2 . . . εn, σ) ∈ I. If σ = 1, Proposition 3.3.1 implies

the conjugacy class of θ is determined by the number of nonzero εi. Clearly there are n+ 1

possibilities and thus n + 1 corresponding conjugacy classes. If σ is an involution that

permutes 2k bits, then Proposition 3.3.1 implies the number of corresponding conjugacy

classes is n− 2k + 1 and we have the following corollary.

Corollary 3.3.2. In the setting above

|I/W | =
bn/2c∑
k=0

n− 2k + 1.

If n is even, this number is a perfect square.

Recall the bit flip involution Ψ : I → I (Definition 3.2.4). Since nΨ(θ)
c = nθc , Proposition

3.3.1 implies Ψ descends to an involution (still denoted Ψ) on I/W . In particular, Ψ sends

the conjugacy class determined by (nθc , n
θ
s) to the one determined by (nθc , n

θ
r). Note that Ψ

will have fixed points in I/W if and only if n is even (in which case it will have n
2 + 1 of

them).

Example 3.3.3. Consider the case n = 4. Corollary 3.3.2 implies that |I/W | = 9. We can

view I/W as
(1111, 1)

(1111, (12)) (1110, 1)
(0000, (12)(34)) (1110, (12)) (1100, 1)

(0000, (12)) (0001, 1)
(0000, 1)

where an element of I/W is labeled by a representative in I. Here each column corresponds

to a different conjugacy class of involutions in Sn and Ψ reflects the diagram vertically about

the middle row. The three elements on the middle row represent conjugacy classes in I

fixed by Ψ.
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In terms of diagrams, Proposition 3.3.1 implies the conjugacy class of θ is determined

by the number of numbers (nθc) and the number of + signs (nθs) that appear. Therefore a

general element of I is conjugate to one whose diagram is of the form

2 1 4 3 · · ·+ + · · ·+ − − · · · − .

Definition 3.3.4. Let θ ∈ I and recall θ acts on ∆ = ∆(g, ha). We define

∆θ
i = {α ∈ ∆ | θ(α) = α}

∆θ
R = {α ∈ ∆ | θ(α) = −α}

∆θ
C = {α ∈ ∆ | θ(α) 6= ±α}

the imaginary, real, and complex roots respectively. The imaginary and real roots form

subsystems of ∆ and we denote their corresponding Weyl (sub)groups by W θ
i and W θ

R. The

set ∆θ
C is not a root system, however if we write

ρi =
1
2

∑
α∈(∆θ

i )+

α

ρr =
1
2

∑
α∈(∆θ

R)+

α

∆θ
C⊥ = {α ∈ ∆ | (α, ρi) = (α, ρr) = 0}

then ∆θ
C⊥ is a root system consisting of complex roots (see [17], Definition 3.10).

Proposition 3.3.5 ([17], Lemma 3.11). In the setting of Definition 3.3.4, we can write

∆θ
C⊥ = ∆1 ∪∆2

as an orthogonal disjoint union with θ(∆1) = ∆2. In particular,

W θ
C = {(w, θw) | w ∈W (∆1)}

is a Weyl subgroup of W isomorphic to W (∆1).

Proposition 3.3.6. Let θ ∈ I and let k = nθc
2 . Then we have

W θ
i
∼= W (Bnθs)×W (A1)k

W θ
R
∼= W (Bnθr)×W (A1)k

W θ
C
∼= W (Ak−1)

where W (Ai) and W (Bi) are Weyl groups for root systems of type Ai and Bi respectively.
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Example 3.3.7. Consider again the case n = 4. Since the isomorphism classes of W θ
i , W θ

R,

and W θ
C depend only on the conjugacy class of θ, we may view the action of Ψ by drawing

a picture similar to the one of Example 3.3.3. We draw the same picture but replace the

label θ for an element of I/W by the triple (Rθi , R
θ
R, R

θ
C), where Rθi , R

θ
R, R

θ
C are the types

of the imaginary, real, and complex Weyl groups for θ respectively.

(B0, B4, 1)
(A1, B2 ×A1, 1) (B1, B3, 1)

(A2
1, A

2
1, A1) (A2

1, A
2
1, 1) (B2, B2, 1)

(B2 ×A1, A1, 1) (B3, B1, 1)
(B4, B0, 1)

Recall that Ψ is the vertical reflection about the middle row. It is clear that the involution

Ψ interchanges ∆θ
i and ∆θ

R and thus interchanges W θ
i and W θ

R. Note the symmetry of

elements in the middle row.

Let W θ denote the centralizer in W of the element θ ∈ I. Corollary 3.3.2 and the

following theorem allow us to count elements of order two in W .

Theorem 3.3.8 ([17], Proposition 3.12). The subgroups W θ
i and W θ

R are normal subgroups

in W θ. Moreover we have

W θ ∼= (W θ
i ×W θ

R) oW θ
C.

The number of elements in W conjugate to θ is the number of elements in W divided by

the number of elements in W θ. Using Proposition 3.3.6 and Theorem 3.3.8 we easily obtain

the following corollary.

Corollary 3.3.9. If θ ∈ I, the number of involutions in W conjugate to θ is given by

n!

(n− nθc)!(
nθc
2 )!

(
n− nθc
nθs

)
.

Fix an even number 0 ≤ k ≤ n and consider the set

Xk =
{
θ ∈ I | nθc = k

}
.

Proposition 3.3.1 implies Ψ preserves Xk and thus permutes its n−k+ 1 conjugacy classes.

Note the left term in Corollary 3.3.9 depends only on the numbers k and n and is therefore

constant for fixed Xk. Hence the order two symmetry observed in the map Ψ appears

numerically as the familiar symmetry of binomial coefficients.
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Example 3.3.10. Again let n = 4. Then the Xk defined above correspond to the columns

appearing in the diagram of Example 3.3.3 (with X0 corresponding to the rightmost col-

umn). Recall that Ψ is the vertical reflection about the middle row and thus obviously

preserves the columns. Here we draw the same picture but replace the label for an element

of I/W by the actual number of involutions in the conjugacy class

1
12 4

12 24 6
12 4

1.

The fact that the columns are numerically symmetric is a result of the binomial coefficient

symmetry discussed above.



CHAPTER 4

STRUCTURE OF REAL CARTAN

SUBGROUPS

Let H be a Θ-stable Cartan subgroup of G = Spin(n+ 1, n). Then H is a real form of

a complex torus and it is well known

H ∼= (S1)a × (R×)b × (C×)c

for some numbers a, b, c with a+ b+ 2c = n. Moreover H determines a conjugacy class of

involutions in I (Chapter 3) via conjugation of Θ to ∆(g, ha). It is a remarkable fact that a

representative involution for H in I can be used to recover the numbers a, b, c. In this section

we describe this process and compute the structure of all Θ-stable Cartan subgroups in G.

The calculations are carried out in the abstract root system and Weyl group of Chapter 3.

4.1 Lattices and Rank Two

Recall ∆ = ∆(g, ha) is a root system of type Bn with Weyl group W = W (g, ha). We

begin with some definitions.

Definition 4.1.1. Let α ∈ ∆ be a root and write

α∨ =
2α

(α, α)
∆∨ =

{
α∨ | α ∈ ∆

}
for the coroots of ∆. In coordinates we have

∆∨ = {±ei ± ej | 1 ≤ i < j ≤ n} ∪ {±2ei | 1 ≤ i ≤ n}

and it is well know that ∆∨ is a root system. The root and coroot lattices are the Z-modules

generated by ∆ and ∆∨ and will be denoted by L(∆) and L(∆∨) respectively. Similarly

the weight lattice in (ha)∗ is given by

X =
{
λ ∈ (ha)∗ | (λ, α∨) ∈ Z for all α ∈ ∆

}
.
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Let θ ∈ I be an involution and suppose α ∈ ∆. Then

θ(α∨) = θ

(
2α

(α, α)

)
=

2θ(α)
(θ(α), θ(α))

= θ(α)∨

and we have θ(∆∨) = ∆∨. Moreover, if λ ∈ X then

(θ(λ), α∨) = (λ, θ(α∨)) = (λ, θ(α)∨) ∈ Z

and θ(X) = X.

Definition 4.1.2. In the setting above we define

Xθ
+ = {λ ∈ X | θ(λ) = λ}

Xθ
− = {λ ∈ X | θ(λ) = −λ}

Y = X/2X

so that Y ∼= Zn2 . Let π : X → Y denote the corresponding quotient map and write

Y θ
+ = π(Xθ

+)

Y θ
− = π(Xθ

−)

Y θ
± = Y θ

+ ∩ Y θ
−.

Given θ ∈ I, let H(θ) ⊂ G be a Θ-stable Cartan subgroup for which there exists a

conjugation map

i : h→ ha

with i(Θ) = θ. The structure of H(θ) is given by the following remarkable theorem. A

proof is sketched at the end of Section 8.3. See also [8].

Theorem 4.1.3. In the setting above we have

H(θ) ∼= (S1)a × (R×)b × (C×)c

where c = dimZ2(Y θ
±), a = dimZ2(Y θ

+)− c, and b = dimZ2(Y θ
−)− c.

In the next section we use Theorem 4.1.3 to compute the structure of the Θ-stable

Cartan subgroups in G. All of the interesting aspects of this calculation can be seen in rank

two.
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Example 4.1.4. In the setting above, suppose n = 2. Then we have

X =
〈(

1
0

)
,

(
1
2
1
2

)〉
2X =

〈(
2
0

)
,

(
1
1

)〉
.

In particular, X consists of vectors whose coordinates are all in Z or all in Z + 1
2 and 2X

consists of vectors whose coordinates are all even or all odd.

Case I. Suppose Mθ =
(

1 0
0 1

)
(Section 3.2). Then dimZ2(Y θ

+) = 2 and dimZ2(Y θ
±) =

0 and we have H(θ) ∼= (S1)2.

Case II. Suppose Mθ =
(

1 0
0 −1

)
. Then

Xθ
+ =

〈(
1
0

)〉
Xθ
− =

〈(
0
1

)〉
and dimZ2(Y θ

+) = 1 and dimZ2(Y θ
−) = 1. However(

1
0

)
−
(

0
1

)
=
(

1
−1

)
is an element of 2X since its coordinates are all odd. Therefore dimZ2(Y θ

±) = 1 and we see

H(θ) ∼= C×.

Case III. Suppose Mθ =
(

0 1
1 0

)
. Then

Xθ
+ =

〈(
1
2
1
2

)〉
Xθ
− =

〈(
1
2
−1

2

)〉
and dimZ2(Y θ

+) = 1 and dimZ2(Y θ
−) = 1. However(

1
2
1
2

)
−
(

1
2
−1

2

)
=
(

0
1

)
is not an element of 2X since one coordinate is even and one is odd. Therefore dimZ2(Y θ

±) =

0 and we see that H(θ) ∼= S1 × R×.



24

Case IV. Suppose Mθ =
(
−1 0

0 −1

)
. Then dimZ2(Y θ

−) = 2 and dimZ2(Y θ
±) = 0 so

that H(θ) ∼= (R×)2.

It is easy to check these cases represent the four conjugacy classes of involutions W . In

particular, we have computed the structure of all Cartan subgroups appearing in the linear

group Spin(3, 2).

4.2 The General Case

Let G = Spin(n+ 1, n) with n ≥ 2 and retain the notation from the previous section.

It is easy to check

X =

〈
1
0
0
...
0

 ,


1
1
0
...
0

 , . . . ,


1
1
...
1
0

 ,


1
2
1
2
...

1
2
1
2


〉

2X =

〈
2
0
0
...
0

 ,


2
2
0
...
0

 , . . . ,


2
2
...
2
0

 ,


1
1
...
1
1


〉
.

In particular, the same characterization of X and 2X from Example 4.1.4 holds in general.

Let θ = (ε1ε2 . . . εn, σ) ∈ I be an arbitrary involution suppose H(θ) is a corresponding

Cartan subgroup. We proceed in the same manner as Example 4.1.4.

Case I. Suppose σ = 1. Up to conjugation we may assume Dθ is of the form

+
1

+ · · · +
nθs

−
nθs+1

− · · · −
nθs+nθr

where nθs + nθr = n (Definition 3.1.1). If nθs = n or nθr = n we have H(θ) ∼= (S1)n or

H(θ) ∼= (R×)n respectively. If nθs 6= 0 and nθr 6= 0 set

v+ =
nθs∑
i=1

ei

v− =
n∑

i=nθs+1

ei.

Then v+ ∈ Xθ
+, v− ∈ Xθ

−, and we have v+ − v− ∈ 2X since all coordinate entries are odd.

Therefore dimZ2(Y θ
±) = 1 and

H(θ) ∼= (S1)n
θ
s−1 × (R×)n

θ
r−1 × C×.
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Case II. Suppose σ 6= 1, k = nθc
2 , and nθr = 0. Up to conjugation we may assume Dθ is

of the form

2 1 4 3 · · · + + · · · + .

Then Xθ
− is generated by k vectors of the form vi− = ei − ei+1 for odd 1 ≤ i < k and Xθ

+

is similarly generated by k vectors of the form vi+ = ei + ei+1. However vi+ − vi− = 2ei+1 ∈

2X since all coordinate entries are even. Therefore every negative eigenvector projects to

something in Y θ
± and we have

H(θ) ∼= (S1)n
θ
s × (C×)k.

Case III. Suppose σ 6= 1, k = nθc
2 , and nθs = 0. Up to conjugation we may assume Dθ is

of the form

2 1 4 3 · · · − − · · · − .

Applying the argument from Case II gives

H(θ) ∼= (R×)n
θ
r × (C×)k.

Case IV. Suppose σ 6= 1, nθs 6= 0, nθr 6= 0, and k = nθc
2 . Up to conjugation we may

assume Dθ is of the form

2 1 4 3 · · · + + · · · + − − · · · − .

Combining the arguments of Cases I and II gives

H(θ) ∼= (S1)n
θ
s−1 × (R×)n

θ
r−1 × (C×)k+1.

Case V. Suppose σ 6= 1 and nθs = nθr = 0. All such involutions are conjugate and exist

if and only if n is even. Up to conjugation we may assume Dθ is of the form

2 1 4 3 · · · n [n− 1].

This case is more subtle than the previous cases because of the existence of half integral

vectors. In particular, the vectors

{e1 + e2, e3 + e4, . . . , en−1 + en}
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are not linearly independent when viewed as elements of Y since their sum is a vector whose

coordinate entries are all odd. Therefore we must consider the vectors

v+ =
n∑
i=1

ei
2

v− =
n∑
i=1

(−1)i+1 ei
2
.

Then v+ ∈ Xθ
+, v− ∈ Xθ

−, and

v+ − v− =

n
2∑
i=1

e2i /∈ 2X

since it has even and odd coordinate entries. In particular, there is one positive and one

negative dimension in Y that is not contained in Y θ
± and we conclude

H(θ) ∼= S1 × R× × (C×)
n
2
−1.

We summarize these results in the following corollary.

Corollary 4.2.1. In the setting above, let θ ∈ I, k = nθc
2 , and recall the indicator bits εθs, ε

θ
r

of Definition 3.1.1. Then the number of C× factors for H(θ) is given by

k + εθs + εθr − 1.

Proof. Check this in each of the above cases.

Remark 4.2.2. For each θ ∈ I we have computed the structure of H(θ). Note that it is

possible for H(θ) and H(θ′) to be isomorphic even if θ and θ′ are not conjugate in W . For

example, the involutions given by

+ − − − and (2) (1) − −

each correspond to Cartan subgroups with structure (R×)2 ×C×. Interestingly, the preim-

ages of these subgroups in G̃ are not isomorphic.

4.3 The Action of Ψ

In Chapter 3 we attached several pieces of structural data to elements of I/W . In each

case we observed this data had a two-fold symmetry induced by the map Ψ. In this section
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we have attached the structure of a real Cartan subgroup to elements of I/W and we again

find a symmetry induced by Ψ. To see this, let θ ∈ I be a representative for an element of

I/W . We clearly have

X
Ψ(θ)
+ = Xθ

−

X
Ψ(θ)
− = Xθ

+

so that

Y
Ψ(θ)

+ = Y θ
−

Y
Ψ(θ)
− = Y θ

+

Y
Ψ(θ)
± = Y θ

±

and

dimZ2(Y Ψ(θ)
+ ) = dimZ2(Y θ

−)

dimZ2(Y Ψ(θ)
− ) = dimZ2(Y θ

+)

dimZ2(Y Ψ(θ)
± ) = dimZ2(Y θ

±).

The upshot is the real Cartan subgroups H(Ψ(θ)) and H(θ) will have the same number of

C× factors and interchanged numbers of S1 and R× factors.

Example 4.3.1. Suppose n = 4 and let θ ∈ I be a representative for an element of I/W .

We draw the same picture as in Example 3.3.3 replacing θ by the structure of H(θ).

(R×)4

(R×)2 × C× (R×)2 × C×
S1 × R× × C× C× × C× S1 × R× × C×

(S1)2 × C× (S1)2 × C×
(S1)4

Notice that vertical reflection about the middle row interchanges the S1 and R× factors and

the elements on the middle row are again symmetric.



CHAPTER 5

REAL WEYL GROUPS

Let H be a Θ-stable Cartan subgroup of G and recall the real Weyl group

W (G,H) = NK(H)/ZK(H)

from Section 2.2. In this section we determine the (isomorphism classes of) real Weyl groups

for each conjugacy class of Cartan subgroups in G. Ultimately we again conjugate to our

abstract setting and thus determine W (G,H) as a subgroup of W = W (g, ha).

5.1 Gradings

The main subtlety in describing the group W (G,H) concerns the imaginary roots. In

this section we recall additional structure of the imaginary root system that leads to a

convenient description of the real Weyl group for H ([17], Chapter 3).

Definition 5.1.1. Let ∆ be a root system. A grading on ∆ is a map

ε : ∆→ Z2

such that

ε(α) = ε(−α)

for all α ∈ ∆. Moreover if α, β, and α+ β are in ∆ we require

ε(α+ β) = ε(α) + ε(β).

To see how gradings arise naturally, let H be Θ-stable Cartan subgroup of G. If α ∈

∆(g, h) is imaginary, its corresponding root space gα is fixed by Θ and entirely contained in

its positive or negative eigenspace. We say the imaginary root α is compact if gα is contained

in the positive eigenspace and noncompact if it is contained in the negative eigenspace.
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Proposition 5.1.2 ([17]). Let H be a Θ-stable Cartan subgroup of G and let ∆Θ
i (g, h)

denote the imaginary roots for H with respect to Θ. Define a map ε : ∆Θ
i (g, h)→ Z2 via

ε(α) =
{

0 α compact
1 α noncompact

Then ε is a grading on ∆Θ
i (g, h).

Corollary 5.1.3. The set ∆Θ
ic(g, h) of imaginary compact roots is itself a root system.

Definition 5.1.4. Let H ⊂ G be a Θ-stable Cartan subgroup. Proposition 5.1.2 gives a

natural grading η on the imaginary roots ∆Θ
i (g, h) determined by Θ. Choose a conjugation

map

i : h→ ha

and write ε for the induced abstract grading ε(i(α)) = η(α) of ∆i = ∆i(g, h
a). We say an

abstract imaginary root α is compact if ε(i(α)) = 0 and noncompact if ε(i(α)) = 1.

We now return to our abstract root system ∆ = ∆(g, ha) and Weyl group W = W (g, ha).

Let θ be an involution in W and suppose ε is an abstract grading of ∆θ
i . Definition 5.1.1

implies ε is determined by its values on a set of simple imaginary roots and, a priori, all

2n choices are allowed. However we are interested in abstract gradings coming from the

construction of Definition 5.1.4, and it turns out not all possibilities arise in practice.

To see this, recall ∆θ
i is a root system of type Bm × Ak1, where m = nθs and k = nθc

2

(Proposition 3.3.6). The long imaginary roots that generate the Ak1 factor can each be

written as a sum of two short complex roots interchanged by θ. It is easy to see such

roots must be noncompact. More generally, since the group G is (quasi)split, there must

exist a positive system for ∆θ
i in which all simple roots are noncompact [17]. A grading

satisfying these conditions is said to be principal ([17], Definition 6.3). In these notes,

abstract imaginary gradings are assumed to be principal unless otherwise stated.

It will be convenient to incorporate principal abstract gradings into our involution

diagrams (Section 3.2). Let θ ∈ I and suppose ε is a principal grading for ∆θ
i . The

above discussion suggests we need only modify the portion of the diagram corresponding to

the Bm factor of ∆θ
i . In a root system of type Bm, any grading is determined by its values

on a set of positive short roots. Since these are exactly the roots represented by + signs

in the diagram for θ, a grading can be described by indicating the + signs that represent

noncompact roots. We do this by adding a circle around the corresponding + signs.
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Example 5.1.5. Suppose m = 6 and θ = 1 so that all roots are imaginary. If

ε(ei) =
{

1 1 ≤ i ≤ 3
0 4 ≤ i ≤ 6

is an abstract grading, the corresponding diagram Dθ(ε) is

⊕ ⊕ ⊕ + + + .

Remark 5.1.6. In terms of diagrams, it is easy to check that a grading is principal if and

only if exactly half (m+1
2 if m is odd) of the + signs are circled. So the grading in the above

diagram is principal, however the grading

+ ⊕ + − − −

is not.

5.2 Real Weyl Groups

Fix an abstract involution θ and suppose ε is an abstract grading of ∆θ
i . Write ∆θ

ic for

the set of compact imaginary roots with respect to ε and let W θ
ic be its Weyl group. If ε

is principal, we have seen there is a positive system of ∆θ
i for which all simple roots are

noncompact and thus ∆θ
ic is exactly the set of even height imaginary roots. In this setting,

it is easy to write down their structure.

Proposition 5.2.1. In the situation above

W θ
ic
∼=


Z2 m = 2

W (Dm
2

)×W (Bm
2

) m is even, m > 2
W (Dm+1

2
)×W (Bm−1

2
) m is odd, m > 2

where Dm represents a root system of type D.

Example 5.2.2. Let n = 4, θ = 1, and suppose ε is a principal imaginary grading of the

form

+ ⊕ + ⊕ .

Then the set of (positive) compact roots for ε is


0
1
0
−1

 ,


0
1
0
1

 ,


1
0
−1

0

 ,


0
0
1
0

 ,


1
0
0
0

 ,


1
0
1
0


 .

Here the first two roots are positive for the D2 system and the last four are positive for the

B2 system.
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Recall H(θ) denotes a Cartan subgroup of G whose induced abstract involution is

conjugate to θ (Section 4.1) and Theorem 3.3.8 implies the centralizer of θ in W has the

form

W θ ∼= (W θ
i ×W θ

R) oW θ
C.

The following proposition shows that W θ and W (G,H(θ)) are closely related.

Proposition 5.2.3 ([17], Proposition 4.16). The group W (G,H(θ)) is a subgroup of W θ

and we have

W (G,H(θ)) ∼= (R×W θ
R) oW θ

C.

Here R ⊂W θ
i is of the form

R ∼= AnW θ
ic

and A is an elementary abelian two-group.

Proposition 5.2.4. The group A from Proposition 5.2.3 is of the form

A ∼= Zk2

where k is the number of C× factors in the Cartan H(θ) (Section 4.2).

Proof. This is proved in Section 9.3.

Although we will make no use of them, we may as well show how the ideas of this section

and the last can be used to enumerate linear parameters for G in a nontrivial case.

Example 5.2.5. Fix n = 4. We are now in a position to compute |Dχ| for KHC(g,K)χ,

when χ is regular and integral. Let Hi be a Θ-stable Cartan subgroup of G. Then we have∣∣Diχ∣∣ =
|W (g, h)|
|W (G,Hi)|

× |π0(Hi)|

and in terms of abstract groups we have∣∣Diχ∣∣ =
|W (g, ha)|
|W (G,H(θi))|

× |π0(H(θi))| .

Also

|W (g, h)| = 24 × 4!.

The form of W (G,H(θi)) is given by Propositions 5.2.3 and the necessary details are

filled in by Propositions 5.2.4 and 5.2.1. The structure theory needed for this case was
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computed in Examples 4.3.1 and 3.3.7. Hence we simply choose a representative involution

θ and principal imaginary grading ε for each element of I/W and compute.

Case I. Suppose Dθ(ε) is of the form

+ ⊕ + ⊕ .

Then

|R| = 1× (21 · 2!)× (22 · 2!)∣∣∣W θ
R

∣∣∣ = 1∣∣∣W θ
C

∣∣∣ = 1

|π0(H(θ))| = 1

so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

25 · 1 · 1
× 1 = 12.

Case II. Suppose Dθ(ε) is of the form

⊕ + ⊕ − .

Then

|R| = 2× (21 · 2!)× 2∣∣∣W θ
R

∣∣∣ = 2∣∣∣W θ
C

∣∣∣ = 1

|π0(H(θ))| = 1

so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

24 · 2 · 1
× 1 = 12.

Case III. Suppose Dθ(ε) is of the form

+ ⊕ − − .

Then

|R| = 2× 2∣∣∣W θ
R

∣∣∣ = 22 · 2!∣∣∣W θ
C

∣∣∣ = 1

|π0(H(θ))| = 2
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so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

22 · 23 · 1
× 2 = 24.

Case IV. Suppose Dθ(ε) is of the form

⊕ − − − .

Then

|R| = 2× 1∣∣∣W θ
R

∣∣∣ = 23 · 3!∣∣∣W θ
C

∣∣∣ = 1

|π0(H(θ))| = 22

so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

2 · 48 · 1
× 22 = 16.

Case V. Suppose Dθ(ε) is of the form

− − − − .

Then

|R| = 1∣∣∣W θ
R

∣∣∣ = 24 · 4!∣∣∣W θ
C

∣∣∣ = 1

|π0(H(θ))| = 24

so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

1 · 24 · 4! · 1
× 24 = 16.
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Case VI. Suppose Dθ(ε) is of the form

2 1 + ⊕ .

Then

|R| = 2× 2∣∣∣W θ
R

∣∣∣ = 2∣∣∣W θ
C

∣∣∣ = 1

|π0(H(θ))| = 1

so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

22 · 2 · 1
× 1 = 48.

Case VII. Suppose Dθ(ε) is of the form

2 1 ⊕ − .

Then

|R| = 22 × 1∣∣∣W θ
R

∣∣∣ = 2 · 2∣∣∣W θ
C

∣∣∣ = 1

|π0(H(θ))| = 1

so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

22 · 22 · 1
× 1 = 24.

Case VIII. Suppose Dθ(ε) is of the form

2 1 − − .

Then

|R| = 2× 1∣∣∣W θ
R

∣∣∣ = 22 · 2! · 2∣∣∣W θ
C

∣∣∣ = 1

|π0(H(θ))| = 22

so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

2 · 24 · 1
× 4 = 48.
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Case IX. Suppose Dθ(ε) is of the form

2 1 4 3.

Then

|R| = 2× 1∣∣∣W θ
R

∣∣∣ = 22∣∣∣W θ
C

∣∣∣ = 2

|π0(H(θ))| = 2

so that ∣∣∣DH(θ)
χ

∣∣∣ =
24 · 4!

2 · 22 · 2
× 2 = 48.

Finally we have

|Dχ| = 12 + 12 + 24 + 16 + 16 + 48 + 24 + 48 + 48 = 248.
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NONLINEAR PARAMETERS



CHAPTER 6

HALF INTEGRAL INFINITESIMAL

CHARACTER

In the previous sections we computed the structure theoretic information needed to

parameterize representations of G at regular integral infinitesimal character. We now turn

to the problem of parameterizing genuine representations of the nonlinear group G̃. In

particular we focus on the necessary structure theoretic ingredients.

6.1 Conjugation to ha

Conjugation to ha has been our main tool for relating algebraic structures associated

with different Cartan subalgebras in g. To this point, maps relating Cartan subalgebras

have been specified only up to Weyl group conjugation. This was appropriate since we were

primarily concerned with the structure theory of Cartan subgroups. However, from now on

we will be working with finer structure and are thus forced to be more precise about our

conjugation maps.

Fix a nonsingular element λ ∈ (ha)∗. Let h be a Cartan subalgebra of g, φ ∈ h∗, and

suppose λ and φ define the same infinitesimal character (Section 2.2). Then there is an

inner automorphism

iλ,φ : G→ G

whose differential induces a map (also denoted iλ,φ)

(ha)∗ → h∗

λ → φ.

The map iλ,φ is not unique, however the restriction of any two such maps to (ha)∗ is the

same. Hence we have a well-defined family of maps
{
iλ,φ′

}
taking (ha)∗ to h∗, where φ′ ∈ h∗

is in the W (g, h)-orbit of φ. We also write iλ,φ for the induced maps on Weyl groups, root

systems, and so forth. When the element λ is fixed or clear from context, we will often just

write iφ.
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6.2 Half-Integral Infinitesimal Characters

Our first task is to make precise the specific infinitesimal characters in which we are

interested. The Harish-Chandra isomorphism allows us to specify an infinitesimal character

by selecting a W (g, ha)-orbit in (ha)∗. Since we have fixed a positive system for ∆(g, ha)

(Section 3.1), a nonsingular infinitesimal character is uniquely determined by an element

of the corresponding dominant chamber. For the purpose of conjugation, it will often

be convenient to specify an infinitesimal character via a dominant element of (ha)∗. In

this context we may refer to a dominant nonsingular element of (ha)∗ as an infinitesimal

character.

Fix an infinitesimal character λ ∈ (ha)∗, a Θ-stable Cartan subgroup H̃ ⊂ G̃, and

suppose there exists a genuine triple (H̃, φ, Γ̃)λ as in Chapter 2. Write η : ∆Θ
i (g, h)→ Z2 for

the corresponding grading of ∆Θ
i (g, h) (Proposition 5.1.2). We have the following important

definition.

Definition 6.2.1. The abstract triple associated to (H̃, φ, Γ̃) is the 3-tuple (θ, ε, λ), where

θ = i−1
φ ·Θ · iφ

ε(α) = η(iφ(α))

with α an abstract imaginary root for θ. In particular, θ is an involution of ∆ = ∆(g, ha)

corresponding to Θ and ε is a principal grading of ∆θ
i .

It turns out existence of the genuine representation Γ̃ places restrictions on the abstract

λ that are allowed.

Proposition 6.2.2 ([4]). Let (H̃, φ, Γ̃) be a genuine triple and let (θ, ε, λ) be the corre-

sponding abstract triple. If α ∈ ∆ is a long imaginary root for θ then

(λ, α∨) ∈
{

Z ε(α) = 0
Z + 1

2 ε(α) = 1
.

If α is a long complex root for θ, then we have

(λ, α∨ + θ(α∨)) ∈
{

Z (α, θ(α∨)) = 0
Z + 1

2 (α, θ(α∨)) 6= 0
.

Define a half-integer to be a number x such that 2x ∈ Z and a strict half-integer to

be an element of Z + 1
2 . If α is a long imaginary root, the proposition implies that λ

must pair with α to be a half-integer. Moreover, the pairing must be integral or strict
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half-integral depending on whether α is compact or noncompact. Note the proposition

gives no restriction for long real roots or any type of short root.

If α ∈ ∆+ is a long positive root, then in coordinates α∨ = ei ± ej for some i, j. If

α is imaginary for θ, then in order to satisfy the first part of the proposition we see that

2(λi ± λj) ∈ Z with λi = (λ, ei). If we further assume that all roots are imaginary (i.e.,

θ = 1), then we see that all coordinates for λ must have this property. In particular, we

make the following assumption.

Assumption 1. From now on our infinitesimal character λ is assumed to be half-integral

when written in abstract coordinates.

We can restrict λ even more if we take into account our grading ε. Suppose ei and ej

are imaginary roots. Then ei + ej is also imaginary and we have

(λ, ei + ej) = (λ, ei) + (λ, ej) = λi + λj .

Now ei + ej will be noncompact if and only if exactly one of {ei, ej} is noncompact. In this

case, Proposition 6.2.2 implies λi + λj ∈ Z + 1
2 and thus exactly one of {λi, λj} must be

a strict half-integer. Conversely, if ei + ej is compact then we must have λi + λj ∈ Z and

thus either λi, λj ∈ Z or λi, λj ∈ Z+ 1
2 . Therefore the coordinates of λ corresponding to the

short compact roots must all be of the same type (integers or strict half-integers) and the

coordinates corresponding to the short noncompact roots must all be of the opposite type.

Again consider the case θ = 1 and recall the grading ε is principal. This means exactly

half (n+1
2 if n is odd) of the short roots must be noncompact (Section 5.1). The above

argument then implies exactly half (n+1
2 if n is odd) of the coordinates of λ should be either

integers or strict half-integers. A half-integral infinitesimal character with this property is

said to be symmetric.

Assumption 2. We assume our half-integral infinitesimal character λ is symmetric.

Example 6.2.3. Let n = 4, θ = 1, and λ = (3, 2, 3
2 ,

1
2). Then λ is half-integral and

symmetric. If ε is a grading defined by one of the following diagrams

⊕ ⊕ + +
+ + ⊕ ⊕

then the triple (θ, ε, λ) satisfies the conditions of Proposition 6.2.2. Conversely, abstract

triples defined via
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⊕ + ⊕ +
+ ⊕ + ⊕
⊕ + + ⊕
+ ⊕ ⊕ +

do not.

Example 6.2.4. Now let n = 6 and λ = (5, 4, 3, 5
2 ,

3
2 ,

1
2). Since Proposition 6.2.2 places no

restrictions on real roots, gradings of the form

⊕ ⊕ − − + +
+ + − − ⊕ ⊕

are allowed under Proposition 6.2.2. However the following gradings are not

⊕ + ⊕ + − −
⊕ + − − ⊕ +
− − ⊕ + ⊕ +
− ⊕ + ⊕ + − .

6.3 Supportable Orbits

To each genuine triple (H̃, φ, Γ̃) for G̃, we have constructed a corresponding triple of

abstract data (θ, ε, λ) satisfying the conditions of Proposition 6.2.2. An abstract triple

satisfying these conditions is said to be supportable. Supportable triples are thus abstract

manifestations of genuine triples.

Let λ ∈ (ha)∗ be a fixed symmetric infinitesimal character and let θ be an involution

of ∆. We would like to understand when there exists a principal imaginary grading ε such

that the abstract triple (θ, ε, λ) is supportable. When such a grading exists we say λ is

θ-symmetric or θ is supportable for λ.

To begin, recall the indicator bits εθs, ε
θ
r, ε

θ
p, and εθm (Definition 3.1.1) and assume nθc = 0.

Since ε must be principal, we need to choose exactly nθs+εθp
2 of the short imaginary roots

to be noncompact. This implies exactly nθs+εθp
2 of the imaginary coordinates of λ must be

either integers or strict half-integers. The remaining imaginary coordinates must then be

of the opposite type.

Example 6.3.1. Let n = 4 and λ = (3, 2, 3
2 ,

1
2). Then λ is θ-symmetric for the following

involutions
+ + + +
+ + + −
− + + +
+ − + −
+ − − −
− − − −
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but not for the involutions
+ + − −
− − + + .

In the first case, the following diagrams represent the gradings for which the abstract triple

(θ, ε, λ) is supportable
⊕ ⊕ + + or + + ⊕ ⊕
⊕ ⊕ + −
− + ⊕ ⊕
⊕ − + − or + − ⊕ −
⊕ − − −
− − − − .

Remark 6.3.2. When θ is supportable for λ and nθs is even, the situation is symmetric and

there will always be two choices for ε. Note that symmetric and θ-symmetric are the same

if θ = 1.

Now suppose nθc 6= 0. Then we have

θ(ei) = ej

for some i and j. This implies ei + ej is noncompact imaginary and thus

(λ, ei + ej) = λi + λj

must be a strict half-integer. Therefore exactly one of {λi, λj} must be a pure integer.

Clearly λ can be θ-symmetric only if it satisfies this property for all such i, j.

Example 6.3.3. Once again we let n = 4 and λ = (3, 2, 3
2 ,

1
2). Then λ is θ-symmetric for

the following involutions
+ 3 2 +
+ 3 2 −
− 3 2 −
4 3 2 1

but not for the involutions
2 1 − −
2 1 4 3.

Here are the gradings that work for the first case

⊕ 3 2 + or + 3 2 ⊕
⊕ 3 2 −
− 3 2 −
4 3 2 1.
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Fix a symmetric regular infinitesimal character λ ∈ (ha)∗ and let H̃ be a Θ-stable Cartan

subgroup of G̃. Let φ ∈ h∗ and suppose λ and φ define the same infinitesimal character. We

would like to know when there exists a genuine triple of the form (H̃, φ, Γ̃). Conjugating

the pair (H̃, φ) by i−1
λ,φ gives an abstract triple (θ, ε, λ) and Proposition 6.2.2 provides a

necessary condition on (θ, ε, λ). A wonderful fact is that this condition is also sufficient.

Proposition 6.3.4 ([4]). In the situation above, a genuine triple (H̃, φ, Γ̃) exists if and

only if the abstract triple (θ, ε, λ) is supportable.

Let Λ be the W (g, h)-orbit of φ in h∗. Then for each W (G,H)-orbit in Λ we have a

corresponding abstract triple (θ, ε, λ). This is well-defined since W (G,H) preserves θ and

the set of compact roots (see Proposition 9.1.2). A W (G,H)-orbit is said to be supportable

if its corresponding abstract triple is supportable. The proposition implies there exists a

genuine triple corresponding to a W (G,H)-orbit if and only if the orbit is supportable.

This is in contrast to the linear case where each W (G,H)-orbit in Λ corresponds to a triple

(H,φ,Γ) provided the infinitesimal character is sufficiently integral. W (G,H)-orbits in Λ

will be discussed in detail in Chapter 9.

Example 6.3.5. Let n = 4 and θ = 1. In Example 5.2.5 we saw there were 12 orbits in Λ

mapping onto
(

4
2

)
= 6 possible abstract diagrams of the form

⊕ ⊕ + +
+ + ⊕ ⊕
⊕ + ⊕ +
+ ⊕ + ⊕
⊕ + + ⊕
+ ⊕ ⊕ + .

If we choose λ = (3, 2, 3
2 ,

1
2), then only the first two diagrams are supportable. Therefore

there will be many orbits in Λ that do not correspond to a genuine representation of G̃.



CHAPTER 7

GENUINE TRIPLES FOR H̃s

Fix a regular symmetric infinitesimal character λ ∈ (ha)∗ and let H̃ be a Θ-stable Cartan

subgroup in G̃. Let φ ∈ h∗ and suppose λ and φ define the same infinitesimal character.

Denote the W (g, h)-orbit of φ in h∗ by Λ. In trying to parameterize representations for G̃,

the replacement for the integrality of λ is the supportability conditions given by Proposition

6.2.2. If σ is the W (G̃, H̃)-orbit (equivalently W (G,H)-orbit) in Λ containing φ, we first

check to see if σ is supportable. Assuming it is, we know there exists at least one genuine

triple (H̃, φ, Γ̃) by Proposition 6.3.4. In this section and the next we develop the structure

theory needed to determine how many such triples exist.

7.1 Genuine Central Characters

Let H be a Θ-stable Cartan subgroup of G and let H̃ be its double cover in G̃. Write

H0 for the identity component of H and similarly write (H̃)0 for the identity component of

H̃. Although H̃ may not be abelian, we do have the following lemma.

Lemma 7.1.1. (H̃)0 is central (and thus abelian) in H̃.

Proof. Let g and h be elements in H. Since H is abelian, we have

[g, h] = ghg−1h−1 = 1.

Therefore the commutator of any two elements in H̃ lands in {±1} and thus elements of

(H̃)0 must have trivial commutator.

Remark 7.1.2. Lemma 7.1.1 implies noncommuting elements in H̃ live in distinct connected

components.

Let Πg(H̃) denote the set of (equivalence classes of) irreducible genuine representations

of H̃ and let Πg(Z(H̃)) denote the same set for Z(H̃). The connection between these two

sets is given by the following proposition.
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Proposition 7.1.3 ([1], Proposition 2.2). There is a bijection

π : Πg(Z(H̃))→ Πg(H̃)

sending an element χ ∈ Πg(Z(H̃)) to π(χ) ∈ Πg(H̃). Here π(χ) is the unique element of

Πg(H̃) satisfying π(χ)|
Z(H̃)

= nχ, where n =
∣∣∣H̃/Z(H̃)

∣∣∣ 1
2 is the dimension of π(χ).

Choose a symmetric infinitesimal character λ ∈ (ha)∗ and suppose there exists a cor-

responding genuine triple (H̃, φ, Γ̃). Proposition 7.1.3 implies the possibilities for Γ̃ are

parameterized by (genuine) central characters of H̃ compatible with φ (Section 2.2). How-

ever, (H̃)0 is central in H̃ by Lemma 7.1.1 and the behavior of Γ̃ on (H̃)0 is uniquely

specified by φ. In particular, the distinct possibilities for Γ̃ are determined by the structure

of the connected components of H̃. The analysis of this structure is complicated and will

occupy the next several sections.

7.2 The Group M

We begin our analysis with some elementary structure theory in G. We follow closely

the treatment in [16]. Let H = TA be a Θ-stable Cartan subgroup of G and suppose

α ∈ ∆Θ
R (g, h) is a real root. The root spaces {gα, g−α} generate a subalgebra of g defined

over R and there exists a map

φα : sl(2,R)→ gR

satisfying

φα

(
1 0
0 −1

)
∈ hR

φα

(
0 1
0 0

)
∈ gα.

Since H is Θ-stable, we also require φα to commute with Θ, i.e.,

φα
(
−tX

)
= Θφα(X).

It turns out these requirements do not uniquely determine φα; however they limit the

possibilities enough for our purposes.
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Because the group G is linear, the exponentiated map has the form

Φα : SL(2,R)→ G

and we define

mα = Φα

(
−1 0

0 −1

)
∈ T.

It turns out mα = m−α has order two in G and does not depend on the choice of φα. Since

H is abelian, any two of these elements commute. The following proposition determines

their remaining multiplicative properties.

Proposition 7.2.1 ([16], Corollary 4.3.20). Let α, β, and γ be real roots in ∆Θ
R (g, h) and

suppose

γ∨ = α∨ + β∨.

Then

mγ = mαmβ.

Fix a split Θ-stable Cartan subgroup Hs ⊂ G and let hs denote its complexified Lie

algebra. Then ∆Θ
R (g, hs) = ∆(g, hs) and we define the group M as

M = 〈 mα | α ∈ ∆(g, hs) 〉 .

Proposition 7.2.1 implies

M = 〈 mα | α simple in ∆(g, hs) 〉 ∼= (Z2)n

for any choice of simple roots. Distinct elements of ∆(g, hs) do not necessarily give distinct

elements of M . In particular, we have the following remarkable proposition.

Proposition 7.2.2 (see [1], Lemma 5.1). Recall Z(G) ∼= Z2. If α is a short root in ∆(g, hs),

then mα is equal to the nontrivial element of Z(G). In particular mα = mβ whenever α

and β are short roots.

It is important to be able to manipulate elements of M formally in our abstract setting.

There are two ways we can accomplish this. The first is by simply declaring ha = hs and

then viewing M as a subgroup of Hs as above. Alternatively, we can define an abstract

group having the same formal properties as M . In any case, the mα are viewed as formal

group elements attached to abstract roots with multiplication determined by Proposition

7.2.1. The following examples illustrate formal calculations in M .



46

Example 7.2.3. Let n = 2 and suppose α1 = e1−e2 and α2 = e2 are the simple (abstract)

roots for ∆ = ∆(g, ha). Write γ = e1 +e2 and δ = e1 for the remaining positive roots. Then

γ∨ = α∨1 + α∨2

δ∨ = γ∨ + α∨1

and in coordinates (
1
1

)
=

(
1
−1

)
+
(

0
2

)
(

2
0

)
=

(
1
1

)
+
(

1
−1

)
.

In particular, mδ = mγmα1 = mα2mα1mα1 = mα2 (Proposition 7.2.2) and we have

M = {1,mα1 ,mα2 = mδ,mα1mα2 = mγ} ∼= (Z2)2.

In general, let αi = ei− ei+1 ∈ ∆ for (1 ≤ i < n) and write αn for the simple short root.

Then any element of M can be written uniquely as an ordered product mε1
α1
mε2
α2
. . .mεn

αn ,

where εi ∈ {0, 1}. In particular, elements of M are determined simply by the numbers εi and

can be represented by ordered bit strings of the kind in Chapter 3. In this representation,

multiplication in M becomes the familiar bitwise exclusive or operation.

Example 7.2.4. In the setting of Example 7.2.3, the bit strings corresponding to the

elements of M are given by

e ←→ 00

mα1 = ←→ 10

mα2 = mδ ←→ 01

mγ = mα1mα2 ←→ 11.

Proposition 7.2.5. In the notation above, we have the following correspondence between

elements of M and bit strings

mei ←→ 00 · · · 01
n

mei−ej ←→ 0 · · · 1
i
1 · · · 1 1

j−1
0 · · · 0

mei+ej ←→ 0 · · · 1
i
1 · · · 1 1

j−1
0 · · · 1.
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Proof. The first identification follows from Proposition 7.2.2. For the second one, let β =

ei − ej and observe

β∨ = α∨i + α∨i+1 + · · ·+ α∨j−1.

Finally, if γ = ei + ej the identity

γ∨ = β∨ + 2ej

verifies the third correspondence.

Set ha = hs so that M ⊂ Hs and let Π ⊂ ∆ = ∆(g, hs) be a choice of simple roots. Our

interest in M is explained by the following proposition.

Proposition 7.2.6 (see [3]). The elements {mα | α ∈ Π} live in distinct connected compo-

nents of Hs and

M = 〈 mα | α ∈ Π 〉 ∼= π0(Hs).

In particular, the simple mα generate the component group of Hs.

In Chapter 4, we determined

Hs ∼= (R×)n

so that

π0(Hs) ∼= (Z2)n.

Proposition 7.2.6 implies this fact as well, but it also gives explicit representatives for the

connected components of Hs. A fixed, simple mα can therefore be thought of as the ‘−1’

of the corresponding R× factor. Having explicit representatives for elements of π0(Hs) will

be useful in the next sections.

7.3 The Group M̃

Recall we have the following short exact sequence

1→ {±1} → G̃
π→ G→ 1.

Let H̃s = π−1(Hs) be a split Cartan subgroup of G̃ and M̃ = π−1(M) its corresponding

subgroup. For each mα ∈ M , choose once and for all an inverse image m̃α under π and

write π−1(mα) = {m̃α,−m̃α}. Clearly we have∣∣∣M̃ ∣∣∣ = 2n+1.
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Choose a set of simple roots Π ⊂ ∆(g, hs) and fix an ordering α1 < α2 < . . . < αn of

elements in Π. The structure of M̃ is given by the following proposition and corollary.

Proposition 7.3.1 ([1], Lemma 4.8). The group M̃ is generated by the elements

{m̃α | α ∈ Π}

subject to the following relations

m̃2
α =

{
−1 α is long

1 α is short

[m̃α, m̃β] =
{

(−1)(α,β∨) α, β are both long
1 otherwise

.

Corollary 7.3.2. Every element of M̃ has a unique expression of the form

±m̃ε1
α1
m̃ε2
α2
. . . m̃εn

αn

where εi ∈ {0, 1}.

Suppose we again set ha = hs so that ∆ = ∆(g, hs) and M̃ ⊂ H̃s. Let Π ⊂ ∆ be the

simple roots with the usual ordering. Corollary 7.3.2 implies an element of M̃ is uniquely

specified (up to sign) by the numbers εi. We can therefore represent elements of M̃ as signed

bit strings. This is the obvious ‘cover’ of our bit string representation for elements of M .

Example 7.3.3. Fix n > 2. Then α1 and α2 are both long roots in Π with(
α1, α

∨
2

)
= −1.

In particular, Proposition 7.3.1 implies [m̃α1 , m̃α2 ] = −1 and we see M̃ cannot be abelian.

In terms of our signed bit string representation for n = 3 we have

100 · 010 = 110

010 · 100 = −110.

It will be convenient to have an explicit way of determining when two elements of M̃

(expressed as signed bit strings) commute. Suppose

x = x1x2 . . . xn

y = y1y2 . . . yn
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with xi, yi ∈ {0, 1}. The following sets

nL(x, y) =
∣∣∣{i | xi = yi−1 = 1}2≤i≤n−1

∣∣∣
nR(x, y) =

∣∣∣{i | xi = yi+1 = 1}1≤i≤n−2

∣∣∣ .
determine the noncommutativity of x and y.

Lemma 7.3.4. Two elements x, y ∈ M̃ commute if and only if nL(x, y) ≡ nR(x, y) mod 2.

Proof. Since m̃αn is central in M̃ (Proposition 7.3.1), we may assume xn = yn = 0. Then

either x · y = y · x or x · y = −y · x, so it remains to determine the sign of the product.

Moreover, we have

(
αi, α

∨
j

)
=

{
−1 αi and αj are long and adjacent

0 otherwise

so that m̃αi and m̃αj commute if and only if αi and αj are not adjacent.

Consider first the product x · y and suppose m̃αi appears in the expression for x. Then

m̃αi commutes with any m̃αj (1 ≤ j ≤ i − 2) appearing in the expression for y and anti-

commutes with the m̃αi−1 term if it exists. Therefore we get a (−1) factor in the product

for each m̃αi term appearing in the expression for x with m̃αi−1 appears in the expression

for y. The number of these factors is exactly nL(x, y) for an aggregate sign factor of

(−1)nL(x,y).

Similarly, the product y · x will have an aggregate sign factor of

(−1)nR(x,y)

and these two factors are equal if and only if nL(x, y) ≡ nR(x, y) mod 2.

Proposition 7.3.5. Fix n > 1. Then∣∣∣Z(M̃)
∣∣∣ =

{
8 n is even
4 n is odd

.

Proof. Proposition 7.3.1 implies {1,−1, m̃αn ,−m̃αn} ⊂ Z(M̃) for all n. If n = 2, the

two simple elements {m̃α1 , m̃α2} commute and M̃ is abelian. Since
∣∣∣M̃ ∣∣∣ = 22+1 = 8, the

proposition holds. If n = 3, Example 7.3.3 verifies there are no central elements in M̃ except

the four elements listed above.
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If n ≥ 4, suppose there exists a central element z = z1z2 . . . zn−10. If y = y1y2 . . . yn−10

is any element of M̃ , lemma 7.3.4 implies

nL(z, y) ≡ nR(z, y) mod 2.

If we let y = 10 . . . 0, then

nR(z, y) = 0

nL(z, y) = z2

and thus

z2 = 0. (7.1)

If we let y = 0 . . . 010, then

nL(z, y) = 0

nR(z, y) = zn−2

and thus

zn−2 = 0. (7.2)

Finally, if we let y = 0 . . . 010 . . . 0 have a nonzero bit in the ith position (1 < i < n − 1),

then

nL(z, y) = zi+1

nR(z, y) = zi−1

and thus

zi−1 = zi+1. (7.3)

Combining (7.1) and (7.3) gives zi = 0 for i even.

Suppose first n is odd. Then n − 2 is odd and (7.2) and (7.3) imply zi = 0 for all i.

In particular, z must be trivial and we have
∣∣∣Z(M̃)

∣∣∣ = 4. On the other hand, if n is even

there is no such restriction for the odd bits and we get nontrivial central elements of the

form z = ±1010 . . . 10. Therefore
∣∣∣Z(M̃)

∣∣∣ = 8 as desired.
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Example 7.3.6. For n = 4 we have

Z(M̃) = {±1,±m̃α4 ,±m̃α1m̃α3} ∼= (Z2)3

or in bit string notation

Z(M̃) =


±0000
±0001
±1010
±1011

 .

The following result is the expected analog of Proposition 7.2.6 for H̃s.

Proposition 7.3.7. The elements {1,−1} live in distinct connected components of H̃s.

Moreover we have

M̃ = 〈 m̃α | α ∈ Π 〉 ∼= π0(H̃s).

In particular, the split Cartan subgroup H̃s has double the number of connected com-

ponents of Hs and their multiplicative structure is given by the group M̃ . Fix an element

φ ∈ (hs)∗ and let (θ, ε, λ) be the abstract triple corresponding to the pair (H̃s, φ) (Section

6.2). Since θ = −1, all roots in ∆(g, ha) are real with respect to θ. Therefore (θ, ε, λ)

is supportable and the pair (H̃s, φ)λ extends to a genuine triple (H̃s, φ, Γ̃)λ (Proposition

6.3.4). The number of distinct (conjugacy classes of) genuine triples extending (H̃s, φ)λ will

be denoted
[
(H̃s, φ)λ

]
.

To determine
[
(H̃s, φ)λ

]
, recall the behavior of a genuine representation Γ̃ on (H̃s)0 is

determined by φ (Section 2.2). Then Proposition 7.1.3 implies each such Γ̃ corresponds

to a genuine character of π0(Z(H̃s)), i.e., a character of π0(Z(H̃s)) where the connected

component containing −1 acts nontrivially. Since (H̃s)0 is central in H̃s (Proposition 7.1.1),

the group π0(Z(H̃s)) appears naturally as a subgroup of π0(H̃s). Proposition 7.3.7 allows

us to determine this subgroup.

In particular, Proposition 7.3.7 provides a choice of representatives for the distinct

connected components of H̃s whose multiplicative structure is known (Proposition 7.3.1).

Therefore a connected component of H̃s is central if and only if its corresponding rep-

resentative is central in M̃ . We thus have a one-to-one correspondence between genuine

representations of H̃s extending (H̃s, φ)λ and genuine characters of Z(M̃). We will denote

the set of genuine characters of Z(M̃) by Πg(Z(M̃)).
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Proposition 7.3.8. Let (H̃s, φ)λ be a pair with φ ∈ (hs)∗ and corresponding abstract triple

(θ, ε, λ). Then [
(H̃s, φ)λ

]
=
∣∣∣Πg(Z(M̃))

∣∣∣
and ∣∣∣Πg(Z(M̃))

∣∣∣ =
∣∣∣Z(M̃)

∣∣∣ /2.
Proof. The first statement follows from the above argument. The second statement follows

from Proposition 7.3.7 since −1 must act nontrivially for genuine characters of H̃s.

Corollary 7.3.9 ([1], Example 3.13). Let (H̃s, φ)λ be a pair and let (θ, ε, λ) denote its

corresponding abstract triple. Then[
(H̃s, φ)λ

]
=
{

4 n is even
2 n is odd

.

Proof. Combine Proposition 7.3.8 with Proposition 7.3.5.



CHAPTER 8

GENUINE TRIPLES FOR H̃

Let λ be a regular symmetric infinitesimal character and suppose (θ, ε, λ) is the abstract

triple corresponding to the pair (H̃s, φ)λ. In the previous section we determined the number

of genuine triples (H̃s, φ, Γ̃)λ extending (H̃s, φ)λ (Corollary 7.3.9). We accomplished this

by constructing a subgroup M̃ of H̃s that modeled the component group π0(H̃s). Genuine

triples (H̃s, φ, Γ̃)λ were then in bijective correspondence with genuine representations of

Z(M̃).

In this section we extend this program to the other (conjugacy classes of) Cartan

subgroups in G̃. In particular, if H̃ is a Θ-stable Cartan subgroup, we look for a subset of

H̃ whose elements live in distinct connected components and whose multiplicative structure

we understand.

8.1 Cayley Transforms in G

We begin our analysis in the linear group G by recalling the familiar Cayley transform.

This will be our main tool for transferring information about one Cartan subgroup to

another. Let hR be a Θ-stable Cartan subalgebra of gR with corresponding Cartan subgroup

H = TA. Suppose α ∈ ∆(g, h) is a real root and choose a nonzero root vector Xα ∈ gα∩gR.

Then ΘXα ∈ g−α ∩ gR and Xα + ΘXα is fixed by Θ. Define the Cayley transform of hR

with respect to α as

(hR)α = ker(α|hR)⊕ R(Xα + ΘXα).

Then (hR)α is a Θ-stable Cartan subalgebra of gR. Let Hα = TαAα denote its corresponding

Cartan subgroup (the Cayley transform of H with respect to α).

The Cayley transform replaces a one-dimensional subspace of hR contained in the nega-

tive eigenspace of Θ with a one-dimensional subspace contained in its positive eigenspace.

The Cartan subgroup Hα is thus ‘more compact’ than H. It is a fundamental fact that we

obtain any Cartan subgroup of G (up to conjugacy) by starting with Hs and performing a

sequence of Cayley transforms with respect to (orthogonal) real roots.



54

Fix a Cartan subgroup H ⊂ G and suppose α and β are real roots in ∆(g, h). Recall

the corresponding elements mα,mβ ∈ H defined in Section 7.2. It will be important to

understand how these elements are affected by Cayley transforms. Let M(H) denote the

subgroup of H generated by the mα

M(H) = 〈 mα | α real in ∆(g, h) 〉 .

Since mα = m−α, we assume α and β are positive with respect to a fixed positive system

in ∆(g, h).

Denote the adjoint action of mα on g by Ad(mα). The following proposition describes

this action for real roots.

Proposition 8.1.1 ([16], Lemma 4.3.19e). Let H ⊂ G be a Θ-stable Cartan subgroup and

suppose α and β are distinct (positive) real roots in ∆(g, h). Let Xα be a nonzero root vector

for α. Then

Ad(mβ)(Xα) = (−1)(α,β∨)Xα.

Remark 8.1.2. If the root β ∈ ∆(g, h) is short, mβ is the unique nontrivial central element

in G by Proposition 7.2.2. In this case Ad(mβ) should act trivially on each root space gα.

This is consistent with the proposition since (α, β∨) ∈ 2Z for all roots α.

Corollary 8.1.3. In the setting of Proposition 8.1.1, suppose β is a long root. Then

mβ ∈ Hα if and only if α and β are orthogonal. If β is a short root, then mβ ∈ Hα.

Proof. Since mβ ∈ H, mβ centralizes ker(α|hR) by definition. Therefore mβ will be an

element of Hα if and only if Ad(mβ) centralizes Xα. If β is long, this will happen if and

only if

(α, β∨) = (α, β) ∈ 2Z.

by Proposition 8.1.1. Since α 6= ±β we have (α, β) ∈ {0, 1,−1} and the first result follows.

If β is short the result follows from Remark 8.1.2.

Let

M(H)α = M(H) ∩Hα

denote the subgroup of elements in M(H) that are also in Hα.
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Proposition 8.1.4. Let H be a Θ-stable Cartan subgroup of G and suppose α ∈ ∆(g, h) is

a real root. Then

M(Hα) ⊆M(H)α.

Proof. M(Hα) is contained in Hα by definition. Moreover we have

M(Hα) = 〈 mβ ∈ Hα | β is real in ∆(g, hα) 〉

= 〈 mβ ∈ H | β is real in ∆(g, h) and (α, β) = 0 〉

⊆ M(H)

as desired.

Next we consider the element mα ∈M(H) and show this is also an element of Hα (and

thus M(H)α). To see this, define

Bα = expG {R(Xα + ΘXα)} .

Then Bα ⊂ Tα is a connected compact abelian subgroup of Hα.

Proposition 8.1.5 ([16], Lemma 8.3.13). In the setting above,

T ∩Bα = {1,mα} .

In particular mα ∈ (Hα)0, the identity component of Hα.

Corollary 8.1.6. Let H ⊂ G be a Θ-stable Cartan subgroup and suppose α is a real root

in ∆(g, h). Then

M(H)α = 〈 M(Hα), mα 〉 .

Proof. Propositions 8.1.4 and 8.1.5 imply

M(H)α ⊇ 〈 M(Hα), mα 〉 .

Conversely, Proposition 3.3.6 implies the real roots of H form a root system of type

Bm × Al1. Choose a system of positive roots in ∆R(g, h) for which α is simple. If α is

contained in the Al1 factor, then the other simple roots are orthogonal to α and the result

easily follows as in Proposition 8.1.4. Hence we may assume ∆R(g, h) is of type Bm.

For m ∈ M(H), write m = mα1 · · ·mαk where the αi are simple and suppose m ∈

M(H)α. Then m centralizes Xα (the root vector for α) and we need to show m ∈
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〈 M(Hα), mα 〉. If (α, αi) ∈ {0, 2} for all i, then each mαi ∈ 〈 M(Hα), mα 〉 and we

are done. Otherwise α is long and there are exactly two terms (say mαi and mαj ) in the

expression for m with (α, αi) = (α, αj) = −1. Define a new root

γ = αi + α+ αj

and observe (α, γ) = 0 so that mγ ∈ M(Hα). But mγmα = mαimαj by Proposition 7.2.1

and thus mαimαj ∈ 〈 M(Hα), mα 〉. It follows m ∈ 〈 M(Hα), mα 〉 and we have shown

M(H)α ⊆ 〈 M(Hα), mα 〉

as desired.

Informally, the corollary implies we can move the root α inside the parentheses as long

as we add the element mα to the resulting group.

Let H be a Θ-stable Cartan subgroup and suppose α1, α2, . . . , αk are mutually orthog-

onal real roots in ∆(g, h). Then the iterated Cayley transform

Hα1α2...αk = ((Hα1)α2
) . . .)αk

of H with respect to α1, α2, . . . , αk is defined. Similarly we can define

M(H)α1α2...αk = M(H) ∩Hα1α2...αk .

To simplify notation we will sometimes let c = α1α2 . . . αk denote a sequence of mutually

orthogonal roots in ∆(g, h) and write

Hc = Hα1α2...αk

M(H)c = M(H)α1α2...αk .

We conclude this section with the following extension of Corollary 8.1.6.

Proposition 8.1.7. Suppose H is a Θ-stable Cartan subgroup of G and α1, α2, . . . , αk is a

sequence of mutually orthogonal real roots in ∆(g, h). Then

M(H)α1α2...αk = 〈 M(Hα1α2...αk), mα1 , mα2 , . . . ,mαk 〉 .
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Proof. The proof is by induction on the number of roots. The base case is Corollary 8.1.6.

In general we have

M(H)α1α2...αk = M(H) ∩Hα1α2...αk

= M(H) ∩Hα1α2...αk−1
∩Hα1α2...αk

=
〈
M(Hα1...αk−1

), mα1 , . . . ,mαk−1

〉
∩Hα1...αk

=
〈
M(Hα1...αk−1

) ∩Hα1...αk , mα1 , . . . ,mαk−1

〉
=

〈
M(Hα1α2...αk−1

)αk , mα1 , mα2 , . . . ,mαk−1

〉
= 〈 M(Hα1α2...αk), mα1 , mα2 , . . . ,mαk 〉

as desired.

8.2 Cayley Transforms in W

In this section we extend Cayley transforms to our abstract Weyl group W . To begin,

let H be a Θ-stable Cartan subgroup of G and fix nonsingular λ ∈ (ha)∗ and φ ∈ h∗ so that

λ and φ define the same infinitesimal character. The conjugation map i−1
λ,φ (Section 6.1)

induces an abstract involution θ of ∆ = ∆(g, ha) as usual. Suppose α ∈ ∆(g, h) is a real

root and consider the Cayley transform of h by α. If φ′ denotes the image of φ in (hα)∗,

conjugation by i−1
λ,φ′ induces a different abstract involution θα of ∆. It is easy to describe

how θ and θα are related in W .

Proposition 8.2.1 ([16], Lemma 8.6.13). In the situation above θα = sαθ, where sα is the

root reflection in W corresponding to (the image of) α.

If θ is an involution and α is a real root for θ, we define the abstract Cayley transform

of θ with respect to α to be θα = sαθ.

Example 8.2.2. Let n = 2 and consider the positive abstract roots in ∆

α = e1 − e2

β = e1 + e2

γ = e1

δ = e2.

Let θ = −1 so that all roots are real. In terms of our matrix representation we have

Mθ =
(
−1 0

0 −1

)
.
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The matrix representatives for the various Cayley transforms are then

Mθα =
(

0 −1
−1 0

)
Mθβ =

(
0 1
1 0

)
Mθγ =

(
1 0
0 −1

)
Mθδ =

(
−1 0

0 1

)
.

Note the first two involutions and the last two involutions are conjugate in W . In terms of

diagrams we have

Dθα = (2) (1)

Dθβ = 2 1

Dθγ = + −

Dθδ = − + .

If we instead suppose θ is of the form

Mθ =
(

0 1
1 0

)
.

Then α is still real for θ and we have

Mθα =
(

1 0
0 1

)
or in terms of diagrams

Dθα = + + .

We now describe the effect of a general abstract Cayley transform in terms of diagrams.

Let θ ∈W be an involution and suppose α ∈ ∆ is a real root for θ. There are several cases

to consider since the relation between Dθ and Dθα depends on both θ and α.

Case I. Suppose α = ei is a short root. Since α is real, our diagram is of the form

Dθ : · · · −
i
· · ·

with a − sign in the ith position. The Cayley transform of θ with respect to α then has

diagram

Dθα : · · · +
i
· · · .
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Case II. Suppose α = ei − ej and θ has the form

Dθ : · · · −
i
· · · −

j
· · · .

Then α is real for θ and the Cayley transform of θ by α is

Dθα : · · · (j)
i
· · · (i)

j
· · · .

Case III. Suppose α = ei − ej and θ has the form

Dθ : · · · j
i
· · · i

j
· · · .

Again α is real for θ and the Cayley transform of θ by α is

Dθα : · · · +
i
· · · +

j
· · · .

Case IV. Suppose α = ei + ej and θ has the form

Dθ : · · · −
i
· · · −

j
· · · .

Then α is real for θ and the Cayley transform of θ by α is

Dθα : · · · j
i
· · · i

j
· · · .

Case V. Suppose α = ei + ej and θ has the form

Dθ : · · · (j)
i
· · · (i)

j
· · · .

Again α is real for θ and the Cayley transform of θ by α is

Dθα : · · · +
i
· · · +

j
· · · .

Most of these cases were verified in Example 8.2.2 for n = 2. The general statements can

be verified by first reducing to this setting.

If α1, α2, . . . , αk is a sequence of mutually orthogonal real roots for θ, the iterated Cayley

transform of θ with respect to α1, α2, . . . , αk is defined and we denote it by

θα1α2...αk = ((θα1) . . .)αk .
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Example 8.2.3. Suppose θ is of the form

Dθ : · · · −
i
· · · −

j
· · · .

Then the iterated Cayley transform with respect to the real roots α = ei−ej and β = ei+ej

is defined and gives the same result as taking α = ei and β = ej

Dθαβ : · · · +
i
· · · +

j
· · · .

The proof of the following proposition will be important in later sections.

Proposition 8.2.4. Fix the involution θs = −1 in W . Then up to conjugacy, every

involution in W can be obtained from θs via an iterated Cayley transform.

Proof. Let θ be an involution in W . Since we are only interested in obtaining θ up to

conjugacy, we may assume θ has the form

(2)
1

(1) · · · (nθc) (nθc − 1)
nθc

+
nθc+1

+ · · · +
nθc+nθs

−
n−nθr+1

− · · · −
n
.

Label the following distinguished positive roots in ∆

αi = ei − ei+1

βi = ei.

We construct our iterated Cayley transform using these roots in a two-step process.

Step I. Let k = nθc . If k = 0 we proceed to step II. If k 6= 0, consider the sequence

of (long) simple roots α1, α3, . . . , αk−1. Since these roots are mutually orthogonal, the

corresponding iterated Cayley transform of θs is defined. By a repeated application of Case

II above we have

Dθs
α1α3...αk−1

: (2)
1

(1) · · · (k) (k − 1)
k

−
k+1

− · · · −
n
.

Step II. Let s = nθs. If s = 0 we are done. If s 6= 0 consider the sequence of (short)

positive roots βk+1, βk+2, . . . , βk+s. These roots are mutually orthogonal and are orthogonal

to the roots α1, α3, . . . , αk−1 appearing in Step I. Therefore the corresponding iterated

Cayley transform of θs
α1α3...αk−1

is defined. By Case I above we have

Dθs
α1...αk−1βk+1...βk+s

: (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · · +
k+s

− · · · −
n

and thus θs
α1...αk−1βk+1...βk+s

is the desired involution.
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8.3 Component Groups for Hs
c

RecallHs denotes a fixed split Cartan subgroup ofG andM = M(Hs). In this section we

describe how M changes under the specific set of Cayley transforms outlined in Proposition

8.2.4. This will ultimately lead to a description of π0(H) for each conjugacy class of Cartan

subgroups in G.

Recall the set of conjugacy classes of Cartan subgroups inG is in bijective correspondence

with the set of conjugacy classes of involutions in W . Proposition 8.2.4 constructs a

set of representative involutions for these conjugacy classes by applying a sequence c of

abstract Cayley transforms to the involution θs = −1. Since θs is the abstract involution

corresponding to any split Cartan subgroup, we can similarly apply this sequence to Hs.

This sets up a correspondence

θs
c ←→ Hs

c

between representative involutions in W and representative Cartan subgroups of G.

In the notation of Proposition 8.2.4, c = α1α3 . . . αk−1βk+1 . . . βk+s for some numbers k

and s, where

αi = ei − ei+1

βi = ei.

Sequences of this form occur frequently and will be referred to as standard. Additionally,

we will write

γi = ei + ei+1

and

mβ = mβi

for the unique element of M corresponding to short roots in ∆. Proposition 8.1.7 determines

the structure of the group Mc. There are three distinct cases that we record here for

convenience.

• Suppose c = α1α3 . . . αk−1. Then we have

Mc =
〈
M(Hs

c ), mα1 ,mα3 , . . . ,mαk−1

〉
.

• Suppose c = β1 . . . βs. Then we have

Mc = 〈 M(Hs
c ), mβ 〉 .
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• Suppose c = α1α3 . . . αk−1βk+1 . . . βk+s. Then we have

Mc =
〈
M(Hs

c ), mα1 ,mα3 , . . . ,mαk−1
,mβ

〉
.

The following proposition explains our interest in Mc.

Proposition 8.3.1. Suppose c is any sequence of mutually orthogonal real roots in Hs and

Mc = 〈 M(Hs
c ), mδ1 , . . . ,mδm 〉

as in Proposition 8.1.7. Then

π0(Hs
c ) ∼= Mc / 〈 mδ1 , . . . ,mδm 〉

∼= M(Hs
c ) / (M(Hs

c ) ∩ 〈 mδ1 , . . . ,mδm 〉).

Proof. This follows from Proposition 7.2.6, Proposition 8.1.5, and the fact that elements in

M(Hs
c ) generate π0(Hs

c ) (see [3]). The last isomorphism follows from the Second Isomor-

phism Theorem for groups.

Proposition 7.2.6 implies the group M = M(Hs) is a model for the component group

π0(Hs). Proposition 8.3.1 extends this model to the Cartan subgroups Hs
c . The extension is

almost perfect in the sense that π0(Hs
c ) is generated by elements of M(Hs

c ). Unfortunately

distinct elements of M(Hs
c ) can live in the same connected component of Hs

c . However this

relationship is completely determined by the standard sequence c. In particular, we obtain

a model for π0(Hs
c ) in Hs

c by choosing elements of M(Hs
c ) that are distinct modulo those

elements determined by c.

Proposition 8.3.1 describes π0(Hs
c ) as an appropriate subquotient of M . This is our

second description of π0(Hs
c ) and it will turn out to be the one most useful in determining

the central components in π0(H̃s
c ). Before we turn to this however, we verify that Proposition

8.3.1 is consistent with the results of Section 4.2.

Case I. Suppose c = β1 . . . βs and let r = n− s. Then we have

Dθs
c

: +
1
· · ·+

s
− · · · −

n
.

If s = 0, then θs
c = θs = −1 and by Proposition 7.2.6 we have π0(Hs) ∼= M as desired. If

s = n, then θs
c = 1 and π0(Hs

c ) is trivial. This is consistent with Proposition 8.3.1 since

M(Hs
c ) is also trivial. Finally, if 0 < s < n we have

Mc = 〈 M(Hs
c ), mβ 〉 .
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M(Hs
c ) has generators {

mαs+1 ,mαs+2 , . . . ,mαn−1 ,mβ

}
and thus |M(Hs

c )| = 2r. Therefore Proposition 8.3.1 implies

|π0(Hs
c )| = 2r−1.

This is consistent with Case I from section 4.2.

Case II. Suppose c = α1α3 . . . αk−1βk+1 . . . βn with 0 < k < n. Then we have

Dθs
α1α3...αk−1βk+1...βn

: (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · ·+
n

and

Mc =
〈
M(Hs

c ), mα1 ,mα3 , . . . ,mαk−1
,mβ

〉
.

Also M(Hs
c ) has generators {

mγ1 ,mγ3 , . . . ,mγk−1

}
.

In Proposition 7.2.5, we saw these elements differ from the elements mα1 ,mα3 , . . . ,mαk−1

by a factor of mβ. Therefore every element of M(Hs
c ) is also an element of〈

mα1 ,mα3 , . . . ,mαk−1
,mβ

〉
and Proposition 8.3.1 implies the group π0(H) is trivial. This is consistent with Case II

from Section 4.2.

Case III. Suppose c = α1α3 . . . αk−1 with 0 < k < n and let r = n− k. Then we have

Dθs
α1α3...αk−1

: (2)
1

(1) · · · (k) (k − 1)
k

− · · ·−
n

and

Mc =
〈
M(Hs

c ), mα1 ,mα3 , . . . ,mαk−1

〉
.

Also M(Hs
c ) has generators{

mγ1 ,mγ3 , . . . ,mγk−1
,mαk+1

,mαk+2
, . . . ,mαn−1 ,mβ

}
and therefore the quotient Mc /

〈
mα1 ,mα3 , . . . ,mαk−1

〉
has generators{

mαk+1
,mαk+2

, . . . ,mαn−1 ,mβ

}
.

By Proposition 8.3.1 we have

|π0(Hs
c )| = 2r.

This is consistent with Case III of Section 4.2.
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Case IV. Suppose c = α1α3 . . . αk−1βk+1 . . . βk+s with 0 < k < n and 0 < s < n − k.

Let r = n− k − s. Then we have

Dθs
α1α3...αk−1βk+1...βk+s

: (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · · +
k+s
− · · · −

n
.

The analysis for this case is exactly the same as the previous one except now mβ is trivial

in the quotient. Therefore

|π0(Hs
c )| = 2r−1

and this is consistent with Case IV of Section 4.2.

Case V. Suppose c = α1α3 . . . αn−1. Note this is only possible when n is even. Then we

have

Dθs
α1α3...αn−1

: (2)
1

(1) · · · (n) (n− 1)
n

and

Mc =
〈
M(Hs

c ),mα1 ,mα3 , . . . ,mαn−1

〉
.

Also M(Hs
c ) has generators {

mγ1 ,mγ3 , . . . ,mγn−1

}
and thus the subgroup

〈
mα1 ,mα3 , . . . ,mαk−1

〉
has index two in Mc. By Proposition 8.3.1

we have |π0(Hs
c )| = 2. This is consistent with Case V of Section 4.2.

Theorem 4.1.3 determined the order of π0(H) for each conjugacy class of Cartan sub-

groups in G. Proposition 8.3.1 determines this order as well, however it also provides a

method for selecting representatives in distinct connected components of H. The key to

reconciling these approaches is Proposition 7.2.1. In particular, Proposition 7.2.1 implies

M ∼= L(∆∨)/2L(∆∨)

where L(∆∨) denotes the coroot lattice. Let π : L(∆∨) → M denote the corresponding

quotient map and suppose c is a standard sequence in ∆. Write θ = θs
c and define

L(∆∨)θ+ =
{
α ∈ L(∆∨) | θ(α) = α

}
L(∆∨)θ− =

{
α ∈ L(∆∨) | θ(α) = −α

}
M θ

+ = π(L(∆∨)θ+)

M θ
− = π(L(∆∨)θ−)

M θ
± = M θ

+ ∩M θ
−.
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We first observe the group M(Hs
c ) is generated by elements mα, where α is a real root

for θ. In the notation above we therefore have

M(Hs
c ) ∼= M θ

−.

Moreover, the group π0(Hs
c ) is a quotient of M(Hs

c ) by a subgroup determined from the

elements in c. Suppose c = δ1δ2 . . . δm so that

θ = sδm . . . sδ2sδ1θ
s.

Since all roots are real for θs and the roots δi are pairwise orthogonal, it follows the

corresponding elements mδi generate M θ
+. Proposition 8.3.1 now implies

π0(Hs
c ) ∼= M θ

−/M
θ
− ∩M θ

+
∼= M θ

−/M
θ
±.

Since L(∆∨) is the lattice dual to the weight lattice X, we see Proposition 8.3.1 is actually

a dualized version of Theorem 4.1.3 for θ = θs
c . Since every involution in I is conjugate to

one of the form θs
c , we easily obtain the correspondence for arbitrary θ ∈ I.

8.4 Genuine Triples for H̃s
c

In the previous section we constructed a set of representatives for the K-conjugacy

classes of Θ-stable Cartan subgroups in G. These subgroups (denoted Hs
c ) were iterated

Cayley transforms of Hs with respect to a standard sequence c. Writing H̃s
c = π−1(Hs

c )

gives an analogous set of Θ-stable Cartan subgroup representatives for G̃.

Let λ be a regular symmetric infinitesimal character, c a standard sequence in ∆, and

suppose (θ, ε, λ) is the abstract triple corresponding to the pair (H̃s
c , φ)λ. Proposition 6.2.2

provides sufficient conditions for the existence of a genuine triple (H̃s
c , φ, Γ̃)λ extending

(H̃s
c , φ)λ. Assuming an extension exists, we are finally in a position to determine how many

such triples there are.

The approach is essentially the same as the one for H̃s described at the end of Chapter

7. Recall the identity component (H̃s
c )0 is central in H̃s

c and the behavior of Γ̃ on (H̃s
c )0

is determined by φ. Proposition 7.1.3 reduces the problem to understanding π0(Z(H̃s
c )),

which is naturally a subgroup of π0(H̃s
c ). Therefore we simply need representatives for the

distinct connected components of H̃s
c whose multiplicative structure we understand.
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Recall Proposition 8.3.1 implies

π0(Hs
c ) ∼= M(Hs

c ) / (M(Hs
c ) ∩ 〈 mδ1 , . . . ,mδm 〉)

where the elements mδi are determined by the sequence c. In words, representatives for the

connected components of Hs
c are given by choosing elements of M(Hs

c ) that are distinct

‘modulo c’. The following proposition (whose proof is easy) extends this to H̃s
c .

Proposition 8.4.1. In the situation above∣∣∣π0(H̃s
c )
∣∣∣ =

{
2 |π0(Hs

c )| , −1 /∈ (H̃s
c )0

|π0(Hs
c )| , −1 ∈ (H̃s

c )0
.

Moreover, if mδ ∈M(Hs
c ) then m̃δ and −m̃δ are contained in distinct connected components

of H̃s
c if and only if −1 /∈ (H̃s

c )0.

Let {mε1 , . . . ,mεk} be a set of representatives for the distinct connected components of

Hs
c . Proposition 8.4.1 implies (±) {m̃ε1 , . . . , m̃εk} is a set of representatives for the distinct

connected components of H̃s
c . Since the elements ±m̃εi are contained in M̃ by definition,

their multiplicative structure is given by Proposition 7.3.1.

Corollary 8.4.2. Let λ be a regular symmetric infinitesimal character, c a standard se-

quence, and suppose (θ, ε, λ) is the abstract triple corresponding to the pair (H̃s
c , φ)λ. Let

{mε1 , . . . ,mεk} be a representative set for π0(Hs
c ) and assume (θ, ε, λ) is supportable. Then

the number of genuine triples (H̃s
c , φ, Γ̃)λ extending (H̃s

c , φ)λ is given by[
(H̃s

c , φ)λ
]

=
∣∣{m̃εi |

[
m̃εi , m̃εj

]
= 1, for all 1 ≤ j ≤ k

}∣∣
=

∣∣∣{m̃εi | m̃εi is central in H̃s
c

}∣∣∣ .
Remark 8.4.3. The statement of the corollary does not depend on the choices for the m̃εi .

Proof. Suppose −1 ∈ (H̃s
c )0. Then the number of genuine triples extending (H̃s

c , φ)λ is equal

to the number of connected components of H̃s
c contained in the center. Since the connected

components are represented by the elements {m̃ε1 , . . . , m̃εk}, we simply need to determine

the central m̃εi and the result follows.

If −1 /∈ (H̃s
c )0, then for each element of{

m̃εi |
[
m̃εi , m̃εj

]
= 1, for all 1 ≤ j ≤ k

}
there are two corresponding central connected components in H̃s

c that differ by a factor if

−1. Since we are interested in genuine representations of H̃s
c , the action of −1 is fixed and
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we have only a single corresponding genuine character. Therefore the genuine characters

are parameterized by the same set as the previous case and the result follows.

Theorem 8.4.4. Let λ be a regular symmetric infinitesimal character, c a standard se-

quence, and suppose the abstract triple (θ, ε, λ) corresponding to the pair (H̃s
c , φ)λ is sup-

portable. Then [
(H̃s

c , φ)λ
]
∈ {1, 2, 4} .

Proof. Let {mε1 , . . . ,mεk} ⊂ M be a set representatives for the connected components of

Hs
c . By Corollary 8.4.2 we have[

(H̃s
c , φ)λ

]
=
∣∣{m̃εi |

[
m̃εi , m̃εj

]
= 1, for all 1 ≤ j ≤ k

}∣∣ .
It suffices to verify the statement for the representative involutions θs

c .

Case I. Suppose c = β1 . . . βs and let r = n− s. Then we have

Dθs
c

: +
1
· · ·+

s
− · · · −

n
.

If s = 0, then θs
c = −1 and the result follows from Corollary 7.3.9. If s = n, then θs

c = 1

and thus [
(H̃s

c , φ)λ
]

= 1.

Finally if 0 < s < n, Case I of Section 8.3 implies π0(Hs
c ) has generators{

mαs+1 ,mαs+2 , . . . ,mαn−1

}
.

The proof of Proposition 7.3.5 then implies[
(H̃s

c , φ)λ
]

=
{

2 r is even
1 r is odd

and the result holds.

Case II. Suppose c = α1α3 . . . αk−1βk+1 . . . βn with 0 < k < n. Then we have

Dθs
α1α3...αk−1βk+1...βn

: (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · ·+
n
.

Case II of Section 8.3 implies π0(Hs
c ) is trivial and therefore[

(H̃s
c , φ)λ

]
= 1

and the result holds.
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Case III. Suppose c = α1α3 . . . αk−1 with 0 < k < n and let r = n− k. Then we have

Dθs
α1α3...αk−1

: (2)
1

(1) · · · (k) (k − 1)
k

− · · · −
n
.

Case III of Section 8.3 implies π0(Hs
c ) has generators{

mαk+1
,mαk+2

, . . . ,mαn−1 ,mβ

}
.

The proof of Proposition 7.3.5 then implies[
(H̃s

c , φ)λ
]

=
{

4 r is even
2 r is odd

and the result holds.

Case IV. Suppose c = α1α3 . . . αk−1βk+1 . . . βk+s with 0 < k < n and 0 < s < n − k.

Let r = n− k − s. Then we have

Dθs
α1α3...αk−1βk+1...βk+s

: (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · · +
k+s
− · · · −

n
.

Case IV of Section 8.3 implies π0(Hs
c ) has generators{

mαk+s+1
,mαk+s+2

, . . . ,mαn−1

}
.

The proof of Proposition 7.3.5 then implies[
(H̃s

c , φ)λ
]

=
{

2 r is even
1 r is odd

and the result holds.

Case V. Suppose c = α1α3 . . . αn−1. Note this is only possible when n is even. Then we

have

Dθs
α1α3...αn−1

: (2)
1

(1) · · · (n) (n− 1)
n

.

Case V of Section 8.3 implies π0(Hs
c ) has a single generator

{mβ} .

Therefore we have [
(H̃s

c , φ)λ
]

= 2

and the result holds.
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Recall the indicator bits εθs, ε
θ
r, and εθm defined in Section 3.1. The results of Theorem

8.4.4 are summarized in the following corollary.

Corollary 8.4.5. Let λ be a regular symmetric infinitesimal character, c a standard se-

quence, and suppose the abstract triple (θ, ε, λ) corresponding to the pair (H̃s
c , φ)λ is sup-

portable. Then [
(H̃s

c , φ)λ
]

= 21−εθs2ε
θ
r(1−εθm).

Proof. Check this for each of the cases in Theorem 8.4.4.



CHAPTER 9

K-ORBITS

Fix a nonsingular element λ ∈ (ha)∗. We have seen it is important to understand the

K-conjugacy classes of pairs (H ′, φ′)λ, where H ′ is a Θ-stable Cartan subgroup in G and φ′

is a nonsingular element in (h′)∗ such that φ′ and λ define the same infinitesimal character.

The K-conjugacy classes of such pairs will be referred to as K-orbits (for λ). If we fix a set

{Hi} of Θ-stable Cartan subgroup representatives, the K-orbits for λ are parameterized by

NK(Hi)-orbits on pairs of the form (Hi, φ)λ. The stabilizer of any such pair is ZK(Hi) and

the quotient

W (G,Hi) = NK(Hi)/ZK(Hi)

is the real Weyl group for Hi (Chapter 5).

Fix a Θ-stable Cartan subgroup H and let Λ denote the W (g, h)-orbit of a nonsingular

element φ ∈ (h)∗. Then W (G,H) acts freely on Λ and thus freely on pairs of the form

(H,φ)λ. Therefore the K-orbits whose first entry is conjugate to H are parameterized

by W (G,H)-orbits in Λ. For this reason W (G,H)-orbits in Λ will also be referred to as

K-orbits for (the conjugacy class of) H. Since

|W (g, h)| = |Λ|

the number of K-orbits for H is given by

|W (g, h)/W (G,H)| .

In Chapter 6 we constructed an abstract triple (θ, ε, λ) corresponding to each pair

(H,φ)λ. In this section we study the relationship between K-orbits and abstract triples.

9.1 The Cross Action on K-orbits

Let λ ∈ (ha)∗ be a nonsingular element, H a Θ-stable Cartan subgroup of G, and suppose

φ ∈ h∗ and λ determine the same infinitesimal character. Let Λ ⊂ h∗ denote the W (g, h)-

orbit of φ. This section makes frequent use of the conjugation maps
{
iλ,φ′ = iφ′

}
φ′∈Λ

(see

Section 6.1), so we begin by recording some easy formal properties.
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Lemma 9.1.1. Let w,Θ ∈W (g, h) and θ ∈W . Then

iwφ = w · iφ

i−1
wφ = i−1

φ · w
−1

iφ(θ) = iφ · θ · i−1
φ

i−1
φ (Θ) = i−1

φ ·Θ · iφ

iwφ(θ) = w · iφ(θ) · w−1

i−1
wφ(Θ) = i−1

φ (w−1 ·Θ · w).

Proof. The first two equalities are obvious and the second two are by definition. For the

fifth equality we have

iwφ(θ) = iwφ · θ · i−1
wφ

= w · iφ · θ · i−1
φ · w

−1

= w · iφ(θ) · w−1

as desired. The last equality is just the corresponding inverse statement.

Proposition 9.1.2. Let (H,φ)λ be a pair as above and suppose w ∈ W (G,H). Then the

abstract triples associated with (H,φ)λ and (H,wφ)λ are the same.

Proof. Let Θ denote the Cartan involution and suppose (θ, ε, λ) is the abstract triple for

(H,φ)λ. By Lemma 9.1.1 and Theorem 5.2.3 we have

i−1
wφ(Θ) = i−1

φ (w−1 ·Θ · w)

= i−1
φ (Θ)

= θ.

Moreover if α ∈ h∗ is a root,

i−1
wφ(α) = i−1

φ · w
−1(α).

However, elements of W (G,H) preserve the set of compact roots and thus the corresponding

abstract grading is unchanged.

Proposition 9.1.2 implies the association of abstract triples to pairs (H,φ)λ is defined on

the level of K-orbits for H (viewed as W (G,H)-orbits in h∗). We would like to understand

the extent to which this association is unique. We begin by recalling the familiar action of

the abstract Weyl group on Λ.
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Definition 9.1.3. Let w ∈W and φ ∈ Λ. Define the cross action of w on φ as

w×φ = iφ · w−1 · i−1
φ (φ).

Alternatively we can define

wφ = iφ(w)

so that

w×φ = w−1
φ (φ).

If (H,φ)λ is the corresponding pair, the cross action of w on (H,φ)λ will be denoted

w×(H,φ)λ = (H,w×φ)λ.

Lemma 9.1.4. Let w ∈W and φ ∈ Λ. Then

iw×φ = iφ · w−1

i−1
w×φ = w · i−1

φ .

Proof. It suffices to check the first equality. We have

iw×φ = iw−1
φ (φ)

= w−1
φ · iφ

= (iφ(w))−1 · iφ

= (iφ · w · i−1
φ )−1 · iφ

= iφ · w−1 · i−1
φ · iφ

= iφ · w−1

as desired.

Proposition 9.1.5. The cross action defines a left action of W on Λ. Moreover, the cross

action commutes with the usual action of W (g, h) and thus descends to a transitive action

at the level of K-orbits.
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Proof. This is well known but we prove it anyway. For w1, w2 ∈W and φ ∈ Λ we have

w2×(w1×φ) = iw1×φ · w
−1
2 · i

−1
w1×φ(w1×φ)

= iφ · w−1
1 · w

−1
2 · w1 · i−1

φ (iφ · w−1
1 · i

−1
φ (φ))

= iφ · w−1
1 · w

−1
2 · i

−1
φ (φ)

= (w2w1)×φ.

This proves the first claim. For the second claim, let w ∈W and σ ∈W (g, h). Then

w×(σφ) = iσφ · w−1 · i−1
σφ(σφ)

= σ · iφ · w−1 · i−1
φ · σ

−1(σφ)

= σ · iφ · w−1 · i−1
φ (φ)

= σ · w×φ

as desired.

If φ ∈ Λ, we denote the K-orbit of φ by [φ] and the corresponding cross action by w×[φ].

We conclude this section with a generalization of Proposition 9.1.2.

Proposition 9.1.6. Let w ∈ W and suppose (H,φ)λ is a pair with corresponding abstract

triple (θ, ε, λ). Then the abstract triple associated to the pair w×(H,φ)λ is given by

w×(θ, ε, λ) = (w · θ · w−1, w×ε, λ)

where w×ε is the grading defined via

(w×ε)(α) = ε(w−1α).

In particular, the cross action on pairs induces an action (also called the cross action) on

abstract triples.

Proof. Let Θ denote the Cartan involution. Then

i−1
w×φ(Θ) = i−1

w×φ ·Θ · iφ

= w · i−1
φ ·Θ · iφ · w

−1

= w · i−1
φ (Θ) · w−1

= w · θ · w−1.

So the abstract involution induced by the pair w×(H,φ)λ is w-conjugate to the involution

induced by (H,φ)λ.
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Now let α ∈ h∗ be a root. By Lemma 9.1.4 we have

i−1
w×φ(α) = w · i−1

φ (α).

Therefore the cross action alters the abstract root correspondence by the regular action of

w. Hence the new abstract grading w×ε will be the same as the abstract grading for (H,φ)λ

if we first compose ε with w−1.

Finally, it is trivial to check this defines an action on the set of abstract triples.

9.2 The Fiber Over an Involution

We begin with our usual setup. Let λ be a nonsingular element in (ha)∗, H a Θ-stable

Cartan subgroup of G, and φ ∈ h∗ such that φ and λ define the same infinitesimal character.

Let Λ ⊂ h∗ be the W (g, h)-orbit of φ and suppose (θ, ε, λ) is the abstract triple corresponding

to (H,φ)λ. We define the fiber over θ (denoted θ†λ) to be the set of K-orbits in Λ whose

corresponding abstract triples begin with θ. Similarly, the fiber over (θ, ε, λ) (denoted

(θ, ε, λ)†) is defined to be the set of K-orbits in Λ with associated abstract triple (θ, ε, λ).

Example 9.2.1. Let n = 4 and suppose H = T is compact. Then θ = 1 and every K-orbit

for H is in θ†λ. In Example 5.2.5 we computed
∣∣∣θ†λ∣∣∣ = 12. Since there are only

(
4
2

)
= 6

possibilities for the principal abstract grading ε, there must exist an abstract triple whose

fiber contains more than one K-orbit.

The order of the fiber over a fixed involution is easy to describe.

Proposition 9.2.2. Let (H,φ)λ be a pair with corresponding abstract triple (θ, ε, λ). Then∣∣∣θ†λ∣∣∣ =
∣∣∣∣ W θ

W (G,H)

∣∣∣∣
where W (G,H) ⊂W denotes the image of the real Weyl group for H under the map i−1

φ .

Proof. By Proposition 9.1.5 and Proposition 9.1.6, W θ acts transitively on θ†λ. Moreover,

for w ∈W we have (by definition)

w×[φ] = [φ]⇐⇒ w ∈W (G,H).

So W (G,H) is the stabilizer of this action and the result follows.
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Proposition 9.2.2 implies the set of K-orbits for H can be viewed as a product of

involutions and fibers. Numerically we have∣∣∣∣ W (g, h)
W (G,H)

∣∣∣∣
# of K-orbits for H

=
∣∣∣∣W (g, h)

W θ

∣∣∣∣
# of involutions

×
∣∣∣∣ W θ

W (G,H)

∣∣∣∣
size of each fiber

.

In addition to determining
∣∣∣θ†λ∣∣∣, it will be important to understand the transitive action

of W θ on θ†λ. Since the situation in not changed by conjugation, it suffices to determine

this action for a set of representative involutions in I. Retain the setting of the proposition

and recall from Section 3.3 and Section 5.2

W θ ∼= (W θ
i ×W θ

R) oW θ
C

W (G,H) ∼= ((AnW θ
ic)×W θ

R) oW θ
C

where A ∼= Zk2 is a subgroup of W θ
i . Therefore the action of w ∈ W θ on θ†λ is trivial if w

is an element of W θ
ic,W

θ
R, or W θ

C. Hence it remains to understand the action of W θ
i on θ†λ,

and specifically the action for (reflections corresponding to) noncompact imaginary roots.

A noncompact imaginary root in ∆(g, h) is said to be of type I if the corresponding

reflection is not induced by an element of K (i.e., by an element in NK(H)). Otherwise it

is said to be of type II, with analogous terminology used for associated abstract roots. In

particular, the cross action through an abstract noncompact imaginary root is nontrivial if

and only if it is of type I (Proposition 12.5.1).

Example 9.2.3. We continue Example 9.2.1. Let (θ, ε, λ) be the abstract triple corre-

sponding to the K-orbit [φ] where ε is given by the diagram

+ + ⊕ ⊕ .

Let α ∈ ∆+ be a long root of the form α = ei − ej . Note α is noncompact if and only if

1 ≤ i ≤ 2 and 3 ≤ j ≤ 4. In this case we have

(sα×ε)(ei) = ε(sαei)

= ε(ej) 6= ε(ei)

and thus the abstract triples corresponding to sα×[φ] and [φ] are different. Proposition

9.1.2 implies sα×[φ] 6= [φ] and therefore α is of type I. A similar argument holds for roots of
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the form α = ei + ej and hence all long noncompact imaginary roots are of type I. However

if α = e3 or α = e4 is a short noncompact imaginary root, then it is easy to check

sα×ε = ε

and thus we can not determine (yet) the type of α.

We now outline an effective method for describing the action of W θ
i on θ†λ. Let (H,φ)λ be

a pair with corresponding abstract triple (θ, ε, λ) and suppose the imaginary roots α, β ∈ ∆

are noncompact. We have seen there exists a ‘dual’ pair (H ′, φ′) whose corresponding

abstract involution is −θ. At the end of Section 8.3 we associated the following data to −θ

M = L(∆∨)/2L(∆∨)

L(∆∨)−θ+ =
{
α ∈ L(∆∨) | −θ(α) = α

}
L(∆∨)−θ− =

{
α ∈ L(∆∨) | −θ(α) = −α

}
M−θ+ = π(L(∆∨)−θ+ )

M−θ− = π(L(∆∨)−θ− )

M−θ± = M−θ+ ∩M−θ− .

Note the roots α, β are real for −θ and recall the associated elements in M−θ− were denoted

mα,mβ.

Let w ∈W θ
i and write w = sαn . . . sα1 as a minimal length product of simple reflections

in W θ
i . Define the element

m[φ]
w = ε(α1)mα1 + sα1×ε(α2)mα2 + · · ·+ sαn−1× · · ·×sα1×ε(αn)mαn

= ε(α1)mα1 + ε(sα1α2)mα2 + · · ·+ ε(sα1 · · · sαn−1αn)mαn

where the mαi are viewed as elements in M−θ− /M−θ± . Note the element m[φ]
w depends on the

grading ε and thus on the K-orbit [φ].

Proposition 9.2.4. The definition above gives a well-defined map

w 7→ m[φ]
w

of W θ
i into M−θ− /M−θ± .
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Proof. The issue is the choice of reduced expression for w. Proposition 3.3.6 implies

W θ
i
∼= W (Bm)×W (A1)l

for some integers m and l and thus it suffices to consider the following three cases (see [6],

Theorem 3.3.1).

Case I. Suppose sαsβ = sβsα, where α, β are simple roots in ∆θ
i . Then we have

m[φ]
sβsα

= ε(α)mα + ε(sαβ)mβ

= ε(α)mα + ε(β)mβ

= ε(β)mβ + ε(sβα)mα

= m[φ]
sαsβ

.

Case II. Suppose sαsβsα = sβsαsβ, where α, β are (long) adjacent simple roots in ∆θ
i .

Then we have

m[φ]
sαsβsα

= ε(α)mα + ε(sαβ)mβ + ε(sαsβα)mα

= ε(α)mα + ε(α+ β)mβ + ε(β)mα

= ε(α+ β)mα + ε(α+ β)mβ

= ε(β)mβ + ε(β + α)mα + ε(α)mβ

= ε(β)mβ + ε(sβα)mα + ε(sβsαβ)mβ

= m[φ]
sβsαsβ

.

Case III. Suppose sαsβsαsβ = sβsαsβsα, where α, β are adjacent simple roots in ∆θ
i

with α short. Then

m[φ]
sβsαsβsα

= ε(α)mα + ε(sαβ)mβ + ε(sαsβα)mα + ε(sαsβsαβ)mβ

= ε(α)mα + ε(β)mβ + ε(α+ β)mα + ε(β)mβ

= ε(α)mα + ε(α)mα + ε(β)mβ + ε(β)mβ + ε(β)mα

= ε(β)mα.

Similarly

m[φ]
sαsβsαsβ

= ε(β)mβ + ε(sβα)mα + ε(sβsαβ)mβ + ε(sβsαsβα)mα

= ε(β)mβ + ε(β + α)mα + ε(β)mβ + ε(α)mα

= ε(β)mβ + ε(β)mβ + ε(α)mα + ε(α)mα + ε(β)mα

= ε(β)mα



78

and thus

m[φ]
sβsαsβsα

= m[φ]
sαsβsαsβ

.

The following proposition computes the elements m[φ]
sα , where α ∈ ∆ is an arbitrary (i.e.,

not necessarily simple) imaginary root. The result is as expected.

Proposition 9.2.5. Let [φ] be a K-orbit in θ†λ and let β ∈ ∆ be an imaginary root for θ.

Then

m[φ]
sβ

= ε(β)mβ.

Proof. It suffices to consider the case when W θ
i
∼= W (Bm). Denote the long simple roots in

∆θ
i by

αi = ei − ei+1

for 1 ≤ i ≤ m− 1. We have the following three cases for β.

Case I. Suppose β is of the form

β = ei − ej+1 = αi + αi+1 + · · ·+ αj

for 1 ≤ i ≤ j so that

sβ = sαjsαj−1 · · · sαi+1sαisαi+1 · · · sαj−1sαj

is a reduced expression for sβ. Then

m[φ]
sβ

= ε(αj)mαj + ε(sαjαj−1)mαj−1 + · · ·+ ε(sαj · · · sαi+1αi)mαi

+ ε(sαj · · · sαiαi+1)mαi+1 + · · ·+ ε(sαj · · · sαi · · · sαj−1αj)mαj

= ε(αj)mαj + ε(αj + αj−1)mαj−1 + · · ·+ ε(αj + αj−1 + · · ·+ αi)mαi

+ ε(αi)mαi+1 + ε(αi + αi+1)mαi+2 + · · ·+ ε(αi + · · ·+ αj−1)mαj

= ε(αi + · · ·+ αj)mαi + · · ·+ ε(αi + · · ·+ αj)mαj

= ε(β)mαi + · · ·+ ε(β)mαj

= ε(β)mβ

as desired (the last step follows from Proposition 7.2.5).
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Case II. Suppose β is of the form

β = ei = αi + αi+1 + · · ·+ αm−1 + em

for 1 ≤ i ≤ m so that

sβ = sαisαi+1 · · · sαm−1semsαm−1 · · · sαi+1sαi

is a reduced expression for sβ. Then

m[φ]
sβ

= ε(αi)mαi + ε(sαiαi+1)mαi+1 + · · ·+ ε(sαi · · · sαm−1em)mem

+ ε(sαi · · · semαm−1)mαm−1 + · · ·+ ε(sαi · · · sem · · · sαi+1αi)mαi

= ε(αi)mαi + ε(αi + αi+1)mαi+1 + · · ·+ ε(αi + · · ·+ αm−1 + em)mem

+ ε(αi + · · ·+ αm−1 + 2em)mαm−1 + · · ·+

+ ε(αi + 2αi+1 + · · ·+ 2αm−1 + 2em)mαi

= ε(2β)mαi + · · ·+ ε(2β)mαm−1 + ε(β)mem

= ε(β)mem

= ε(β)mβ

as desired (the last step again follows from Proposition 7.2.5).

Case III. Suppose β = ei+ej+1. This case is handled in the same fashion as the previous

cases. The reader is spared the details.

Let [φ] and [ψ] be two K-orbits for H in θ†λ. For w ∈ W θ
i , the following proposition

describes how m
[φ]
w and m

[ψ]
w are related.

Proposition 9.2.6. Let [φ] and [ψ] be two K-orbits in θ†λ and suppose [ψ] = τ×[φ]. For

w ∈W θ
i we have

m[ψ]
w = m[φ]

wτ +m[φ]
τ .
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Proof. Let ε denote the abstract grading corresponding to [φ] and choose a reduced expres-

sion w = sαn · · · sα1 . By definition we have

m[ψ]
w = mτ×[φ]

w

= τ×ε(α1)mα1 + τ×ε(sα1α2)mα2 + · · ·+ τ×ε(sα1 · · · sαn−1αn)mαn

= ε(τ−1α1)mα1 + ε(τ−1sα1α2)mα2 + · · ·+ ε(τ−1sα1 · · · sαn−1αn)mαn

= m[φ]
wτ +m[φ]

τ

as desired.

Proposition 9.2.6 provides an iterative method for computing m[φ]
w .

Corollary 9.2.7. Let w ∈ W θ
i and suppose w = sαn · · · sα1 is a reduced expression for w.

Then

m[φ]
w = m[φ]

sα1
+m

sα1×[φ]
sα2

+ · · ·+m
sαn−1×···× sα1×[φ]
sαn .

Proof. This follows easily by induction and Proposition 9.2.6.

Corollary 9.2.8. Let [φ] and [ψ] be two K-orbits in θ†λ and suppose [ψ] = τ×[φ]. Then∣∣∣{m[φ]
w | w ∈W θ

i

}∣∣∣ =
∣∣∣{m[ψ]

w | w ∈W θ
i

}∣∣∣ .
Proof. Proposition 9.2.6 implies these sets differ by translation through m

[φ]
τ .

Our interest in the elements m[φ]
w is justified by the following remarkable theorem.

Theorem 9.2.9 ([9]). Let (H,φ)λ be a pair with corresponding abstract triple (θ, ε, λ) and

let w1 and w2 be elements in W θ
i . Then

w1×[φ] = w2×[φ]⇐⇒ m[φ]
w1

= m[φ]
w2
.

In particular, a noncompact imaginary root α is of type II if and only if m[φ]
sα = mα is trivial

in the quotient M−θ− /M−θ± .

Remark 9.2.10. Recall elements in M−θ− /M−θ± represent the connected components of the

dual torus H ′. Theorem 9.2.9 implies

w1×[φ] = w2×[φ]

if and only if the elements m[φ]
w1 ,m

[φ]
w2 ∈ H ′ live in the same connected component.
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It follows from Theorem 9.2.9 that elements in θ†λ are parameterized by distinct elements

of the form m
[φ]
w , for w ∈W θ

i . Formally we can write

θ†λ ←→
{
m[φ]
w · [φ] | w ∈W θ

i

}
where m[φ]

w · [φ] is a formal symbol representing the K-orbit w×[φ] with m[φ]
w · [φ] = m

[φ]
τ · [φ]

if and only if m[φ]
w = m

[φ]
τ . The action of W θ

i on θ†λ is then

τ×(m[φ]
w · [φ]) = mw×[φ]

τ + (m[φ]
w · [φ])

= (mw×[φ]
τ +m[φ]

w ) · [φ]

= m[φ]
τw · [φ]

by Proposition 9.2.6.

Example 9.2.11. We are now able to finish Example 9.2.1. Recall (θ, ε, λ) is the abstract

triple corresponding to the K-orbit [φ], with θ = 1 and ε given by the diagram

+ + ⊕ ⊕ .

Then −θ = −1 so that M−θ+ is trivial. Proposition 9.2.9 implies all noncompact imaginary

roots (including the short roots e3 and e4) are of type I. Moreover me3 = me4 in M−θ− and

thus

se3×[φ] = se4×[φ].

We now give a complete description of the action of W θ
i = W on θ†λ. Let

α1 = e1 − e2

α2 = e2 − e3

α3 = e3 − e4

β = e4

denote the simple roots for W . Table 9.1 summarizes the action of W θ
i = W on θ†λ.

Each row in the table represents a particular K-orbit in θ†λ. The first column assigns

each orbit a number, the second column gives the corresponding element of M−θ− (written

as a bit string), and the third column describes the associated abstract grading. The last

four columns give images of cross actions for the simple roots (in terms of orbit numbers

from column one).

Note that each abstract grading appears exactly twice and the corresponding elements

in M−θ− differ by 0001 (i.e., by a cross action through a short noncompact imaginary root).

Therefore we see the order of the fiber over any abstract triple is two.
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9.1. action of W θ
i

orbit m
[φ]
w grading α1 α2 α3 β

0 0000 + + ⊕ ⊕ 0 1 0 2
1 0100 + ⊕ + ⊕ 3 0 4 5
2 0001 + + ⊕ ⊕ 2 5 2 0
3 1100 ⊕ + + ⊕ 1 3 6 7
4 0110 + ⊕ ⊕ + 6 4 1 4
5 0101 + ⊕ + ⊕ 7 2 8 1
6 1110 ⊕ + ⊕ + 4 9 3 6
7 1101 ⊕ + + ⊕ 5 7 10 3
8 0111 + ⊕ ⊕ + 10 8 5 8
9 1010 ⊕ ⊕ + + 9 6 9 9
10 1111 ⊕ + ⊕ + 8 11 7 10
11 1011 ⊕ ⊕+ + 11 10 11 11

9.3 Fibers for G

Fix a nonsingular element λ ∈ (ha)∗ and suppose (H,φ)λ is a pair for G with corre-

sponding abstract triple (θ, ε, λ). The previous section outlined a procedure for computing

the action of W θ
i on θ†λ. In this section we use this procedure to describe the fibers over

arbitrary involutions and abstract triples for G. As usual, the picture is unchanged by

conjugation and thus it suffices to consider a representative set of involutions in I. This

will essentially give a complete description of the set of K-orbits for λ in G.

Given λ and θ, we can extend these parameters to an abstract triple (θ, ε, λ) by selecting

a principal imaginary grading ε. Recall ε is specified by choosing exactly nθs+εθp
2 of the short

imaginary roots to be noncompact. In particular, the number of abstract triples beginning

with θ is given by (
nθs

nθs+εθp
2

)
.

Proposition 9.1.2 implies there will be at least
(

nθs
nθs+εθp

2

)
elements in θ†λ. The following

theorem completes the picture by determining the number of elements in the fiber over

each abstract triple for θ.

Theorem 9.3.1. Let (H,φ)λ be a pair for G and suppose (θ, ε, λ) is the corresponding

abstract triple. Then ∣∣∣(θ, ε, λ)†
∣∣∣ ∈ {1, 2} .
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Proof. The proof is by cases for a representative set of involutions in I. In each case we

determine the number of elements in (θ, ε, λ)† as well as how the elements are related by

cross action.

Case I. Let θ ∈ I be given by the diagram

Dθ : +
1

+ · · · +
n

so that nθs = n, nθr = 0, and all roots are imaginary. Suppose w ∈ W θ
i = W with w =

(00 · · · 0, σ). Then

w×ε = ε

if and only if σ preserves the set of compact roots. Such permutations are given by elements

of W θ
ic and thus act trivially on K-orbits.

Suppose now w = (ε1ε2 · · · εn, 1) is a product of reflections in short noncompact imag-

inary roots. Since mei = mej in M−θ− for all i and j, Theorem 9.2.9 implies the cross

action through any two such roots is the same. Moreover, this action is nontrivial since

M−θ+ = {0}. Hence ∣∣∣(θ, ε, λ)†
∣∣∣ = 2

with the elements related by a cross action in any short noncompact imaginary root (this

is a generalization of Example 9.2.11). We conclude

∣∣∣θ†λ∣∣∣ =

{
2
(
n
n
2

)
n is even

2
(
n
n+1

2

)
n is odd

.

Case I′. Let θ ∈ I be given by the diagram

Dθ : +
1
· · · +

nθs

− · · · −
n

with nθr = n− nθs 6= 0. The situation is the same as the previous case, except the elements

mei are now in M−θ± . Hence all short noncompact imaginary roots are of type II and thus∣∣∣(θ, ε, λ)†
∣∣∣ = 1.

Therefore ∣∣∣θ†λ∣∣∣ =
(

nθs
nθs+εθp

2

)
.
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Case II. Let θ ∈ I be given by the diagram

Dθ : (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · ·+
n

where k = nθc , n
θ
s = n− k 6= 0, and nθr = 0. Then

W θ
i
∼= W (A1)k/2 ×W (Bn−k)

and cross actions for elements of W θ
i that live in the W (Bn−k) factor behave as in Case I.

Suppose now i is odd with 1 ≤ i ≤ k − 1 and define the roots

αi = ei − ei+1

βi = ei + ei+1.

Then each root βi is real for θ and imaginary for −θ and each root αi is noncompact

imaginary for θ and real for −θ. Therefore it remains to determine the type of each αi. By

Proposition 7.2.5 we have

mαi = mej

in M−θ− /M−θ± , where k + 1 ≤ j ≤ n. Theorem 9.2.9 then implies the cross actions with

respect to sαi and sej are the same (assuming ej is noncompact). The analysis in Case I

shows this action is nontrivial and thus each αi is of type I. Since the actions are the same

we conclude ∣∣∣(θ, ε, λ)†
∣∣∣ = 2.

These elements are related by a cross action in any of the roots αi or in any short noncompact

imaginary root ej . We then have ∣∣∣θ†λ∣∣∣ = 2
(

nθs
nθs+εθp

2

)
.

Case III. Let θ ∈ I be given by the diagram

Dθ : (2)
1

(1) · · · (k) (k − 1)
k

−
k+1

· · · −
n

where k = nθc and nθr = n − k 6= 0. The principal abstract grading ε and associated

abstract triple are unique for θ. By the results of Section 4.2, the corresponding dual torus

is connected and Theorem 9.2.9 implies∣∣∣θ†λ∣∣∣ =
∣∣∣(θ, ε, λ)†

∣∣∣ = 1.
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Case IV. Let θ ∈ I be given by the diagram

Dθ : (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · · +
k+nθs

− · · · −
n

where k = nθc and nθr = n− k − nθs 6= 0. Combining Case II with Case I′ we have∣∣∣(θ, ε, λ)†
∣∣∣ = 1

and therefore ∣∣∣θ†λ∣∣∣ =
(

nθs
nθs+εθp

2

)
.

Case V. Let θ ∈ I be given by the diagram

Dθ : (2)
1

(1) · · · (n) (n− 1)
n

.

Note this is possible only when n is even. As in Case III, the principal abstract grading ε

and associated abstract triple are unique for θ. Suppose i is odd with 1 ≤ i ≤ n − 1 and

define the roots

αi = ei − ei+1

as in Case II. The analysis there shows each αi is of type I and sαi×[φ] = sαj×[φ] for all

i, j. Therefore ∣∣∣θ†λ∣∣∣ =
∣∣∣(θ, ε, λ)†

∣∣∣ = 2.

Corollary 9.3.2. Let (H,φ)λ be a pair for G and suppose (θ, ε, λ) is the corresponding

abstract triple. Then
∣∣∣(θ, ε, λ)†

∣∣∣ = 2 if and only if nθr = 0. In other words
∣∣∣(θ, ε, λ)†

∣∣∣ = 2 if

and only if the diagram Dθ contains no − signs. In particular we have∣∣∣θ†λ∣∣∣ = 21−εθr
(

nθs
nθs+εθp

2

)
.

Proof. Check this for each of the above cases and recall nθ
′
r = nθr if θ′ is conjugate to θ.
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Given a pair (H,φ)λ with corresponding abstract triple (θ, ε, λ), we can use Theorem

9.3.1 to determine the order of W (G,H). We have

W (G,H) ∼= ((AnW θ
ic)×W θ

R) oW θ
C

where A ∼= Zk2 is the only unknown group. Let k = nθc
2 . Combining Corollary 9.3.2 with

Proposition 9.2.2 gives∣∣∣θ†λ∣∣∣ = 21−εθr
(

nθs
nθs+εθp

2

)
=

∣∣∣∣ W θ

W (G,H)

∣∣∣∣
=

∣∣∣∣ (W θ
i ×W θ

R) oW θ
C

((AnW θ
ic)×W θ

R) oW θ
C

∣∣∣∣
=

∣∣W θ
i

∣∣∣∣AnW θ
ic

∣∣
=

2k2ε
θ
s

|A|

(
nθs

nθs+εθp
2

)
so that

|A| =
2k2ε

θ
s

21−εθr

= 2k+εθs+εθr−1.

Comparing this to Corollary 4.2.1 leads to a verification of Proposition 5.2.4.

9.4 Fibers for G̃

Let λ ∈ (ha)∗ be a symmetric infinitesimal character. Recall the set D̃λ is parameterized

by the K̃-conjugacy classes of genuine triples (H̃, φ, Γ̃), where H̃ is a Θ-stable Cartan

subgroup of G̃, φ ∈ h∗ such that φ and λ define the same infinitesimal character, and Γ̃

is a genuine representation of H̃. Theorem 8.4.4 reduces the problem to understanding

the K̃-conjugacy classes of genuine pairs (H̃, φ)λ whose corresponding abstract triples are

supportable. A K̃-conjugacy class of genuine pairs (H̃, φ)λ will be called a K̃-orbit for λ.

We have seen the K̃-orbits for λ correspond naturally to the K-orbits for λ, and these were

parameterized in Theorem 9.3.1.

Let (H̃, φ)λ be a genuine pair with corresponding abstract triple (θ, ε, λ). We define the

genuine fiber over θ (denoted θ̃†λ) to be the set of K-orbits in θ†λ whose corresponding

abstract triples are supportable. In particular
[
(H̃, φ)λ

]
6= 0 if and only if [φ] ∈ θ̃†λ.

Although the order of θ†λ can be arbitrarily large, the following theorem shows the order of

θ̃†λ is always small.
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Theorem 9.4.1. Let λ ∈ (ha)∗ be a nonsingular symmetric infinitesimal character and

suppose (H̃, φ)λ is a genuine pair for λ. Let θ ∈ I be the corresponding abstract involution

and assume there exists a supportable abstract triple beginning with θ (i.e., θ is supportable).

Then ∣∣∣θ̃†λ∣∣∣ ∈ {1, 2, 4} .
Proof. We first determine the number of gradings ε that make the abstract triple (θ, ε, λ)

supportable (by assumption there exists at least one). We then use Theorem 9.3.1 to

determine the order of the fiber over each abstract triple. As usual we proceed by cases for

the diagram of θ.

Case I. Let θ be given by the diagram

Dθ : +
1

+ · · · +
n

so that nθs = n. There are two possible gradings leading to supportable abstract triples for

θ if nθs is even and only one if nθs is odd (see Section 6.3). In either case, Theorem 9.3.1

implies the fiber over each abstract triple is two. Therefore we have∣∣∣θ̃†λ∣∣∣ =
{

4 nθs = n is even
2 nθs = n is odd

.

Case I′. Let θ be given by the diagram

Dθ : +
1
· · · +

nθs

− · · · −
n

with nθr = n− nθs 6= 0. Combining Case I above with Case I′ of Theorem 9.3.1 gives∣∣∣θ̃†λ∣∣∣ =
{

2 nθs is even
1 nθs is odd

.

Case II. Let θ be given by the diagram

Dθ : (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · ·+
n

where k = nθc , n
θ
s = n − k 6= 0, and nθr = 0. Combining Case I above with Case II of

Theorem 9.3.1 gives ∣∣∣θ̃†λ∣∣∣ =
{

4 nθs is even
2 nθs is odd

.
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Case III. Let θ be given by the diagram

Dθ : (2)
1

(1) · · · (k) (k − 1)
k

−
k+1

· · · −
n

where k = nθc and nθr = n − k 6= 0. There is only one possible abstract triple (supportable

by hypothesis) whose fiber is a singleton by Theorem 9.3.1. Therefore∣∣∣θ̃†λ∣∣∣ = 1.

Case IV. Let θ be given by the diagram

Dθ : (2)
1

(1) · · · (k) (k − 1)
k

+
k+1

· · · +
k+nθs

− · · · −
n

where k = nθc and nθr = n− k − nθs 6= 0. Combining Case I above with Case IV of Theorem

9.3.1 gives ∣∣∣θ̃†λ∣∣∣ =
{

2 nθs is even
1 nθs is odd

.

Case V. Let θ be given by the diagram

Dθ : (2)
1

(1) · · · (n) (n− 1)
n

.

Note this is possible only when n is even. As in Case III, there is a unique abstract triple

beginning with θ. Theorem 9.3.1 implies its fiber has order two. Therefore we have∣∣∣θ̃†λ∣∣∣ = 2.

Recall the indicator bits εθs, ε
θ
r, ε

θ
p, and εθm from Section 3.1. The following corollary

summarizes the results of Theorem 9.4.1.

Corollary 9.4.2. Let (H̃, φ)λ be a genuine pair with corresponding abstract involution

θ ∈ I. If θ is supportable, then ∣∣∣θ̃†λ∣∣∣ = 21−εθr2ε
θ
s(1−εθp).

Proof. Check this for each of the cases above.

Fix a symmetric infinitesimal character λ ∈ (ha)∗ and recall we have constructed a

(well-defined) abstract triple (θ, ε, λ) for each element in D̃λ. Let D̃θλ denote the subset of

D̃λ whose elements have abstract triples beginning with θ. We conclude this section with a

description of the size of D̃θλ, which also turns out to be small.
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Theorem 9.4.3. Let λ ∈ (ha)∗ be a symmetric infinitesimal character and let θ ∈ I. If θ

is supportable for λ, then ∣∣∣D̃θλ∣∣∣ = 21−εθs2ε
θ
r(1−εθm)21−εθr2ε

θ
s(1−εθp)

= 22−(εθsε
θ
p+εθrε

θ
m).

In particular ∣∣∣D̃θλ∣∣∣ ∈ {1, 2, 4} .
Proof. Combine Corollary 8.4.5 with Corollary 9.4.2.

Example 9.4.4. Fix n = 4 and let λ = (3, 2, 3
2 ,

1
2) be a symmetric infinitesimal character.

We are now in a position to compute the size of the basis D̃λ for KHC(g, K̃)gen
λ . This is the

G̃ analog of Example 5.2.5.

To accomplish this, we identify the involutions in I that are supportable for λ and

then apply Theorem 9.4.3. Since the indicator bits εθs, ε
θ
r, ε

θ
p, and εθm depend only on the

conjugacy class of θ, it makes sense to work one conjugacy class at a time. Since there are

5 + 3 + 1 = 9 conjugacy classes of involutions by Corollary 3.3.2, we have the following nine

cases.

Case I. Suppose θ is given by the diagram

Dθ : + + + + .

Then θ is supportable for λ and we have

εθs = 1

εθp = εθr = εθm = 0∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 4.

Since θ = 1, there are no other supportable involutions in I conjugate to θ. Therefore there

are

1×
∣∣∣D̃θλ∣∣∣ = 1× 4 = 4

elements in D̃λ for this conjugacy class.
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Case II. Suppose θ is given by the diagram

Dθ : + + + − .

Then θ is supportable for λ and we have

εθs = εθr = 1

εθp = εθm = 1∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 1.

There are four conjugate involutions in I that are supportable for λ and therefore there are

4×
∣∣∣D̃θλ∣∣∣ = 4× 1 = 4

elements in D̃λ for this conjugacy class.

Case III. Suppose θ is given by the diagram

Dθ : − + + − .

Then θ is supportable for λ and we have

εθs = εθr = 1

εθp = εθm = 0∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 4.

There are four conjugate involutions in I that are supportable for λ and therefore there are

4×
∣∣∣D̃θλ∣∣∣ = 4× 4 = 16

elements in D̃λ for this conjugacy class.

Case IV. Suppose θ is given by the diagram

Dθ : + − − − .

Then θ is supportable for λ and we have

εθs = εθr = 1

εθp = εθm = 1∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 1.

There are four conjugate involutions in I that are supportable for λ and therefore there are

4×
∣∣∣D̃θλ∣∣∣ = 4× 1 = 4

elements in D̃λ for this conjugacy class.
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Case V. Suppose θ is given by the diagram

Dθ : − − − − .

Then θ is supportable for λ and we have

εθr = 1

εθs = εθp = εθm = 0∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 4.

Since θ = −1, there are no other supportable involutions in I conjugate to θ. Therefore

there are

1×
∣∣∣D̃θλ∣∣∣ = 1× 4 = 4

elements in D̃λ for this conjugacy class.

Case VI. Suppose θ is given by the diagram

Dθ : + 3 2 + .

Then θ is supportable for λ and we have

εθs = 1

εθp = εθr = εθm = 0∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 4.

There are eight conjugate involutions in I that are supportable for λ and therefore there

are

8×
∣∣∣D̃θλ∣∣∣ = 8× 4 = 32

elements in D̃λ for this conjugacy class.

Case VII. Suppose θ is given by the diagram

Dθ : + 3 2 − .

Then θ is supportable for λ and we have

εθs = εθr = 1

εθp = εθm = 1∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 1.
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There are sixteen conjugate involutions in I that are supportable for λ and therefore there

are

16×
∣∣∣D̃θλ∣∣∣ = 16× 1 = 16

elements in D̃λ for this conjugacy class.

Case VIII. Suppose θ is given by the diagram

Dθ : − 3 2 − .

Then θ is supportable for λ and we have

εθr = 1

εθs = εθp = εθm = 0∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 4.

There are eight conjugate involutions in I that are supportable for λ and therefore there

are

8×
∣∣∣D̃θλ∣∣∣ = 8× 4 = 32

elements in D̃λ for this conjugacy class.

Case IX. Suppose θ is given by the diagram

Dθ : 4 3 2 1.

Then θ is supportable for λ and we have

εθs = εθp = εθr = εθm = 0∣∣∣D̃θλ∣∣∣ = 22−(εθsε
θ
p+εθrε

θ
m) = 4.

There are eight conjugate involutions in I that are supportable for λ and therefore there

are

8×
∣∣∣D̃θλ∣∣∣ = 8× 4 = 32

elements in D̃λ for this conjugacy class.

Finally we have ∣∣∣D̃λ∣∣∣ = 4 + 4 + 16 + 4 + 4 + 32 + 16 + 32 + 32 = 144.

Example 9.4.5. Table 9.2 lists (computer generated) values for
∣∣∣D̃λ∣∣∣ at symmetric in-

finitesimal character λ for small values of n
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9.2. Values of
∣∣∣D̃λ∣∣∣

n 1 2 3 4 5 6 7 8 9 10
4 18 30 144 314 1598 4166 22344 66512 373988

.



PART III

DUALITY



CHAPTER 10

NUMERICAL DUALITY FOR

NONLINEAR PARAMETERS

In Chapter 3 we defined the bit flip involution

Ψ : I → I

on the set of abstract involutions in W . In addition to describing a symmetry of I, Ψ

determined symmetries on most of the structure theoretic information we computed for G

in Chapters 3, 4, and 5. One might then expect Ψ to lead to a symmetry on the set Dχ of

representation theoretic parameters for G. Unfortunately Example 5.2.5 shows this is not

the case. Our goal in this part is to show that, in some cases, the expected symmetry does

appear in the set D̃χ of representation theoretic parameters for the nonlinear group G̃.

Before attempting to define Ψ explicitly on the level of parameters, we can use the

results of the previous section to verify such a map is numerically possible. It turns out this

is the case only when the rank of G̃ is even.

10.1 Restriction to Even Rank

Let λ ∈ (ha)∗ be a fixed symmetric infinitesimal character and suppose θ is an involution

in W . Recall θ is said to be supportable for λ if there exists an imaginary grading ε such

that the abstract triple (θ, ε, λ) satisfies the conditions of Proposition 6.2.2. In order for

Ψ to induce a symmetry on D̃λ, we clearly must have θ supportable if and only if Ψ(θ) is

supportable. The following example shows this is not always the case.

Example 10.1.1. Suppose n = 3 and λ = (2, 1, 1
2) is a symmetric infinitesimal character.

If we take θ ∈ I such that

Dθ : − − +

then θ is supportable for λ. However the diagram for Ψ(θ) = −θ is given by

DΨ(θ) : + + −
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which is not supportable for λ.

Let θ ∈ I and recall the indicator bits εθs, ε
θ
r, ε

θ
p, ε

θ
m for θ from Section 3.1. The indicator

bits for Ψ(θ) are related to the ones for θ through the following obvious lemma.

Lemma 10.1.2. Let θ ∈ I. Then

nΨ(θ)
s = nθr

nΨ(θ)
c = nθc

εΨ(θ)
s = εθr

εΨ(θ)
p = εθm.

The next proposition shows the parity of n is the only obstruction to duality in sup-

portable involutions.

Proposition 10.1.3. Let λ ∈ (ha)∗ be a fixed symmetric infinitesimal character, θ ∈ I,

and suppose n is even. Then θ is supportable for λ if and only if Ψ(θ) is supportable for λ.

Proof. Since n is even and λ is symmetric, n2 of the coordinates for λ will be integers and n
2

will be strict half-integers. Recall θ is supportable for λ if and only if n
θ
s+εθp
2 of the imaginary

coordinates are of one type (say integers wlog) and nθs−εθp
2 are of the other type (say strict

half-integers wlog). Then the number of real integral coordinates for θ is given by

n

2
− nθc

2
−
nθs + εθp

2
=

n− nθc − nθs − εθp
2

=
nθr − εθp

2

=
nθr − εθm

2

(note εθm = εθp). Similarly the number of real strict half-integral coordinates for θ is given

by

n

2
− nθc

2
−
nθs − εθp

2
=

n− nθc − nθs + εθp
2

=
nθr + εθp

2

=
nθr + εθm

2
.

Since nθr = n
Ψ(θ)
s and εθm = ε

Ψ(θ)
p by Lemma 10.1.2, the result follows.
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Prior to Proposition 10.1.3, none of the results in these notes depended on the the parity

of n. Because of Proposition 10.1.3 and Example 10.1.1 we will often assume n is even in

what follows. We begin with the following specialization of Theorem 9.4.3.

Proposition 10.1.4. Let λ ∈ (ha)∗ be a symmetric infinitesimal character, θ ∈ I, and

suppose n is even. Then ∣∣∣D̃θλ∣∣∣ ∈ {1, 4}
Proof. Theorem 9.4.3 implies ∣∣∣D̃θλ∣∣∣ = 22−(εθsε

θ
p+εθrε

θ
m).

Since n is even, we clearly have εθp = εθm. Now

εθp = εθm = 0 =⇒
∣∣∣D̃θλ∣∣∣ = 22−0 = 4.

On the other hand

εθp = εθm = 1 =⇒ εθs = εθr = 1

and
∣∣∣D̃θλ∣∣∣ = 22−2 = 1 as desired.

The following theorem shows numerical duality exists for nonlinear parameters in even

rank.

Theorem 10.1.5. Let λ ∈ (ha)∗ be a symmetric infinitesimal character, θ ∈ I, and suppose

n is even. Then ∣∣∣D̃Ψ(θ)
λ

∣∣∣ =
∣∣∣D̃θλ∣∣∣ .

Proof. Proposition 10.1.3 implies θ is supportable for λ if and only if Ψ(θ) is. In particular

we have ∣∣∣D̃θλ∣∣∣ =
∣∣∣D̃Ψ(θ)

λ

∣∣∣ = 0

if θ is not supportable for λ. Otherwise, Theorem 9.4.3 and Lemma 10.1.2 give∣∣∣D̃Ψ(θ)
λ

∣∣∣ = 22−(ε
Ψ(θ)
s ε

Ψ(θ)
p +ε

Ψ(θ)
r ε

Ψ(θ)
m )

= 22−(εθrε
θ
m+εθsε

θ
p)

= 22−(εθsε
θ
p+εθrε

θ
m)

=
∣∣∣D̃θλ∣∣∣

as desired.



CHAPTER 11

CENTRAL CHARACTERS

Fix a symmetric infinitesimal character λ ∈ (ha)∗. Example 10.1.1 and Proposition

10.1.3 of the previous section imply an extension of Ψ to D̃λ is possible only when the rank

of G̃ is even. In this case, Proposition 10.1.4 implies
∣∣∣D̃θλ∣∣∣ ∈ {1, 4} for each supportable

involution θ ∈ I. If
∣∣∣D̃θλ∣∣∣ = 1, we have

∣∣∣D̃Ψ(θ)
λ

∣∣∣ = 1 by Theorem 10.1.5 and the definition of

Ψ is obvious. Therefore it remains to define Ψ on the sets D̃θλ for which
∣∣∣D̃θλ∣∣∣ =

∣∣∣D̃Ψ(θ)
λ

∣∣∣ = 4.

This definition is complicated and will occupy the next several sections.

The main idea is to find structure theoretic data that characterize the elements in D̃θλ,

and then use these data in extending the map Ψ. In this section we cut the problem in half

by considering an action of D̃θλ on Z(G̃). Not surprisingly, short roots play an important

role (see Proposition 7.2.2).

11.1 Properties of Short Roots

We begin by redeveloping some material from Chapter 8. Let hR be a Θ-stable Cartan

subalgebra of gR with root system ∆(g, h). Recall ∆Θ
R (g, h) denotes the roots in ∆(g, h)

that are real with respect to Θ.

Lemma 11.1.1 ([16], Lemma 4.3.7). Suppose α ∈ ∆Θ
R (g, h). Then there exists a root vector

Xα ∈ gα ∩ gR with the property

[ΘXα, Xα] = hα,

where hα ∈ h is the coroot for α. Moreover, the vector Xα is unique up to sign.

Definition 11.1.2. For a fixed choice of Xα, let Zα = Xα + ΘXα ∈ h and define the

elements



99

σα = expG(
π

2
Zα) ∈ K

σ̃α = exp
G̃

(
π

2
Zα) ∈ K̃

mα = expG(πZα) = expG(πihα) ∈ H

m̃α = exp
G̃

(πZα) ∈ H̃.

Then σα, σ̃α are representatives of the root reflection sα and we have σ2
α = mα and σ̃2

α = m̃α

([11], Proposition 6.52(c)).

Remark 11.1.3. It is important to note the conditions in Lemma 11.1.1 determine the

vector Xα (and thus Zα) only up to sign. This ambiguity potentially affects the elements

of Definition 11.1.2. In the group G we have

expG(2πZα) = m2
α = 1

expG(πZα) = expG(−πZα)

so the element mα is well-defined. Moreover

expG(−π
2
Zα) = σ−1

α

= σαmα

and conjugation in σα and σ−1
α induces the same action on H or h, but not on G or g.

In G̃, the situation is more complicated. If α is short then everything is the same as for

G. If α is long

exp
G̃

(2πZα) = m̃2
α = −1

exp
G̃

(πZα) = −exp
G̃

(−πZα)

and the element m̃α is determined by the root α only up to inverse. Moreover

exp
G̃

(−π
2
Zα) = σ̃−1

α

= −σ̃αm̃α

so conjugation in σ̃α and σ̃−1
α induces the same action on H̃ if and only if m̃α is central in

H̃.

In particular, some care is required when discussing the elements σα, σ̃α, and m̃α since

these elements (and their corresponding actions) are not always determined by the root
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α. Depending on the context we may need to explicitly choose root vectors satisfying the

condition in Lemma 11.1.1. One notable exception is when the root α is short, in which

case m̃α and the actions of σα, σ̃α are well-defined.

Although we have a choice for the root vectors Xα for each real α ∈ ∆(g, h), the following

lemma shows certain choices can be used to induce others.

Lemma 11.1.4. Let α, β, γ be roots in ∆Θ
R (g, h) such that

sα(β) = γ.

Choose root vectors Xα ∈ gα and Xβ ∈ gβ satisfying the conditions of Lemma 11.1.1. Then

the root vector Ad(σα)(Xβ) ∈ gγ also satisfies the conditions of Lemma 11.1.1.

Proof.

[ΘAd(σα)Xβ,Ad(σα)Xβ] = Ad(σα) [ΘXβ, Xβ]

= Ad(σα)hβ

= hγ

as desired.

Let α, β ∈ ∆Θ
R (g, h) be orthogonal roots and choose Xα ∈ gα and Xβ ∈ gβ satisfying the

conditions of Lemma 11.1.1. Lemmas 11.1.1 and 11.1.4 imply

Ad(σβ)Xα = ±Xα.

The following proposition shows the nontrivial case actually occurs.

Proposition 11.1.5. Let α, β ∈ ∆Θ
R (g, h) be short orthogonal roots. Choose Xβ ∈ gβ

according to Lemma 11.1.1 and suppose Eα ∈ gα is a root vector for α. Then

Ad(σβ)Eα = −Eα.

Proof. We will calculate the adjoint action of σβ on Eα explicitly using infinite series. We

begin by calculating



101

ad(
π

2
Zβ)(Eα) =

π

2
([Xβ, Eα] + [ΘXβ, Eα])

ad2(
π

2
Zβ)(Eα) =

π2

4
([Zβ, [Xβ, Eα]] + [Zβ, [ΘXβ, Eα]])

=
π2

4
([ΘXβ, [Xβ, Eα]] + [Xβ, [ΘXβ, Eα]])

=
π2

4
(−2Eα − 2Eα)

= −π2Eα

where the second to last equality is given by direct calculation. Therefore we have

∞∑
k=0

adk(π2Zβ)Eα
k!

=
∞∑
k=0

(−1)k
π2k

(2k)!
Eα

+
1
2

∞∑
k=0

(−1)k
π2k+1

(2k + 1)!
([Xβ, Eα] + [ΘXβ, Eα])

= cos(π)Eα +
1
2

sin(π) ([Xβ, Eα] + [ΘXβ, Eα])

= −Eα

as desired.

If α and β are short roots in ∆Θ
R (g, h), Proposition 7.2.2 implies m̃α = ±m̃β. The

following proposition shows we always have equality.

Proposition 11.1.6. Let α and β be short orthogonal roots in ∆Θ
R (g, h). Then m̃β = m̃α.

Proof. Let γ = α− β so that

sγ(α) = α− (α, γ)γ

= α− γ

= β.

Choose a root vector Xα ∈ gα according to Lemma 11.1.1. Then

m̃β = exp
G̃

(πAd(σ̃γ)Zα)

= σ̃γexp
G̃

(πZα)σ̃−1
γ

= σ̃γm̃ασ̃
−1
γ

= m̃α

by Proposition 7.2.2.
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Following the notation in [16], let β(mα) denote the scalar by which mα acts on the root

space gβ. Proposition 8.1.1 implies

β(mα) = (−1)(β,α∨)

and obviously β(mα) = β(m̃α).

Lemma 11.1.7. Let h ⊂ g be a Θ-stable Cartan subalgebra and suppose α, β ∈ ∆Θ
R (g, h).

Choose root vectors Xα ∈ gα and Xβ ∈ gβ according to Lemma 11.1.1. Then we have

m̃ασ̃βm̃
−1
α = σ̃

β(m̃α)
β

σ̃βm̃ασ̃
−1
β = σ̃

(1−β(m̃α))
β m̃α.

Proof. The first statement is proved in exactly the same way as [16], Lemma 4.3.19(c). For

the second statement we have

m̃ασ̃βm̃
−1
α = σ̃

β(m̃α)
β

m̃ασ̃
−1
β m̃−1

α = σ̃
−β(m̃α)
β

σ̃βm̃ασ̃
−1
β = σ̃βσ̃

−β(m̃α)
β m̃α

σ̃βm̃ασ̃
−1
β = σ̃

(1−β(m̃α))
β m̃α

as desired.

Lemma 11.1.8. Let hR ⊂ gR be a Θ-stable Cartan subalgebra and suppose α, β ∈ ∆Θ
R (g, h)

are strongly orthogonal. Then the operators Ad(mα),Ad(mβ) commute.

Proof. Since these operators are given by the adjoint representation, we need only check

that [Zα, Zβ] = 0. However this follows easily from the fact the roots α and β are strongly

orthogonal.

We now turn our attention to noncompact imaginary roots. Recall ∆Θ
i (g, h) denotes the

roots in ∆(g, h) that are imaginary with respect to Θ. We begin with the following analog

of Lemma 11.1.1.

Lemma 11.1.9. Suppose β ∈ ∆Θ
i (g, h) is imaginary and noncompact. Then there exists a

root vector Xβ ∈ gβ with the property[
Xβ, Xβ

]
= hβ,

where hβ ∈ h is the coroot for β. Moreover, the vector Xβ is unique up to sign.
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Definition 11.1.10. For a fixed choice of Xβ as above, let Zβ = Xβ +Xβ ∈ h and define

the elements

mβ = expG(πiZβ) = expG(πihβ) ∈ H

m̃β = exp
G̃

(−πihβ) ∈ H̃.

The reason for this definition of m̃β will become clear in the next section (Corollary 11.2.5).

Remark 11.1.11. As before, Lemma 11.1.9 defines the vector Xβ only up to sign. In the

group G we have

expG(2πiZβ) = m2
β = 1

expG(πiZβ) = expG(−πiZβ)

so the element mβ is well-defined. The same is true in the group G̃ if β is short. However,

if β is long we have

exp
G̃

(−2πihβ) = m̃2
β = −1

exp
G̃

(−πihβ) = −exp
G̃

(πihβ).

Let h ⊂ g be a Θ-stable Cartan subalgebra and suppose β ∈ ∆Θ
i (g, h) is noncompact.

Proposition 11.2.4 and Corollary 11.2.5 of the next section imply there exists a Cartan

subalgebra h′ ⊂ g and a real root α ∈ ∆(g, h′) so that m̃β = m̃α. In particular, if β is

short then m̃β is nontrivial and central in G̃. Assuming this, we have the following analog

of Proposition 11.1.6.

Proposition 11.1.12. Let α 6= ±β be short noncompact roots in ∆Θ
i (g, h). Then m̃β = m̃α.

Proof. Let γ = α − β. Proposition 5.1.2 implies γ is compact and we can find an element

σ̃γ ∈ K̃ for which

Ad(σ̃γ)hα = hβ.

We now proceed as in the proof of Proposition 11.1.6.

Tracking the elements m̃α for various roots α will be an important component in the

definition of Ψ. Proposition 11.1.6 implies there is a single m̃α ∈ H̃ associated to the short

roots in ∆Θ
R (g, h) and Proposition 11.1.12 gives a single element m̃β ∈ H̃ associated to the

short noncompact roots in ∆Θ
i (g, h). Moreover, we must have m̃α = ±m̃β by Proposition

7.2.2. Our goal in the next section is to determine this relationship (Corollary 11.2.9).
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11.2 Cayley Transforms Revisited

In Section 8.1 we defined the Cayley transform operation for Cartan subalgebras. It

turns out these transformations appear explicitly in the adjoint representation of G. Having

specific realizations for Cayley transforms will be useful in what follows. To begin, let hR be

a Θ-stable Cartan subalgebra of gR. Suppose α ∈ ∆(g, h) is a real root and β ∈ ∆(g, h) is

imaginary and noncompact. Choose nonzero root vectors Xα ∈ gα and Xβ ∈ gβ according

to Lemmas 11.1.1 and 11.1.9. Let

ξα =
πi

4
(ΘXα −Xα)

ζβ =
π

4
(
Xβ −Xβ

)
and define the corresponding Cayley transform operators

Cα = Ad(expG(ξα))

Cβ = Ad(expG(ζβ)).

Remark 11.2.1. The Cayley transform operators depend on the choices of Xα and Xβ up

to inverse.

The connection with our previous notion of Cayley transform is given by the following

propositions (see [11], Chapter 6 for more details).

Proposition 11.2.2 ([11], 6.68). In the notation of Section 8.1 and Lemma 11.1.1

Cα(h) = hα

Cα(hα) = iZα

Cα(Zα) = ihα.

Proposition 11.2.3 ([11], 6.66). Cβ(h) is a Θ-stable Cartan subalgebra of g. In the notation

of Lemma 11.1.9

Cβ(hβ) = Zβ

Cβ(Zβ) = −hβ.

We will write hβ = Cβ(h) for the Cayley transform of h with respect to β and

Cα : ∆(g, h)→ ∆(g, hα)

Cβ : ∆(g, h)→ ∆(g, hβ)

for the induced operations on roots.
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Proposition 11.2.4 ([11], Proposition 6.69). The root Cβ(β) ∈ ∆(g, hβ) is real and the root

Cα(α) ∈ ∆(g, hα) is imaginary and noncompact. Moreover, there exists a suitable choice of

root vectors so that

CCα(α) ◦ Cα = CCβ(β) ◦ Cβ = I.

In particular, the Cayley transform operators defined above are essentially inverses. The

following corollary explains the definition of m̃β in the previous section.

Corollary 11.2.5. Let α ∈ ∆Θ
R (g, h) be a real root and choose Xα ∈ gα according to Lemma

11.1.1. Then m̃α = m̃Cα(α).

Proof. The coroot for Cα(α) is Cα(hα) = iZα ∈ hα by Proposition 11.2.2. Therefore we have

m̃Cα(α) = exp
G̃

(−πi(iZα))

= exp
G̃

(πZα)

= m̃α

as desired.

Lemma 11.2.6. Let hR ⊂ gR be a Θ-stable Cartan subalgebra and suppose α, β ∈ ∆Θ
R (g, h)

are strongly orthogonal. Then the operators {Cα, Cβ} and {Cα,Ad(mβ)} commute.

Proof. The proof is the same as Lemma 11.1.8.

Lemma 11.2.7. Let hR ⊂ gR be a Θ-stable Cartan subalgebra with α ∈ ∆Θ
R (g, h) a long

root. Suppose there exists a short root β ∈ ∆Θ
R (g, h) that is not orthogonal to α. Then the

operators {Cα,Ad(mα)} commute.

Proof. Write γ = sβ(α). Then α and γ are strongly orthogonal roots in ∆Θ
R (g, h) and the

operators {Cα,Ad(mγ)} commute by the previous lemma. However, the elements mα and

mγ differ by a central element in G̃ (Proposition 7.2.1) and therefore Ad(mα) = Ad(mγ) as

operators on g.

We now come to the main result of this section. Let hR ⊂ gR be a Θ-stable Cartan

subalgebra and suppose α, β ∈ ∆Θ
R (g, h) are short and orthogonal. Set γ = α − β, δ =

α+ β, and choose a root vector Xγ for γ satisfying the conditions of Lemma 11.1.1. Write
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Xδ = sβ(Xγ) (well-defined since β is short) be the induced root vector for δ according to

Lemma 11.1.4 and define the corresponding Cayley transform operators Cγ and Cδ. Let

D = Cδ ◦ Cγ

denote the composition. The roots D(γ) and D(δ) in ∆Θ
i (g,D(h)) are noncompact by

Proposition 11.2.4. The following proposition determines the imaginary types for D(α) and

D(β).

Proposition 11.2.8. In the situation above, the root D(α) ∈ ∆Θ
i (g,D(h)) is noncompact

and the root D(β) ∈ ∆Θ
i (g,D(h)) is compact.

Proof. Let Eβ be an arbitrary root vector in gβ and set

Eα = [ΘXγ −Xγ , Eβ] = [Eβ, Xγ ] ∈ gα.

We begin by computing Cγ(Eβ). We have

ad(ξγ)(Eβ) =
(
πi

4

)
Eα

ad(ξγ)2(Eβ) =
(
πi

4

)
[ξα, [Eβ, Xγ ]]

=
(
πi

4

)2

[ΘXγ −Xγ , [Eβ, Xγ ]]

=
(
πi

4

)2

[ΘXγ , [Eβ, Xγ ]]

= −
(
πi

4

)2

[Eβ, [Xγ ,ΘXγ ]]

= −
(
πi

4

)2

[hγ , Eβ]

=
(
πi

4

)2

Eβ

and in general

ad(ξγ)n(Eβ) =
{ (

πi
4

)n
Eα n odd(

πi
4

)n
Eβ n even

.

Therefore

Cγ(Eβ) =
∞∑
k=0

(−1)k
(π4 )2k

(2k)!
Eβ + i

∞∑
k=0

(−1)k
(π4 )2k+1

(2k + 1)!
Eα

= cos(
π

4
)Eβ + i sin(

π

4
)Eα.
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It remains to compute Cδ(Eα) and Cδ(Eβ). Set Fα = [ΘXδ −Xδ, Eβ] = [ΘXδ, Eβ] ∈ g−α

and Fβ = [ΘXδ −Xδ, Eα] = [ΘXδ, Eα] ∈ g−β. In the same fashion as above we compute

ad(ξδ)
n(Eα) =

{ (
πi
4

)n
Fβ n odd(

πi
4

)n
Eα n even

Cδ(Eα) =
∞∑
k=0

(−1)k
(π4 )2k

(2k)!
Eα + i

∞∑
k=0

(−1)k
(π4 )2k+1

(2k + 1)!
Fβ

= cos(
π

4
)Eα + i sin(

π

4
)Fβ

and

ad(ξδ)
n(Eβ) =

{ (
πi
4

)n
Fα n odd(

πi
4

)n
Eβ n even

Cδ(Eβ) =
∞∑
k=0

(−1)k
(π4 )2k

(2k)!
Eβ + i

∞∑
k=0

(−1)k
(π4 )2k+1

(2k + 1)!
Fα

= cos(
π

4
)Eβ + i sin(

π

4
)Fα.

Combining these we have

D(Eβ) = Cδ
(

cos(
π

4
)Eβ + i sin(

π

4
)Eα

)
= cos(

π

4
)
(

cos(
π

4
)Eβ + i sin(

π

4
)Fα
)

+ i sin(
π

4
)
(

cos(
π

4
)Eα + i sin(

π

4
)Fβ
)

=
i

2
(Eα + Fα) +

1
2

(Eβ − Fβ) .

Since D(β) is imaginary, we must have ΘD(Eβ) = ±D(Eβ). In order to prove D(β)

is compact, it suffices to prove the vector Eα + Fα is fixed by Θ or (more specifically)

Eα = ΘFα. To see this, we compute

ΘFα = Θ [ΘXδ, Eβ]

= [Xδ,ΘEβ]

= [sβXγ ,ΘEβ]

by our construction of Xδ. Then a simple calculation in sl2 gives

[sβXγ ,ΘEβ] = sβ [Xγ , sβΘEβ]

= sβ [Xγ , Eβ]

and now Proposition 11.1.5 implies

sβ [Xγ , Eβ] = [Eβ, Xγ ] = Eα.
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Therefore we have ΘD(Eβ) = D(Eβ) implying the root D(β) is compact. The claim that

D(α) is noncompact follows from Proposition 5.1.2.

Corollary 11.2.9. In the setting of Proposition 11.2.8, m̃D(α) = −m̃α.

Proof. The coroot for α in h is given by hα = hγ + hδ. Therefore the coroot for D(α) in

D(h) is given by

hD(α) = D(hγ + hδ)

= i(Zγ + Zδ)

= i(Zγ + sβZγ)

by Proposition 11.2.2. Therefore

m̃D(α) = exp
G̃

(−πihD(α))

= exp
G̃

(−πi2(Zγ + sβZγ))

= exp
G̃

(πZγ)exp
G̃

(πsβZγ)

= m̃γ σ̃βm̃γ σ̃
−1
β

= m̃γm̃βm̃γ

= −m̃β

= −m̃α

as desired. Here we are using Lemma 11.1.7 and Proposition 11.1.6. Recall conjugation in

β is well-defined since the root β is short.

11.3 Abstract Bigradings

Let λ ∈ (ha)∗ be a symmetric infinitesimal character and suppose (H̃, φ, Γ̃) is a genuine

triple for λ. Recall Γ̃ is an irreducible genuine representation of H̃ whose differential is

compatible with φ (Chapter 2). Since the Cartan subgroup H̃ may not be abelian, the

representation Γ̃ is not necessarily one-dimensional (Proposition 7.1.3). In this section we

characterize the action of Γ̃ on certain finite order elements in H̃. We begin with the

following lemma.

Lemma 11.3.1 ([13], Chapter 5). In the setting above, let α ∈ ∆Θ
R (g, h) be a real root and

choose a corresponding m̃α ∈ H̃. If α is long we have

Γ̃(m̃2
α) = −I



109

and Γ̃(m̃α) has eigenvalues ±i occurring with equal multiplicity. If α is short we have

Γ̃(m̃α) = ±I.

The data of Lemma 11.3.1 are conveniently packaged in the following definition.

Definition 11.3.2. Following [13], we say a long root α ∈ ∆Θ
R (g, h) satisfies the parity

condition if it is strictly half-integral with respect to φ (i.e., (φ, α∨) ∈ Z + 1
2). We say a

short root α ∈ ∆Θ
R (g, h) satisfies the parity condition if

Γ̃(m̃α) = (−1)(−1)(φ,α∨) · I

(see also [16], Section 8.3 and Corollary 12.3.6). Recall the element m̃α is well-defined for

short roots and we always have (φ, α∨) ∈ Z. Lemma 11.3.1 implies this definition makes

sense and gives a well-defined map

η : ∆Θ
R (g, h)→ Z2

where

η(α) =
{

0 α does not satisfy the parity condition
1 α satisfies the parity condition

.

The following proposition is the formal analog of Proposition 5.1.2 for real roots.

Proposition 11.3.3. The map η defines a grading (Definition 5.1.1) on ∆Θ
R (g, h).

Proof. It remains to verify the properties of Definition 5.1.1. This follows easily from

Proposition 11.1.6 and the fact that the parity condition for a short root α is determined

by the integer (φ, α∨).

In Chapter 5 we defined a grading ε on the imaginary root system ∆Θ
i (g, h) for any

Θ-stable Cartan subalgebra h ⊂ g. Given a genuine triple (H̃, φ, Γ̃)λ, Proposition 11.3.3

defines a grading η on the real root system ∆Θ
R (g, h) with the same formal properties as ε.

Applying the conjugation map i−1
λ,φ (Section 6.1) to

{
(H̃, φ), ε, η

}
gives an abstract bigrading

(θ, ε, η, λ) for the abstract root system ∆ = ∆(g, ha). This extends the notion of an abstract

triple from Section 6.2.

It is easy to check conjugating (H̃, φ, Γ̃) by an element of K̃ does not change the abstract

bigrading. In particular, abstract bigradings are defined on the level of genuine parameters

D̃λ for G̃. Note that an abstract bigrading depends (potentially) on the full representative

(H̃, φ, Γ̃) and not just the representative pair (H̃, φ). The exact nature of this dependence

is determined in the next section.
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11.4 Central Character

Let λ ∈ (ha)∗ be a symmetric infinitesimal character. It will be convenient in what

follows to fix a representative set of Cartan subgroups in G̃. To begin, let hs ⊂ g be a split

Cartan subalgebra with corresponding Cartan subgroup H̃s ⊂ G̃. In the usual coordinates

for ∆(g, hs) = ∆Θ
R (g, hs) set

αi = e2i−1 − e2i

βi = e2i−1 + e2i

γ = en.

With the exception of the pairs {αn, γ} and {βn, γ}, this is a strongly orthogonal set of

roots. Choose root vectors Xαi ∈ gαi and Xγ ∈ gγ according to Lemma 11.1.1 and induce

Xβi ∈ gβi via short reflection as in Proposition 11.2.8. Define the corresponding Cayley

transform operators Cαi , Cβi , and Cγ . Then (up to conjugacy) we obtain every Cartan

subalgebra of g by an iterated application of these operators to hs. We use the notation

from Section 8.1 to denote the resulting Cartan subalgebras and corresponding Cartan

subgroups in G̃.

Definition 11.4.1. Suppose c is a sequence of strongly orthogonal roots of the form above

and let H̃s
c ⊂ G̃ be the corresponding Cartan subgroup. The central character of a genuine

triple (H̃s
c , φ, Γ̃)λ is the genuine representation of Z(G̃) given by restricting Γ̃ to Z(G̃) ⊂ H̃s

c .

Remark 11.4.2. The central character will turn out to be an important invariant of genuine

triples. Since Γ̃ is assumed to be genuine, we automatically have Γ̃(−1) = −I. Therefore

the central character of (H̃s
c , φ, Γ̃)λ is determined by the action of Γ̃ on a single nontrivial

element in Z(G̃). Since
∣∣∣Z(G̃)

∣∣∣ = 4, there are only two such possibilities.

Remark 11.4.3. Given a genuine triple (H̃s
c , φ, Γ̃)λ, Proposition 7.1.3 implies

Γ̃|
Z(H̃s

c)
= mχ

where m =
∣∣∣H̃s

c/Z(H̃s
c )
∣∣∣ 1

2 and χ is a genuine character of Z(H̃s
c ). In particular, central

characters are not always one-dimensional representations of Z(G̃). This makes it technically

incorrect to compare central characters for distinct genuine triples unless we happen to know

the dimensions of their genuine representations are equal. However, we can remedy this by

comparing the associated characters χ|
Z(G̃)

from Proposition 7.1.3. Unless otherwise stated,
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this convention is in effect whenever we compare central characters for different genuine

triples.

Remark 11.4.4. The central character is clearly well defined on the level of genuine param-

eters D̃λ for G̃.

Fix a genuine triple (H̃s
c , φ, Γ̃)λ and let η and ε be the corresponding real and imaginary

gradings. In most cases, the central character of (H̃s
c , φ, Γ̃)λ is determined by either η or ε.

Proposition 11.4.5. In the above setting, suppose α ∈ ∆Θ
R (g, hs

c) is a short real root. Then

m̃α is well-defined and central in G̃ and we have

Γ̃(m̃α) =
{

(−1)1−η(α) · I (φ, α) ∈ Z + 1
2

(−1)η(α) · I (φ, α) ∈ Z .

Proof. This follows from Definition 11.3.2 directly.

Proposition 11.4.6. In the above setting, suppose α ∈ ∆Θ
i (g, hs

c) is short and noncompact.

Then m̃α is well-defined and central in G̃ and we have

Γ̃(m̃α) =
{

1 · I (φ, α) ∈ Z + 1
2

−1 · I (φ, α) ∈ Z .

Proof. Choose Xα ∈ gα according to Lemma 11.1.9 and recall m̃α = exp
G̃

(−πihα) =

exp
G̃

(πihα) is a central element in G̃. Then

ihα = i
[
Xα, Xα

]
= −i

[
Xα, Xα

]
= i

[
Xα, Xα

]
= ihα

so that ihα ∈ gR. It follows m̃α ∈ (H̃s
c )0 (see also Proposition 8.3.1) and it suffices to

calculate dΓ(−πihα). From the identity α(hα) = 2 and the definition of dΓ̃ in Section 2.2

we have

Γ̃(m̃α) = Γ̃(exp
G̃

(−πihα))

= edΓ(−πihα) · I

= e
−2πi

(
(φ,α)+(ρφi ,α)−(2ρφic,α)

)
· I.

Now it is easy to check (ρφi , α) ∈ Z + 1
2 and (2ρφic, α) ∈ Z so that

Γ̃(m̃α) = −e−2πi·(φ,α) · I

and the result follows.
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Remark 11.4.7. If ∆(g, hs
c) contains a short root that is not complex, we can use Proposition

11.4.5 or Proposition 11.4.6 to determine the central character of (H̃s
c , φ, Γ̃)λ. If this root

is noncompact, the central character is determined by the genuine pair (H̃s
c , φ)λ and all

genuine triples extending (H̃s
c , φ)λ have the same central character.

In Section 6.3 it was shown there are (at most) two possibilities for the imaginary grading

ε (Remark 6.3.2). In particular, if α, β ∈ ∆θ
i (g, h) are short then

ε(α) = ε(β) ⇐⇒ (φ, α) ≡ (φ, β) mod Z.

Since the structure of Definition 11.3.2 is formally the same, a similar result holds for the

real grading η as well. The following theorem describes the relationship between η and ε in

terms of these possibilities.

Theorem 11.4.8. Let (H̃s
c , φ, Γ̃)λ be a genuine triple with corresponding real and imaginary

gradings η and ε. Suppose the root system ∆(g, hs
c) contains both short real and short

noncompact imaginary roots. Then the gradings η and ε are of the opposite kind. In

particular, if α ∈ ∆Θ
R (g, hs

c) and β ∈ ∆Θ
i (g, hs

c) are short

η(α) = ε(β) ⇐⇒ (φ, α) 6≡ (φ, β) mod Z.

Proof. Specializing Proposition 11.4.5 to the case η(α) = 1 gives

Γ̃(m̃α) =
{

1 · I (φ, α) ∈ Z + 1
2

−1 · I (φ, α) ∈ Z .

If ε(β) = 1, Proposition 11.4.6 gives

Γ̃(m̃β) =
{

1 · I (φ, β) ∈ Z + 1
2

−1 · I (φ, β) ∈ Z .

However, Corollary 11.2.9 implies m̃β = −m̃α and the result follows.

11.5 Central Characters in Even Rank

We continue with the notation from the previous section and assume now the rank of G̃

is even. Recall
∣∣∣D̃θλ∣∣∣ denotes the number of genuine parameters for λ whose corresponding

abstract triples (or abstract bigradings) begin with θ. Since G̃ has even rank,
∣∣∣D̃θλ∣∣∣ ∈ {1, 4}

by Proposition 10.1.4. In the nontrivial case, the following proposition implies central

characters evenly partition the set D̃θλ.

Proposition 11.5.1. Assume
∣∣∣D̃θλ∣∣∣ = 4 and suppose υ ∈ D̃θλ. Then exactly half of the

elements in D̃θλ have the same central character as υ.
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Proof. Let εθs, ε
θ
p, ε

θ
r, ε

θ
m denote the indicator bits for θ (Definition 3.1.1) and recall Theorem

9.4.3 implies
∣∣∣D̃θλ∣∣∣ = 22−(εθsε

θ
p+εθrε

θ
m). If εθs = 0, Proposition 8.3.1 implies the nontrivial

central elements in Z(G̃) are not in (H̃s
c )0 and the result clearly follows. Suppose now

εθs = 1 ⇒ εθp = 0. Then the number of ‘+’ signs in the diagram for θ is even and there

are two possible imaginary gradings for which the abstract triple (θ, ε, λ) is supportable

(Remark 6.3.2). Theorems 8.4.4 and 9.3.1 imply each one of these gradings occurs twice in

genuine triples for D̃θλ and the result follows by Proposition 11.4.6.

If
∣∣∣D̃θλ∣∣∣ = 1, there is obviously only one central character associated with the set D̃θλ.

The following proposition implies the other central character is associated with the image

of D̃θλ under the map Ψ.

Proposition 11.5.2. Suppose
∣∣∣D̃θλ∣∣∣ = 1 and let (θ, ε, η, λ) denote the abstract bigrading for

υ ∈ D̃θλ. Then
∣∣∣D̃Ψ(θ)

λ

∣∣∣ = 1 and the corresponding abstract bigrading is (−θ, η, ε, λ).

Proof. The fact that
∣∣∣D̃Ψ(θ)

λ

∣∣∣ = 1 is Theorem 10.1.5. Theorem 9.4.3 implies
∣∣∣D̃θλ∣∣∣ =

22−(εθsε
θ
p+εθrε

θ
m) so that εθs = εθp = εθr = εθm = 1. In particular, θ has an odd number of both

real and imaginary coordinates. Since θ is supportable, we may assume (wlog) nθs+1
2 of the

imaginary coordinates are integral and these are exactly the short noncompact imaginary

roots for ε (Remark 5.1.6). However, (the proof of) Proposition 10.1.3 implies nθr+1
2 of

the real coordinates are strictly half-integral. Since these must be noncompact imaginary

coordinates for Ψ(θ) (Remark 5.1.6 again), the abstract bigrading of a genuine triple for

D̃Ψ(θ)
λ should have an imaginary grading opposite to ε. The result now follows from Theorem

11.4.8.

Corollary 11.5.3. In the setting of Proposition 11.5.2, the central characters of D̃θλ and

D̃Ψ(θ)
λ are opposite.

Proof. This follows from Proposition 11.5.2 and either Proposition 11.4.5 or Proposition

11.4.6.



CHAPTER 12

ALMOST CENTRAL CHARACTERS

Fix a symmetric infinitesimal character λ ∈ (ha)∗ and suppose the rank of G̃ is even.

We have seen
∣∣∣D̃θλ∣∣∣ ∈ {1, 4} for each supportable involution θ ∈ I. In the case

∣∣∣D̃θλ∣∣∣ = 1, the

definition of Ψ on D̃θλ is obvious and it remains to define Ψ when
∣∣∣D̃θλ∣∣∣ = 4. Using properties

of short roots, it was shown in the previous section that central characters can be used to

partly distinguish the elements in D̃θλ (Proposition 11.5.1). In this section, we complete the

distinguishing process (Theorem 12.6.4) and produce an extension of the map Ψ (Definition

12.7.1). Not surprisingly, our methods now rely on properties of long roots.

12.1 Integral Cross Actions in D̃λ
In Section 9.1 we defined the cross action of the abstract Weyl group W = W (g, ha) on

K̃-conjugacy classes of genuine pairs. Here we describe an extension of the cross action to

K̃-conjugacy classes of genuine triples. This material will be familiar to most readers and

we refer to [16] or [19] for more details.

To begin, fix a Θ-stable Cartan subgroup H̃ ⊂ G̃ and let ∆(g, h) be its root system.

For each α ∈ ∆(g, h), there is a corresponding root character α̃ of H̃ given by the adjoint

action of H̃ on gα. The following lemma implies these characters behave like roots.

Lemma 12.1.1 ([16], Lemma 0.4.5). Suppose we have∑
α∈∆(g,h)

nαα =
∑

α∈∆(g,h)

mαα

in h∗ with nα,mα ∈ Z. Then ∏
α∈∆(g,h)

α̃nα =
∏

α∈∆(g,h)

α̃mα

as characters of H̃.
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In particular, we can use root characters to translate between representations of (H̃)0

whose differentials differ by a sum of roots. To this end we have the following lemmas whose

proofs are similar.

Lemma 12.1.2. Suppose φ ∈ h∗ is regular and let α ∈ ∆(g, h). Then in the notation of

Section 2.2

ρ
sα(φ)
i = ρφi −

∑
β∈∆(g,h)

nββ

2ρsα(φ)
ic = 2ρφic −

∑
β∈∆(g,h)

2 ·mββ

with nβ,mβ ∈ Z.

Lemma 12.1.3. In the setting of Lemma 12.1.2, suppose α ∈ ∆Θ
i (g, h) is an imaginary

root. Then

ρ
sα(φ)
i =


ρφi −

∑
β∈∆(g,h)
β long

nββ α long

ρφi −
∑

β∈∆(g,h)
β long

nββ − α α short

with nβ,mβ ∈ Z.

Proof. Let

S =
{
β ∈ ∆Θ

i (g, h) | (β, φ) > 0 and (β, sα(φ)) < 0
}

denote the set of imaginary roots that are positive with respect to φ and negative with

respect to sαφ. Then

ρ
sα(φ)
i = ρφi −

1
2

∑
β∈S

β +
1
2

∑
β∈S

(−β)

= ρφi −
∑
β∈S

β.

Suppose first that α is long. If every other root in S is also long, the result clearly follows.

Otherwise there are exactly two short roots in S, say γ1 and γ2 and we have

ρ
sα(φ)
i = ρφi − (

∑
β∈S
β long

β)− γ1 − γ2

= ρφi − (
∑
β∈S
β long

β)− γ
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where γ = γ1 + γ2 is a long root. If α is short, then α is the only such root in S and the

result follows.

Lemma 12.1.4. In the setting of Lemma 12.1.2, suppose α ∈ ∆(g, h) is a complex root.

Then

ρ
sα(φ)
i =


ρφi −

∑
β∈∆(g,h)
β long

nββ − εγ α long

ρφi −
∑

β∈∆(g,h)
β long

nββ α short

where ε ∈ {0, 1} and γ ∈ ∆(g, h) is a short root.

In particular, reflecting φ by sα alters the elements ρφi and ρφic ∈ h∗ by integral sums

of roots. A similar result holds for φ itself if we restrict to a certain subgroup of W (g, h)

(Lemma 12.1.6).

Definition 12.1.5 ([16], Definition 7.2.16). Suppose φ ∈ h∗ is a regular element and let

∆(g, h)(φ) =
{
α ∈ ∆(g, h) | (φ, α∨) ∈ Z

}
denote the set of integral roots for φ. Then ∆(g, h)(φ) is a subroot system of ∆(g, h) and

we denote the corresponding integral Weyl group by W (g, h)(φ) ⊂W (g, h).

Lemma 12.1.6 ([16], Lemma 7.2.17). In the above setting, w is an element of W (g, h)(φ)

if and only if

wφ− φ =
∑

β∈∆(g,h)

nββ (nβ ∈ Z).

In other words, w ∈ W (g, h)(φ) if and only if wφ− φ can be written as an integral sum of

roots.

We now define the cross action of the abstract integral Weyl group on genuine triples

for G̃.

Definition 12.1.7 ([16], Definition 8.3.1). Let W = W (g, ha) denote the abstract Weyl

group and let w ∈ W (λ) = W (g, ha)(λ). Suppose (H̃, φ, Γ̃)λ is a genuine triple for G̃ and
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write wφ = iφ(w) (Section 6.1) for the image of w in ∆(g, h). Then wφ ∈ W (g, h)(φ) and

we can write

w×φ− φ = w−1
φ (φ)− φ =

∑
α∈∆(g,h)

nαα (nα ∈ Z)

by Lemma 12.1.6. Similarly, Lemma 12.1.2 implies

(ρw×φi − 2ρw×φ)
ic )− (ρφi − 2ρφic) =

∑
α∈∆(g,h)

mαα (mα ∈ Z).

Then

ϕ =
∑

α∈∆(g,h)

(nα +mα)α

gives a well-defined character of H̃

Φ =
∏

α∈∆(g,h)

α̃(nα+mα)

by Lemma 12.1.1. We define the cross action of (H̃, φ, Γ̃)λ by w via

w×Γ = Γ · Φ

w×(H̃, φ, Γ̃)λ = (H̃, w×φ,w×Γ̃)λ.

Remark 12.1.8. Definition 12.1.7 describes the (abstract) cross action of W (φ) on genuine

triples for G̃. If H̃ ⊂ G̃ is a Cartan subgroup, we will occasionally need the (regular) cross

action of W (g, h)(φ) on genuine triples of the form (H̃, φ, Γ̃)λ. The definition is obvious

from Definition 12.1.7 and will be denoted the same way.

The following lemma describes a special case when the cross action of a genuine triple

is easy to compute.

Lemma 12.1.9 ([16], Lemma 8.3.2). Let (H̃, φ, Γ̃)λ be a genuine triple and suppose α ∈

∆(λ) = ∆(g, ha)(λ) is a simple abstract root. Write β = iφ(α) for the image of α in

∆(g, h)(φ) and set m = (φ, β∨) ∈ Z. Then if α is compact imaginary

sα×(H̃, φ, Γ̃)λ = (H̃, φ−mβ, Γ̃ · β̃−(m−1))λ,

if α is noncompact imaginary

sα×(H̃, φ, Γ̃)λ = (H̃, φ−mβ, Γ̃ · β̃−(m+1))λ,

and if α is real or complex

sα×(H̃, φ, Γ̃)λ = (H̃, φ−mβ, Γ̃ · β̃−m)λ.
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Proof. We have

sβ
−1(φ) = sβ(φ)

= φ− (φ, β∨)β

= φ−mβ

by the definition of m. Clearly β is simple in the positive root system for ∆(g, h) determined

by φ, and the reflection sβ permutes the positive roots other than β. Therefore if α is real

or complex, ρsα×φi = ρφi and 2ρsα×φic = 2ρφic. In the notation of Definition 12.1.7, ϕ = −mβ

and the result follows.

If α is compact we have ρsα×φi = ρφi − β, 2ρsα×φic = 2ρφic − 2β, and (ρsα×φi − 2ρsα×φ)
ic ) −

(ρφi − 2ρφic) = β. Then ϕ = −mβ + β and the result follows. The case for noncompact

imaginary roots is handled similarly.

Proposition 12.1.10 ([13], Chapter 4). Let (H̃, φ, Γ̃)λ be a genuine triple and suppose

w ∈ W (λ). Then w×(H̃, φ, Γ̃)λ is also genuine triple. Moreover, the cross action descends

to a well-defined action on the level of genuine parameters for G̃.

Remark 12.1.11. For υ ∈ D̃λ, we will write w×υ ∈ D̃λ for the cross action of W (λ) on

genuine parameters for G̃.

Corollary 12.1.12. In the setting of Proposition 12.1.10, suppose (θ, ε, λ) is the abstract

triple corresponding to (H̃, φ, Γ̃)λ. Then w×(θ, ε, λ) is supportable (Section 6.3).

Proof. This follows from Proposition 12.1.10, but we can also prove it directly. It suffices

to show w×(θ, ε, λ) satisfies the conditions of Proposition 6.2.2. Proposition 9.1.6 implies

w×(θ, ε, λ) = (w · θ · w−1, w×ε, λ)

and α is imaginary for w · θ · w−1 if and only if

w · θ · w−1(α) = α ⇐⇒ θ(w−1α) = w−1α.

In particular, we must have w−1α imaginary for θ. However

(λ, (w−1α)∨) = (λ,w−1α∨)

= (wλ, α∨)

= (λ+
∑
β∈∆

nββ, α
∨)

≡ (λ, α∨) mod Z.
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Since w×ε(α) = ε(w−1α), the result holds for imaginary roots. Complex roots are handled

similarly.

Proposition 12.1.13. Let υ ∈ D̃λ and suppose w ∈ W (λ). Then υ and w×υ have the

same central character (Section 11.4).

Proof. This follows from Definition 12.1.7 and the fact that root characters act trivially on

Z(G̃).

Fix υ ∈ D̃λ and suppose α ∈ ∆(λ) is an abstract integral root. We conclude this section

with a partial description of when sα×υ = υ.

Proposition 12.1.14. If α is complex for υ, then sα×υ 6= υ.

Proof. The corresponding K̃-orbits not conjugate by Propositions 9.1.2 and 9.1.6.

Proposition 12.1.15 ([13], Lemma 6.14(a)). If α is imaginary and compact for υ, then

sα×υ = υ.

Proposition 12.1.16. If α is imaginary, noncompact, and of type I for υ (Section 9.2),

then sα×υ 6= υ.

Proof. The corresponding K̃-orbits not conjugate (by definition).

The situation for imaginary roots that are noncompact and of type II is discussed in

Section 12.5. The situation for real roots is discussed in Section 12.3.

12.2 Extended Cross Actions

Let λ ∈ (ha)∗ be a symmetric infinitesimal character. Definition 12.1.7 described the

cross action of the abstract integral Weyl group W (λ) on the set of genuine parameters D̃λ
with infinitesimal character λ. It will be important in what follows to consider an extended

version of the cross action that includes the full abstract Weyl group W . In this section we

briefly examine the definition from [13], Chapters 3 and 4.

To begin, recall the abstract root system ∆ = ∆(g, ha) and let R = L(∆) ⊂ (ha)∗ be

the corresponding root lattice. Consider the quotient

Q = (ha)∗/R

and observe the natural action of W on (ha)∗ descends to Q. Denote the image of λ in Q

by [λ].
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Definition 12.2.1. A family of infinitesimal characters for λ ∈ (ha)∗ is a collection of

dominant representatives for the W -orbit of [λ] in Q.

Fix λ ∈ (ha)∗ and suppose F(λ) is a family of infinitesimal characters for λ. Then every

element of F(λ) is symmetric and Proposition 12.1.6 implies the stabilizer of λ in W is

W (λ). For even values of n we have

|F(λ)| =
|W (Bn)|∣∣∣W (Bn

2
)
∣∣∣ ∣∣∣W (Bn

2
)
∣∣∣

=
2n · n!

2
n
2 · (n2 )! · 2

n
2 · (n2 )!

=
(
n
n
2

)
.

Remark 12.2.2. In [13], the authors define Q using the weight lattice P = X instead of the

root lattice R. Either choice will suffice, however the root lattice is more convenient for our

purposes.

The abstract Weyl group W acts via the extended cross action (Definition 12.2.3) on

collections of genuine parameters whose infinitesimal characters live in families of the kind

described above. In order to define this action, it is first necessary to specify how the

infinitesimal characters in a family are related. To this end, suppose κ ∈ F(λ) and w ∈W .

Define the element µκ(w) ∈ R by the requirement

κ+ µκ(w) ∈ w · F(λ)

with the convention that µκ(w) = wκ− κ (Lemma 12.1.6) for w ∈W (κ). We now have the

following extension of Definition 12.1.7.

Definition 12.2.3. ([13], Definition 4.1) Let λ ∈ (ha)∗ be a symmetric infinitesimal

character with corresponding family F(λ). Suppose κ ∈ F(λ) and (H̃, φ, Γ̃)κ is a genuine

triple for κ. If w ∈W set

w×φ = φ+ iφ(µκ(w−1))

(ρw×φi − 2ρw×φ)
ic )− (ρφi − 2ρφic) =

∑
α∈∆(g,h)

mαα (mα ∈ Z).

Then

ϕ = iφ(µκ(w−1)) +
∑

α∈∆(g,h)

mαα
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determines a well-defined character Φ of H̃ by Lemma 12.1.1. We define the (extended)

cross action of (H̃, φ, Γ̃)κ by w to be

w×Γ = Γ · Φ

w×(H̃, φ, Γ̃)κ = (H̃, w×φ,w×Γ̃).

Remark 12.2.4. As the notation suggests, Definition 12.1.7 and Definition 12.2.3 coincide

whenever w ∈W (κ). This follows immediately from the convention µκ(w) = wκ− κ for w

in W (κ).

Remark 12.2.5. The infinitesimal character of w×(H̃, φ, Γ̃)κ is an element of F(λ) that

depends on κ and the element w.

Proposition 12.2.6 ([13], Chapter 4). In the above setting, let (H̃, φ, Γ̃)λ be a genuine

triple and suppose w ∈ W . Then w×(H̃, φ, Γ̃)λ is genuine triple and the extended cross

action descends to a well-defined action on the level of genuine parameters for G̃.

12.3 Principal Series

Fix a symmetric infinitesimal character λ ∈ (ha)∗ and recall the rank of G̃ is even. Let

hs ⊂ g be a split Cartan subalgebra with corresponding Cartan subgroup H̃s ⊂ G̃.

Definition 12.3.1. Genuine representations of G̃ whose corresponding genuine triples begin

with a split Cartan subgroup are called principal series. We may also refer to any genuine

triple of the form (H̃s, φ, Γ̃) as a principal series for G̃. Write psλ = D̃−I
λ for the set of

principal series representations of G̃ with infinitesimal character λ.

In this section we study conjugation and cross actions in psλ. In the usual coordinates

for ∆(g, hs) = ∆Θ
R (g, hs) set

αi = e2i−1 − e2i

βi = e2i−1 + e2i

γ = en

as in Section 11.4. Choose root vectors Xαi ∈ gαi and Xγ ∈ gγ according to Lemma 11.1.1

and define

z̃ = m̃α1m̃α2 · · · m̃αn/2 .
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The element z̃ is almost central in G̃ and will play a critical role in our definition of Ψ.

Lemma 7.1.1 and Proposition 7.3.5 imply

Z(H̃s) =
〈
±(H̃s)0,±m̃γ ,±z̃

〉
and a genuine character of Z(H̃s) is determined by its differential and its values on m̃γ and

z̃. We have seen m̃γ ∈ Z(G̃) has order two and the order of z̃ is determined by

z̃2 = (m̃α1m̃α2 · · · m̃αn/2)2

= m̃2
α1
m̃2
α2
· · · m̃2

αn/2

= (−1)
n
2

to be either two or four. In particular, there are four possible genuine characters of Z(H̃s)

with a fixed differential (Corollary 7.3.9).

Suppose (H̃s, φ, Γ̃)λ is a principal series for G̃ with infinitesimal character λ. Proposition

7.1.3 implies the isomorphism class of Γ̃ is determined by its restriction to Z(H̃s) and this

restriction is given by

Γ̃|
Z(H̃s)

= mχ

where χ is a genuine character for Z(H̃s). Therefore we may treat Γ̃ as either a genuine

representation of H̃s or a genuine character of Z(H̃s). Since the differential of Γ̃ is fixed by

φ (Section 2.2), there are four distinct possibilities for Γ̃ and |psλ| = 4.

We begin with conjugation. For δ ∈ ∆(g, hs), recall δ(m̃αi) denotes the scalar by which

m̃αi acts on the root space gδ and Proposition 8.1.1 implies

δ(m̃αi) = (−1)(δ,α∨i ).

Proposition 12.3.2. Let (H̃s, φ, Γ̃)λ be a genuine triple and suppose δ ∈ ∆(g, hs). Choose

Xδ ∈ gδ according to Lemma 11.1.1 and write σ̃δ for the corresponding root reflection in K̃.

Then σ̃δ acts of Γ̃ by conjugation and we have

(σ̃δ · Γ̃)(z̃) =

{
Γ̃(z̃) δ is long

Γ̃(m̃γ)Γ̃(z̃) δ is short
.
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Proof. According to Lemma 11.1.7

σ̃δ z̃σ̃
−1
δ = σ̃δm̃α1 · · · m̃αn/2 σ̃

−1
δ

= σ̃δm̃α1 σ̃
−1
δ · · · σ̃δm̃αn/2 σ̃

−1
δ

= σ̃
(1−δ(m̃α1 ))

δ m̃α1 · · · σ̃
(1−δ(m̃αn/2 ))

δ m̃αn/2 .

Suppose first that δ is long. If δ = αj or δ = βj for some j, we have δ(m̃αi) = 1 for all i

by Proposition 8.1.1 and the result follows. Otherwise, δ(m̃αi) = −1 for exactly two values

of i, say i = j and i = k. By Proposition 7.3.1 we have

σ̃δ z̃σ̃
−1
δ = m̃α1 · · · m̃δm̃αj · · · m̃δm̃αk · · · m̃αn/2

= −m̃2
δm̃α1 · · · m̃αj · · · m̃αk · · · m̃αn/2

= −m̃2
δ z̃

= z̃

as desired.

If δ is short, δ(m̃αi) = −1 for exactly one value of i, say i = j. Now Propositions 7.3.1

and 7.2.2 imply

σ̃δ z̃σ̃
−1
δ = m̃α1 · · · m̃δm̃αj · · · m̃αn/2

= m̃δm̃α1 · · · m̃αj · · · m̃αn/2

= m̃δ z̃

= m̃γ z̃

as desired.

Remark 12.3.3. Let υ ∈ psλ and suppose (H̃s, φ, Γ̃)λ is a genuine triple representing υ.

Proposition 12.3.2 implies υ is not determined simply by its central character and the value

of Γ̃ on z̃. This unfortunate fact accounts for most of the misery of this (and the previous)

section.

The following proposition leads to a similar result for cross actions.

Proposition 12.3.4. If δ ∈ ∆(g, hs), then in the notation above

δ(z̃) =
{

1 δ is long
−1 δ is short

.
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Proof. Treating δ as a character of H̃s we have

δ(z̃) = δ(m̃α1 · · · m̃αn/2)

= δ(m̃α1) · · · δ(m̃αn/2)

= (−1)(δ,α∨1 ) · · · (−1)(δ,α∨
n/2

)

and we proceed as in the proof of Proposition 12.3.2.

Corollary 12.3.5. Let (H̃s, φ, Γ̃)λ be a principal series and suppose δ ∈ ∆(λ) is a long

abstract root. Write δ = iφ(δ) for the image of δ in ∆(g, hs)(φ). Then in the notation of

Proposition 12.3.2 we have

(σ̃δ · Γ̃)(z̃) = Γ̃(z̃) = (sδ×Γ̃)(z̃).

Proof. The first equality is Proposition 12.3.2. The second equality follows from Proposition

12.3.4 and the fact that ρsδ×φi = ρsδ×φic = ρφi = ρφic = 0 for a split Cartan subalgebra.

Roughly speaking, Corollary 12.3.5 implies the operations of cross action and conjuga-

tion are equal for long (integral) roots. The situation for short roots is more complicated.

Let (H̃s, φ, Γ̃)λ be a principal series and suppose δ ∈ ∆(λ) is a short abstract root. Write

δ = iφ(δ) for the image of δ in ∆(g, hs)(φ). By Proposition 12.3.2 and Proposition 12.3.4

we have

(σ̃δ · Γ̃)(z̃) = Γ̃(m̃δ)Γ̃(z̃)

(sδ×Γ̃)(z̃) = δ(z̃)(φ,δ∨)Γ̃(z̃)

= (−1)(φ,δ∨)Γ̃(z̃)

so that

(σ̃δ · Γ̃)(z̃) = (sδ×Γ̃)(z̃) ⇐⇒ Γ̃(m̃δ) = (−1)(φ,δ∨).

We have now completed the proof of the following corollary.

Corollary 12.3.6. Let υ ∈ psλ be a principal series. If δ ∈ ∆(λ) is an abstract integral

root, then

sδ×υ = υ

if and only if δ does not satisfy the parity condition for υ (Definition 11.3.2).
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In the next section we extend Corollary 12.3.6 to a special collection of Cartan subgroups

of G̃ (see Corollary 12.4.10). In general, we have the following proposition.

Proposition 12.3.7 ([13], Lemma 6.14(f)). Let υ ∈ D̃λ and suppose α ∈ ∆θ
R(λ) is a real

abstract integral root. If α does not satisfy the parity condition for υ, then sα×υ = υ.

12.4 Even Parity Cartan Subgroups

Fix a symmetric infinitesimal character λ ∈ (ha)∗ and recall the rank of G̃ is even. Let

H̃ ⊂ G̃ be a Θ-stable Cartan subgroup and suppose φ ∈ h∗ is a regular element. Write

θ = i−1
φ (Θ) for the corresponding abstract involution and let εθs, ε

θ
p, ε

θ
r, ε

θ
m be the indicator

bits for θ (Definition 3.1.1). Note the indicator bits depend only on the W -conjugacy class

of θ and therefore only on the K̃-conjugacy class of H̃ (Chapter 3).

Since the rank of G̃ is even, we have εθp = εθm so that
∣∣∣D̃θλ∣∣∣ = 4 if and only if εθp = εθm = 0

(Proposition 10.1.4). A Cartan subgroup for which εθp = εθm = 0 is said to be of even parity.

In particular, an abstract involution corresponds to an even parity Cartan subgroup if and

only if its diagram has an even number of both ‘+’ and ‘−’ signs.

Lemma 12.4.1. Let H̃ ⊂ G̃ be a Θ-stable Cartan subgroup and suppose α ∈ ∆Θ
R (g, h) is a

real root. Then H̃ and H̃α (Section 8.1) have the same parity if and only if α is long.

Proof. This is verified in Section 8.2, Cases I−V.

Fix a split Cartan subgroup H̃s ⊂ G̃ and recall the Cayley transform operators Cαi and

Cβi from Section 11.4. The following proposition characterizes even parity Cartan subgroups

in terms of these operators.

Proposition 12.4.2. Up to conjugacy, every even parity Cartan subgroup of G̃ can be

obtained from H̃s through an iterative application of the operators Cαi and Cβi.

Proof. This is easily verified on the level of involutions from the results of Section 8.2.

Proposition 12.4.2 implies we can associate a (nonunique) sequence in {αi, βi} to each

conjugacy class of even parity Cartan subgroups in G̃. Since the corresponding operators Cαi
and Cβi commute (Lemma 11.2.6), the ordering of the roots is unimportant. To eliminate

the ambiguity, we say a sequence in {αi, βi} is standard if it is of the form

ckj = βk · · ·β2β1αj · · ·α2α1
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with 0 ≤ k ≤ j ≤ n
2 . Then there is a unique standard sequence associated to each conjugacy

class of even parity Cartan subgroups in G̃. Clearly there are

1 + 2 + · · ·+
(n

2
+ 1
)

=
(n

2 + 2
2

)
possible standard sequences (including the empty sequence) and thus

(n
2

+2
2

)
even parity

Cartan subgroups of G̃ (up to conjugacy). If ckj is a standard sequence we will write

H̃s
ckj

= Ckj (H̃s) = Cβk · · · Cβ2Cβ1Cαj · · · Cα2Cα1(H̃s)

for the corresponding even parity Cartan subgroup.

In the previous section, we determined the structure of the set psλ by tracking a single

element that was central in H̃s but not central in G̃. The following propositions describe

an extension of these methods to all even parity Cartan subgroups.

Proposition 12.4.3. Let ckj be a standard sequence and suppose 1 ≤ i ≤ n
2 . Then m̃αi ∈

H̃s
ckj

. In particular, the product

z̃ = m̃α1m̃α2 · · · m̃αn/2 ∈ H̃
s

(Section 12.3) is an element of H̃s
ckj

.

Proof. This follows from Corollary 8.1.3 and Proposition 8.1.5.

Proposition 12.4.4. Let ckj be a nonempty standard sequence and write m̃γ for the unique

element corresponding to any short real root in H̃s (Proposition 11.1.6). Then the center

of H̃s
ckj

is given by

Z(H̃s
ckj

) =



〈
(H̃s

ckj
)0, m̃αj+1 · · · m̃αn/2 , m̃γ

〉
j < n

2 , k = 0〈
(H̃s

ckj
)0, m̃αj+1 · · · m̃αn/2

〉
j < n

2 , k > 0〈
(H̃s

ckj
)0, m̃γ

〉
j = n

2 , k = 0

(H̃s
ckj

)0 j = n
2 , k > 0

In particular, z̃ ∈ Z(H̃s
ckj

).

Proof. Since ckj is nonempty, −1 ∈ (H̃s
ckj

)0. The first result follows from Proposition 7.3.5

and Proposition 8.3.1. The details are left to the reader. The last statement follows by

Proposition 8.1.5.



127

Corollary 12.4.5. In the setting of Proposition 12.4.4, let ckj be a standard sequence with

j < n
2 . Suppose the genuine triples (H̃s

ckj
, φ, Γ̃1)λ and (H̃s

ckj
, φ, Γ̃2)λ are not K̃-conjugate and

have the same central character. Then Γ̃2(z̃) = −Γ̃1(z̃).

Proof. We have

Γ̃1(m̃α1 · · · m̃αj ) = Γ̃2(m̃α1 · · · m̃αj )

since m̃α1 · · · m̃αj ∈ (H̃s
ckj

)0 by Proposition 8.1.5. However, any genuine character extending

(H̃s
ckj
, φ)λ is determined by its restriction to Z(H̃s

ckj
). Since (H̃s

ckj
, φ, Γ̃1)λ and (H̃s

ckj
, φ, Γ̃2)λ

have the same central characters we must have

Γ̃1(m̃αj+1 · · · m̃αn/2) 6= Γ̃2(m̃αj+1 · · · m̃αn/2)

and the result follows.

Proposition 12.4.6. Fix a root δ ∈ ∆(g, hs) and suppose ckj is a standard sequence. Write

δ = Ckj (δ) for the image of δ in ∆(g, hs
ckj

). Then

δ(z̃) =
{

1 δ is long
−1 δ is short

(compare with Proposition 12.3.4).

Proof. Proposition 12.3.4 implies we need only check δ(m̃αi) = δ(m̃αi) for 1 ≤ i ≤ n
2 . Recall

the value of δ(m̃αi) is defined by the equation

Ad(m̃αi)Xδ = δ(m̃αi)Xδ.

Lemmas 11.2.6 and 11.2.7 give

Ad(m̃αi)Xδ = Ad(m̃αi)Ckj (Xδ)

= Ckj (Ad(m̃αi)Xδ)

= Ckj (δ(m̃αi)Xδ)

= δ(m̃αi)Ckj (Xδ)

= δ(m̃αi)Xδ

so that δ(m̃αi) = δ(m̃αi) as desired.
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Corollary 12.4.7. Let (H̃s
ckj
, φ, Γ̃)λ be a genuine triple and suppose α ∈ ∆Θ

i (g, hs
ckj

)(φ) is

an imaginary integral root. If m = (φ, α∨), then

sα×Γ̃(z̃) =

{
Γ̃(z̃) α long

(−1)m+1Γ̃(z̃) α short

(see Remark 12.1.8 and compare with Proposition 12.1.9).

Proof. In the notation of Definition 12.1.7, Lemma 12.1.3 implies

ϕ =



−mα+
∑
β long

β∈∆(g,hs
ck
j

)

nββ +
∑

β∈∆(g,hs

ck
j

)

2 ·mββ α long

−mα− α+
∑
β long

β∈∆(g,hs
ck
j

)

nββ +
∑

β∈∆(g,hs

ck
j

)

2 ·mββ α short

and the result follows by Proposition 12.4.6.

Corollary 12.4.8. Let (H̃s
ckj
, φ, Γ̃)λ be a genuine triple and suppose α ∈ ∆Θ

C (g, hs
ckj

)(φ) is a

complex integral root. If m = (φ, α∨), then in the notation of Proposition 12.1.4

sα×Γ̃(z̃) =

{
(−1)εΓ̃(z̃) α long

(−1)mΓ̃(z̃) α short
.

Proof. In the notation of Definition 12.1.7 and Lemma 12.1.4 we have

ϕ =



−mα− εγ +
∑
β long

β∈∆(g,hs
ck
j

)

nββ +
∑

β∈∆(g,hs

ck
j

)

2 ·mββ α long

−mα+
∑
β long

β∈∆(g,hs
ck
j

)

nββ +
∑

β∈∆(g,hs

ck
j

)

2 ·mββ α short

and the result follows by Proposition 12.4.6.

We will occasionally need the following generalization of Corollary 12.4.7.

Corollary 12.4.9. Let H̃s
ckj
⊂ G̃ be an even parity Cartan subgroup with j = n

2 and let

α ∈ ∆Θ
i (g, hs

ckj
) be an imaginary root (not necessarily integral). Suppose there exist genuine

triples of the form (H̃s
ckj
, φ, Γ̃1)λ and (H̃s

ckj
, sα · φ, Γ̃2)λ. If m = (φ, α∨) then

Γ̃2(z̃) =

{
(−1)2mΓ̃1(z̃) α long

(−1)m+1Γ̃1(z̃) α short
.
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Proof. Since z̃ is an element of (H̃s
ckj

)0 (Proposition 12.4.4), it suffices to consider differen-

tials. Write αi = Ckj (αi) for the image of the root αi in ∆(g, hs
ckj

) (Section 12.3) and let hαi
denote the corresponding coroot. Suppose first that α is long. Lemma 12.1.3 gives

dΓ̃2 = sα(φ) + ρ
sα(φ)
i − 2ρsα(φ)

ic

= φ−mα+ ρφi −
∑
β long

β∈∆(g,hs
ck
j

)

nββ − (2ρφic −
∑

β∈∆(g,hs

ck
j

)

2 ·mββ)

= dΓ̃1 −mα−
∑
β long

β∈∆(g,hs
ck
j

)

nββ +
∑

β∈∆(g,hs

ck
j

)

2 ·mββ

and Proposition 12.4.6 implies nontrivial changes come only from the −mα term. From the

definition of m̃αi (Definition 11.1.10) we have

Γ̃2(z̃) = Γ̃1(z̃)e−mα(πihα1
)e−mα(πihα2

) · · · e−mα(πihαk )

= Γ̃1(z̃)e−mπi(α,α
∨
1 )e−mπi(α,α

∨
2 ) · · · e−mπi(α,α∨k )

with k = n
2 . Now if α = αi, then (α, α∨i ) = 2 and (α, α∨j ) = 0 for j 6= i. Therefore

Γ̃2(z̃) = Γ̃1(z̃)e−2mπi

and the result follows. Otherwise there are exactly two numbers, say i and j, for which

(α, α∨i ) = (α, α∨j ) = −1 so that

Γ̃2(z̃) = Γ̃1(z̃)emπiemπi

= Γ̃1(z̃)e2mπi

and the result follows. The case for α short is similar.

Corollary 12.4.10. Let υ ∈ D̃λ. If α ∈ ∆(g, ha)(λ) is a real integral root for υ, then

sα×υ = υ if and only if α does not satisfy the parity condition.

Proof. The proof is the same as for Corollary 12.3.6 using Proposition 12.4.6.

12.5 Cayley Transforms in D̃λ
In Section 12.1, we extended the cross action of the (integral) abstract Weyl group to

D̃λ. This operation produced new elements in D̃λ whose corresponding Cartan subgroups

were conjugate. In this section we extend the Cayley transform operation of Section 11.2
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to D̃λ. Not surprisingly, this operation produces new elements whose corresponding Cartan

subgroups are not conjugate. This material is well known and we refer the reader to [14]

and [16] for more details.

To begin, let H̃ = T̃ Ã be a Θ-stable Cartan subgroup of G̃ and fix a noncompact

imaginary root α ∈ ∆Θ
i (g, h). Choose a corresponding Cayley transform operator Cα

(Section 11.2) and write

Cα(H̃) = H̃α = T̃αÃα

T̃α1 = T̃ ∩ T̃α

H̃α
1 = T̃α1 Ã

α.

The following proposition describes the relationship between T̃ and T̃α.

Proposition 12.5.1 ([16], Lemma 8.3.5). If α is of type I (Section 9.2) then T̃α1 = T̃α. If

α is of type II, sα has a representative in T̃α \ T̃α1 and∣∣∣T̃α/T̃α1 ∣∣∣ = 2.

In particular, H̃α = H̃α
1 if and only if α is of type I.

Definition 12.5.2 ([14], before Theorem 4.4). Fix a genuine triple (H̃, φ, Γ̃)λ and write

φα = Cα(φ) for the image of φ in hα. Let Γ̃α1 be the irreducible representation of H̃α
1

satisfying

Γ̃α1 |T̃α1 = Γ̃|
T̃α1

Γ̃α1 |Ãα = exp
G̃

(φα|aαR ).

According to Proposition 12.5.1, we define an irreducible representation of H̃α via

Γ̃α =

{
Γ̃α1 α type I
IndH̃

α

H̃α
1

Γ̃α1 α type II
.

Proposition 12.5.3 ([14], before Theorem 4.4). In the setting of Definition 12.5.2, suppose

α is of type II. Then Γ̃α = IndH̃
α

H̃α
1

Γ̃α1 is reducible if and only if the element sα ∈ T̃α centralizes

T̃α1 . In this case we write

Γ̃α = Γ̃α+ ⊕ Γ̃α−

with Γ̃α± irreducible. In particular, Γ̃α is always reducible if T̃α is abelian.
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We now define the Cayley transform of a genuine triple through a simple noncompact

imaginary root.

Definition 12.5.4 ([14]). Let Υ = (H̃, φ, Γ̃)λ and suppose α ∈ ∆(g, h) is noncompact and

simple for φ. Define the Cayley transform of Υ by α to be

Cα(Υ) =

 {(H̃α, φα, Γ̃α)λ
}

Γ̃α irreducible{
(H̃α, φα, Γ̃α+)λ, (H̃α, φα, Γ̃α−)λ

}
otherwise

.

In particular, Cα(Υ) is double valued if and only if α is of type II and Γ̃α is reducible

(Definition 12.5.2). If β ∈ ∆ = ∆(g, ha) is an abstract noncompact simple root for Υ, we

define the abstract Cayley transform of Υ by β to be Ciφ(β)(Υ).

Proposition 12.5.5 ([13], Lemma 6.14(g)). In the setting of Definition 12.5.4, suppose α

is long. Then Cα(Υ) is single valued and we have

dim(Γ̃α) = m · dim(Γ̃)

where

m =
{

1 α type I
2 α type II

.

Proof. The fact that Cα(Υ) is single valued is proven in [13]. The statement about dimen-

sions is an easy consequence of Proposition 12.5.1 and Definition 12.5.2.

The following proposition implies the Cayley transform is well-behaved and descends to

the level of D̃λ.

Proposition 12.5.6 ([14]). The elements appearing in the definition of Cα(Υ) are genuine

triples for G̃. Moreover they have the same infinitesimal character as Υ and are well defined

up to K̃-conjugacy.

Remark 12.5.7. For υ ∈ D̃λ, denote the Cayley transform on the level of genuine parameters

for G̃ by Cα(υ) ∈ D̃λ. If (H̃, φ, Γ̃)λ is a genuine triple representing υ, we will write

dim(υ) = dim(Γ̃).

Proposition 12.5.8 ([13], Proposition 6.12). Let υ ∈ D̃λ and suppose α ∈ ∆θ
i (g, h

a)(λ) is

an abstract integral noncompact root that is of type II for υ. Then sα×υ = υ if and only

dim(Cα(υ)) = dim(υ).
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Corollary 12.5.9. In the setting of Proposition 12.5.8, suppose υ has a representative

genuine triple of the form (H̃s
ckj
, φ, Γ̃)λ. Then sα×υ 6= υ.

Proof. The existence of α implies we must have j < n
2 and k > 0 (Theorem 9.2.9). Then

Proposition 7.1.3, Proposition 12.4.4, and Cases I and IV of Section 4.2 imply

dim(υ) =

(
2n

θ
r−1

2

) 1
2

=
(

2n
θ
r−2
) 1

2
.

Similarly we have

dim(Cα(υ)) =
(

2n
θ
r

) 1
2

dim(Cα(υ))
dim(υ)

=

(
2n

θ
r

2nθr−2

) 1
2

= 4
1
2 = 2

and the result follows from Proposition 12.5.8.

We will also need an inverse version of Definition 12.5.4. This is most easily stated in

terms of abstract roots. We refer the reader to [13] or [14] for more details.

Definition 12.5.10. Let υ ∈ D̃λ and suppose α ∈ ∆θ
R(g, ha) is a simple abstract root that

is real for υ. Define the inverse Cayley transform of υ by α to be

Cα(υ) =
{
υ′ ∈ D̃λ | Cα(υ′) = υ

}
.

More explicit definitions of inverse Cayley transforms appear in [14] and [16]. The follow-

ing proposition gives an important characterization of when the inverse Cayley transform

is nontrivial.

Proposition 12.5.11 ([13]). In the setting of Definition 12.5.10, Cα(υ) is nonempty if and

only if α satisfies the parity condition (Definition 11.3.2).

12.6 The Map ℘

Fix a symmetric infinitesimal character λ ∈ (ha)∗ and recall the rank of G̃ is even. Let

ckj be a nonempty standard sequence and recall the element z̃ = m̃α1 · · · m̃αn/2 ∈ H̃s
ckj

(Proposition 12.4.3). Suppose (H̃s
ckj
, φ)λ is a genuine pair for which the corresponding

abstract triple (θ, ε, λ) is supportable (Section 6.3). In particular,
∣∣∣D̃θλ∣∣∣ = 4. In this section

we use the element z̃, along with central character (Section 11.4), to completely distinguish

the elements in D̃θλ.
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Definition 12.6.1. Given an abstract involution θ ∈ I, let nθcr denote half the number of

abstract coordinates that are both interchanged and negated by θ. In terms of diagrams, nθcr
is exactly half the number of parentheses appearing in Dθ (Section 3.2).

Definition 12.6.2. The principal series map

℘ : D̃θλ → psλ

is defined as follows. For υ ∈ D̃θλ, choose a genuine triple Υ = (H̃s
ckj
, φ, Γ̃1)λ beginning with

H̃s
ckj

and representing υ. Write Γ̃z
1 for the unique genuine character of Z(H̃s

ckj
) corresponding

to Γ̃1 (Proposition 7.1.3). Then there is a unique genuine character Γ̃z
2 of Z(H̃s) with

differential (Ckj )−1(φ) and

Γ̃z
2(m̃γ) = Γ̃z

1(m̃γ)

Γ̃z
2(z̃) = Γ̃z

1(z̃)Γ̃z
1(m̃γ)n

θ
cr .

Here m̃γ denotes the nontrivial central element of G̃ corresponding to the short roots in

∆(g, hs) (Proposition 11.1.6). Let Γ̃2 be a genuine representation of H̃s corresponding to

Γ̃z
2 and define

℘(Γ̃1) = Γ̃2

℘(Υ) = (H̃s, (Ckj )−1(φ), Γ̃2)λ

℘(υ) =
[
(H̃s, (Ckj )−1(φ), Γ̃2)λ

]
∈ psλ.

In other words, ℘(υ) is defined to be the principal series represented by the genuine triple

(H̃s, (Ckj )−1(φ), Γ̃2)λ. In particular, υ and ℘(υ) have the same central characters (Remark

11.4.3). The strange definition of Γ̃z
2(z̃) gives the map ℘ nicer properties (see Theorem

12.7.3).

Proposition 12.6.3. The map ℘ is well defined.

Proof. The issue is the choice of genuine triple Υ = (H̃s
ckj
, φ, Γ̃1)λ representing υ. It suffices

to show ℘(Υ) is K̃-conjugate to ℘(w ·Υ) with

w ·Υ = (H̃s
ckj
, w · φ,w · Γ̃1)λ

and w ∈ N
K̃

(H̃s
ckj

)/Z
K̃

(H̃s
ckj

) = W (G̃, H̃s
ckj

) (Section 5.2). Note w · Γ̃1 is defined only up

to K̃-conjugacy, however the corresponding character of Z(H̃s
ckj

) is well defined. Since it is
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the character that matters for Definition 12.6.2, this level of precision is sufficient for our

purposes.

We begin by observing the differentials of ℘(Υ) and ℘(w · Υ) will always be conjugate

in (hs)∗ by an element of K̃. Moreover, any genuine representation of H̃s with a fixed

differential is determined by its values on m̃γ and z̃. Since conjugation cannot change m̃γ ,

we simply need to understand the effect of conjugation on z̃. This is done for principal

series in Proposition 12.3.2. Therefore it remains to understand the effect of conjugation in

H̃s
ckj

. Conjugating by w does not change the value of nθcr, so we may effectively ignore the

Γ̃z
1(m̃γ)n

θ
cr term in the definition of Γ̃z

2(z̃).

Proposition 5.2.3 implies

W (G̃, H̃s
ckj

) ∼= W θ
C n ((AnW θ

ic)×W θ
R).

Our proof is by cases based on the element w.

Case I. Suppose w ∈W θ
R. Then conjugation commutes with (Ckj )−1 and ℘(Υ) is clearly

conjugate to ℘(w ·Υ).

Case II. Suppose w ∈ W θ
ic. We may assume w = sα for α ∈ ∆Θ

i (g, hs
ckj

)(φ) imaginary

and compact. Write α = (Ckj )−1(α) for the image of α in ∆(g, hs). If α is long, Proposition

12.3.2 implies (sα ·℘(Γ̃1))(z̃) = ℘(Γ̃1)(z̃). In particular, ℘(Υ) is conjugate to ℘(sα ·Υ) if and

only if Γ̃1(z̃) = sα · Γ̃1(z̃) and this follows from Proposition 12.1.15 and Corollary 12.4.7.

If α is short, set m = (φ, α∨) ∈ Z. Proposition 12.3.2 implies

(sα · ℘(Γ̃1))(z̃) = ℘(Γ̃1)(m̃α)℘(Γ̃1)(z̃)

and Corollary 12.4.7 gives

sα · Γ̃1(z̃) = (−1)(m+1)Γ̃1(z̃).

Therefore ℘(Υ) is conjugate to ℘(sα ·Υ) if and only if

℘(Γ̃1)(m̃α) = (−1)(m+1) · I

or if and only if α satisfies the parity condition for ℘(Υ). Since α is assumed to compact,

this follows from Theorem 11.4.8.
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Case III. Suppose w ∈ A. Then

w ∈WΘ
i (g, hs

ckj
) ∼= W (BnΘ

s
)×W (A1)k

(Proposition 3.3.6) and w can be expressed as a product of orthogonal reflections in non-

compact imaginary roots ([17], Corollary 5.14).

If j < n
2 , the group A is generated by reflections in noncompact imaginary roots of type

II (Section 9.2). Suppose first that α is long and let w = sα. Then α is an element of the

(A1)k factor of ∆Θ
i (g, hs

ckj
) and we must have α = Ckj (αi) for some i. In particular, there

exists a Cartan subgroup H̃s
c = Cα(H̃s

ckj
) (Section 11.2) containing z̃ and a representative

of sα (Proposition 12.5.1). Since z̃ is central in H̃s
c , z̃ commutes with sα and we have

Γ̃1(z̃) = sα · Γ̃1(z̃). The result now follows as in Case II.

Suppose α is short and of type II. Corollary 12.4.7 gives

sα×Γ̃1(z̃) = (−1)(m+1)Γ̃1(z̃)

and Corollary 12.5.9 implies sα×υ 6= υ. Therefore we must have

sα · Γ̃1(z̃) = (−1)(m)Γ̃1(z̃)

by Corollary 12.4.5. In particular, ℘(Υ) and ℘(sα · Υ) are conjugate if and only if α does

not satisfy the parity condition for ℘(Υ). Since α is assumed to be noncompact, this follows

from Theorem 11.4.8.

Finally let j = n
2 and w = sεsδ, where δ and ε are orthogonal imaginary roots in

∆Θ
i (g, hs

ckj
) that are noncompact and of type I. Set m1 = (φ, δ∨), m2 = (φ, ε∨), and suppose

first that δ and ε are long. Then m1,m2 ∈ Z + 1
2 and Corollary 12.4.9 implies

sδ · Γ̃1(z̃) = (−1) · Γ̃1(z̃)

sε · Γ̃1(z̃) = (−1) · Γ̃1(z̃)

sεsδ · Γ̃1(z̃) = (−1)2 · Γ̃1(z̃) = Γ̃1(z̃).

as desired. If δ is long and ε is short, then m1 ∈ Z+ 1
2 and m2 ∈ Z. Corollary 12.4.9 implies

sε · Γ̃1(z̃) = (−1)m2+1 · Γ̃1(z̃)

sεsδ · Γ̃1(z̃) = (−1)m2 · Γ̃1(z̃).
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This is the desired result since ε is noncompact. Finally if both δ and ε are short we have

sδ · Γ̃1(z̃) = (−1)m1+1 · Γ̃1(z̃)

sε · Γ̃1(z̃) = (−1)m2+1 · Γ̃1(z̃)

sεsδ · Γ̃1(z̃) = (−1)m1+m2 · Γ̃1(z̃)

= Γ̃1(z̃)

since m1 +m2 ∈ 2Z. The result follows from Proposition 12.3.4.

Case IV. Suppose w ∈ W θ
C. This case is handled in the same fashion as the previous

cases. The reader is spared the details.

Theorem 12.6.4. In the setting of Definition 12.6.2, the map

℘ : D̃θλ → psλ

is a bijection.

Proof. Proposition 11.5.1 implies ℘ is, at worst, 2 to 1. In particular, if ω, υ ∈ D̃θλ have the

same central character, it remains to show ℘(ω) 6= ℘(υ). Recall θ is a supportable abstract

involution for the genuine pair (H̃s
ckj
, φ)λ and let εθs, ε

θ
r, ε

θ
p = εθm = 0 be the corresponding

indicator bits (Definition 3.1.1). The proof is by cases for the standard sequence ckj .

Case I. Suppose j < n
2 and k = 0 so that εθs = 0 and εθr = 1. Corollary 8.4.5 implies[

(H̃s
ckj
, φ)λ

]
= 21−εθs2ε

θ
r(1−εθm) = 4.

Therefore each element of D̃θλ has a representative beginning with (H̃s
ckj
, φ)λ and the result

follows from Corollary 12.4.5.

Case II. Suppose j < n
2 and k > 0 so that εθs = εθr = 1. Corollary 8.4.5 implies[

(H̃s
ckj
, φ)λ

]
= 21−εθs2ε

θ
r(1−εθm) = 2

and there are two K̃-orbits in the genuine fiber θ̃†λ of θ (Section 9.4). Since m̃γ ∈ (H̃s
ckj

)0 by

Proposition 12.4.4, both genuine triples extending (H̃s
ckj
, φ)λ have the same central character

and the result follows by Corollary 12.4.5.
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Case III. Suppose j = n
2 and k > 0 so that εθs = 1 and εθr = 0. Corollary 8.4.5 implies[

(H̃s
ckj
, φ)λ

]
= 21−εθs2ε

θ
r(1−εθm) = 1.

Then m̃γ ∈ (H̃s
ckj

)0 = H̃s
ckj

by Proposition 12.4.4 and there are two K̃-orbits in θ̃†λ with a

fixed abstract grading and central character (Proposition 11.4.6). Theorem 9.3.1 implies

these orbits differ by cross action in any short noncompact root. Let Υ = (H̃s
ckj
, φ, Γ̃)λ be

a genuine triple extending (H̃s
ckj
, φ)λ and let α ∈ ∆(g, ha) be a short noncompact root. Set

m = (λ, α∨) and write α = iφ(α) for the image of α in ∆(g, hs). Corollary 12.4.7 and

Proposition 12.3.2 imply

sα×Γ̃(z̃) = (−1)m+1Γ̃(z̃)

sα · ℘(Γ̃)(z̃) = ℘(Γ̃)(m̃α)℘(Γ̃)(z̃).

In particular, ℘(Υ) 6= ℘(sα×Υ) if and only if α does not satisfy the parity condition

(Definition 11.3.2) for ℘(Υ). Since α is noncompact, this follows by Theorem 11.4.8.

Case IV. Suppose j = n
2 and k = 0 so that εθs = εθr = 0. Corollary 8.4.5 implies[

(H̃s
ckj
, φ)λ

]
= 21−εθs2ε

θ
r(1−εθm) = 2.

Then z̃ ∈ (H̃s
ckj

)0, m̃γ /∈ (H̃s
ckj

)0 (Proposition 12.4.4) and the K̃-orbits in θ̃†λ each have two

genuine triples with opposite central characters extending them. Let Υ = (H̃s
c , φ, Γ̃)λ be a

genuine triple extending (H̃s
ckj
, φ)λ and suppose α is a long imaginary root in ∆(g, hs

ckj
). Then

α is noncompact of type I (Theorem 9.2.9) and thus (H̃s
c , φ, Γ̃)λ and (H̃s

ckj
, sα · φ, sα · Γ̃)λ are

not conjugate in K̃. If m = (φ, α∨), then m ∈ Z + 1
2 and Corollary 12.4.9 implies

sα · Γ̃(z̃) = (−1)2m · Γ̃(z̃)

= (−1) · Γ̃(z̃).

Since α is long, ℘(Υ) and ℘(sα ·Υ) are not conjugate in K̃ by Proposition 12.3.2.

In particular, the map ℘ associates a unique principal series to each element in D̃θλ
(whenever

∣∣∣D̃θλ∣∣∣ = 4). This completes the process of distinguishing the elements of D̃θλ for

even parity Cartan subgroups and will play a critical role in the next section.
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12.7 Extension of Ψ

Let λ ∈ (ha)∗ be a symmetric infinitesimal character and recall the rank of G̃ is even.

We are finally in a position to extend the bit flip involution (Definition 3.2.4)

Ψ : I → I

to the level of genuine parameters for G̃. The extension requires much of the structure

theory from the previous sections including central characters (Definition 11.4.1) and the

map ℘ (Definition 12.6.2).

Fix a split Cartan subgroup H̃s ⊂ G̃ and recall psλ denotes the set of principal series

for λ (Section 12.3). Choose an involution

τ : psλ → psλ

that switches central character. In other words, for υ ∈ psλ we require τ(υ) and υ to have

opposite central characters. Since |psλ| = 4, Proposition 11.5.1 implies there are exactly

two choices for τ .

Definition 12.7.1. Let θ be a supportable abstract involution for λ (Section 6.3) and let

υ ∈ D̃θλ. If
∣∣∣D̃θλ∣∣∣ = 1, Ψ(υ) is defined to be the unique element in D̃−θλ (Theorem 10.1.5). If∣∣∣D̃θλ∣∣∣ = 4, define

Ψ(υ) = ω ∈ D̃−θλ

where ω is the unique element in D̃−θλ with τ(℘(υ)) = ℘(ω).

The construction in Definition 12.7.1 immediately leads to the following extension of

Proposition 11.5.2.

Proposition 12.7.2. Let υ ∈ D̃λ and suppose (θ, ε, η, λ) is the corresponding abstract

bigrading (Section 11.3). Then Ψ(υ) has abstract bigrading (−θ, η, ε, λ).

Proof. If
∣∣∣D̃θλ∣∣∣ = 1, this was proven in Proposition 11.5.2. If

∣∣∣D̃χ∣∣∣ = 4, we observe υ and

Ψ(υ) have opposite central characters and the result follows from Theorem 11.4.8.

We now prove two important properties of the map Ψ.

Theorem 12.7.3. Let α ∈ ∆(g, ha)(λ) be an abstract integral root. If υ ∈ D̃λ, then

Ψ(sα×υ) = sα×Ψ(υ).
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Proof. Let (θ, ε, η, λ) be the abstract bigrading for υ. We have

−(sαθsα−1) = sα(−θ)sα−1

and the result holds on the level of involutions (see Proposition 9.1.6). If
∣∣∣D̃θλ∣∣∣ = 1, the

elements υ and Ψ(υ) are determined by their involutions and we are done.

If
∣∣∣D̃θλ∣∣∣ = 4, we need to show τ(℘(sα×υ)) = ℘(sα×Ψ(υ)). Since τ(℘(υ)) = ℘(Ψ(υ)) by

definition, it suffices to show

℘(sα×υ) = ℘(υ) ⇐⇒ ℘(sα×Ψ(υ)) = ℘(Ψ(υ)).

The proof is by cases (for a change) based on the type of α for υ.

Case I. Suppose α is imaginary and compact for υ. Then α is real for Ψ(υ) and does

not satisfy the parity condition (Proposition 12.7.2). Therefore,

sα×υ = υ

sα×Ψ(υ) = Ψ(υ)

by Propositions 12.1.15 and 12.3.7 and we have

℘(sα×υ) = ℘(υ)

℘(sα×Ψ(υ)) = ℘(Ψ(υ))

by Proposition 12.6.3.

Case II. Suppose α is imaginary and noncompact for υ. Proposition 6.2.2 implies α is

short and Proposition 12.7.2 implies α is real for Ψ(υ) and satisfies the parity condition.

Then

sα×υ 6= υ

sα×Ψ(υ) 6= Ψ(υ)

by Corollaries 12.5.9 and 12.4.10. Therefore

℘(sα×υ) 6= ℘(υ)

℘(sα×Ψ(υ)) 6= ℘(Ψ(υ))

by Theorem 12.6.4.
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Case III. Suppose α is short and complex for υ. Choose a genuine triple (H̃s
ckj
, φ, Γ̃)λ

representing υ and recall the element nθcr from Definition 12.6.1. It is easy to check

nsα×θcr = nθcr ± 1.

If m = (λ, α∨), then Proposition 12.4.8 implies

℘(sα×υ) = ℘(υ) ⇐⇒

(−1)mΓ̃(z̃)Γ̃(m̃γ)n
θ
cr+1 = Γ̃(z̃)Γ̃(m̃γ)n

θ
cr Γ̃(m̃γ) ⇐⇒

(−1)m = 1.

By the same argument we also have ℘(sα×Ψ(υ)) = ℘(Ψ(υ)) ⇐⇒ (−1)m = 1 and the

result follows.

Case IV. Suppose α is long and complex for υ. This is handled in the same fashion as

Case III and is left to the reader.

Theorem 12.7.4. Let υ ∈ D̃λ and suppose α ∈ ∆(g, ha) is an abstract simple root that is

imaginary and noncompact. Then α is real for Ψ(υ) and we have

Ψ(Cα(υ)) = Cα(Ψ(υ)).

Note this is an equality of sets (Definitions 12.5.4 and 12.5.10).

Proof. Let (θ, ε, η, λ) be the abstract bigrading for υ. Since (−θ, η, ε, λ) is the abstract

bigrading for Ψ(υ) (Proposition 12.7.2), α is real for Ψ(υ) and satisfies the parity condition.

Case I. Suppose
∣∣∣D̃θλ∣∣∣ = 1 and α is long. Then Cα(υ) must be the unique element of

D̃sαθλ (Proposition 8.2.1). Similarly, Cα(Ψ(υ)) is the unique element of D̃sα(−θ)
λ = D̃−sα(θ)

λ

and the result follows.

Case II. Suppose
∣∣∣D̃θλ∣∣∣ = 1 and α is short. Using Theorem 9.2.9, it is easy to check α

must be of type II. Since
∣∣∣D̃θλ∣∣∣ = 1, we must have sα×υ = υ and Proposition 12.5.8 implies

Cα(υ) = {ω+, ω−} ⊂ D̃sα(θ)
λ

is double valued. In particular, Ψ(ω+) and Ψ(ω−) are exactly the elements in D̃sα(−θ)
λ

with the same central character as Ψ(υ) (Proposition 11.5.1). Therefore it suffices to show

Cα(Ψ(υ)) is double valued and this follows immediately from Corollary 12.5.9.
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Case III. Suppose
∣∣∣D̃θλ∣∣∣ = 4 and α is short. Then both Cα(υ) and Cα(Ψ(υ)) are single

valued and the result follows for the same reasons as in Case I.

Case IV. Suppose
∣∣∣D̃θλ∣∣∣ = 4 and α is long. Choose a representative Υ = (H̃s

ckj
, φ, Γ̃)λ

for υ with H̃s
ckj
⊂ G̃ an even parity Cartan subgroup. Proposition 12.5.5 implies Cα(υ) is

single-valued and we have

W θ
i
∼= W (Bnθs)×W (A1)k

W (G, H̃s
ckj

) ∼= ((AnW θ
ic)×W θ

R) oW θ
C

from Propositions 3.3.6 and 5.2.3. Suppose first that α is an element of the Ak1 factor of

∆θ
i . Then j > k and conjugation in W θ

C allows us to choose the representative Υ such that

α = iφ(α) = Ckj (±αj).

In particular, Cα(H̃s
ckj

) = H̃s
ckj−1

is an even parity Cartan subgroup of G̃. Since α is long,

Definition 12.5.2 directly implies

℘(Υ) = ℘(Cα(Υ))

so that

℘(υ) = ℘(Cα(υ)).

A similar argument holds for Ψ(υ) and ultimately gives

℘(Ψ(υ)) = ℘(Cα(Ψ(υ)))

and the result follows.

Now suppose α is an element of the W (Bnθs) factor of ∆θ
i . Then k > 0 and conjugation

in W θ
ic allows us to choose the representative Υ such that

α = iφ(α) = Ckj (±αk).

In particular, Cα(H̃s
ckj

) = H̃s
ck−1
j

is an even parity Cartan subgroup of G̃ and we proceed as

above.
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We will need an extension of Theorem 12.7.3 to the full abstract Weyl group W . The

precise statement requires a bit of setup. Let λ ∈ (ha)∗ be a symmetric infinitesimal

character and suppose F(λ) is a family for λ (Definition 12.2.1). For each κ ∈ F(λ) we

define a map ℘κ : D̃κ → psκ as in Definition 12.6.2 and let

℘′ =
∐

κ∈F(λ)

℘κ :
∐

κ∈F(λ)

D̃κ →
∐

κ∈F(λ)

psκ.

Identifying psκ with psλ in the obvious way gives a map

℘ :
∐

κ∈F(λ)

D̃κ → psλ.

Fix an involution τ : psλ → psλ as above and define maps Ψκ : D̃κ → D̃κ for κ ∈ F(λ)

(Definition 12.7.1). Finally set

Ψ =
∐

κ∈F(λ)

Ψκ :
∐

κ∈F(λ)

D̃κ →
∐

κ∈F(λ)

D̃κ.

Theorem 12.7.5. In the notation above, let α ∈ ∆(g, ha) be a long abstract root and

suppose sα /∈W (λ). If κ ∈ F(λ) and υ ∈ D̃κ then

Ψ(sα×υ) = sα×Ψ(υ).

Proof. Let (θ, ε, η, κ) be the abstract bigrading for υ. On the level of involutions, the result

follows as in Theorem 12.7.3. If
∣∣∣D̃θκ∣∣∣ = 1, the elements υ and Ψ(υ) are determined by their

involutions and we are done.

If
∣∣∣D̃θκ∣∣∣ = 4 we again need to show

℘(sα×υ) = ℘(υ) ⇐⇒ ℘(sα×Ψ(υ)) = ℘(Ψ(υ))

and Proposition 6.2.2 implies it suffices to check this for complex and noncompact imaginary

roots. Combined with Remark 12.2.5, the details are as in Theorem 12.7.3 and are left to

the reader.

12.8 Character Multiplicity Duality
Let λ ∈ (ha)∗ be a symmetric infinitesimal character. We begin with one final definition.

Definition 12.8.1 ([13], Definition 6.7). Let θ be an involution in I and recall ∆+ denotes

the set of abstract roots that are positive for λ. The length of θ is defined to be

`(θ) =
1
2

∣∣{α ∈ ∆+ | θ(α) /∈ ∆+
}∣∣+

1
2

dim(θ−1)

where θ−1 is the negative eigenspace for θ. If υ ∈ D̃λ and (θ, ε, λ) is the corresponding

abstract triple, we define `(υ) = `(θ).
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Proposition 12.8.2. In the setting of Definition 12.8.1, `(υ) ∈ N+.

Proof. First suppose υ ∈ psλ so that θ = −1 and recall n > 0 denotes the rank of G̃. From

Section 3.1 we have

`(υ) =
1
2
n2 +

1
2
n

=
n(n+ 1)

2
=
(
n+ 1

2

)
and the result follows. We now proceed as in [16], Lemma 8.6.13.

Suppose now the rank of G̃ is even and fix a map Ψ : D̃λ → D̃λ as in Definition 12.7.1.

Proposition 12.8.3. Let υ ∈ D̃λ and suppose (θ, ε, λ) is the abstract triple for υ. Then

`(Ψ(υ)) =
(
n+1

2

)
− `(υ).

Proof. Set

m1 =
∣∣{α ∈ ∆+ | θ(α) /∈ ∆+

}∣∣
m2 = dim(θ−1).

Clearly we have

`(Ψ(υ)) = `(Ψ(θ)) = `(−θ)

=
n2 −m1

2
+
n−m2

2

=
n(n+ 1)

2
− m1 +m2

2

=
(
n+ 1

2

)
− `(υ)

as desired.

Fix a family F(λ) of infinitesimal characters for λ and suppose Γ̃ is a genuine central

character of Z(G̃). Let B = {γ1, . . . , γr} ⊂ D̃λ be the collection of genuine parameters in

D̃λ with central character Γ̃. If δi = Ψ(γi), write B′ = {δ1, . . . , δr} = D̃λ \ B and extend

the map Ψ (and thus the sets B and B′) as in Theorem 12.7.5. Let M (respectively M′)

denote the free Z[q, q−1] module with basis B (respectively B′). As in [13], we view M and

M′ as Hecke modules for the extended action of the Hecke algebra H(W ) ([13], Definition

9.4). The integer matrix M (Section 2.4) for B (respectively B′) is then determined from
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the combinatorics of M (respectively M′). The interested reader is referred to [19] for a

reasonably concise account of this process.

For our purposes, only the following formalism is important. Define the dual Z[q, q−1]

module

M∗ = HomZ[q,q−1](M,Z[q, q−1])

and extend M∗ to an H(W )-module as in [13], Theorem 11.1. Write B̌ = {γ̌1, . . . , γ̌r} for

the dual basis of M∗ and define the Z[q, q−1]-linear map

Φ :M∗ −→ M

γ̌i 7−→ (−1)`(γi)δi.

Theorem 12.8.4. In the above setting, Φ is an isomorphism of H(W )-modules.

Proof. It suffices to check the equivariance of the operators in H(W ) corresponding to

simple roots. Depending on the root type and length, there are many cases to consider. For

integral roots, the details are as in [17], Proposition 13.10. For strictly half integral roots,

the details are as in [13], Theorem 11.1. In each case the result is a formal consequence of

Theorems 12.7.3, 12.7.4, and 12.7.5.

Theorem 12.8.5. Let λ be a symmetric infinitesimal character and suppose the rank of

G̃ is even. Fix a genuine central character Γ̃ of Z(G̃) and let B = {γ1, . . . , γr} ⊂ D̃λ be

the collection of genuine parameters in D̃λ with central character Γ̃. If δi = Ψ(γi) and

B′ = {δ1, . . . , δr} = D̃λ \ B, then

M(γi, γj) = (−1)`(γj)−`(γi)m(δj , δi) (12.1)

(Section 2.4).

Proof. This follows immediately from Theorem 12.8.4 and Lemma 13.7 of [17].

Example 12.8.6. We verify Theorem 12.8.5 in the case n = 2 and λ =
(

3
2 , 1
)
. Let α

(respectively β) denote the unique short (respectively long) abstract simple root in ∆+ and

recall Example 9.4.5 implies
∣∣∣D̃λ∣∣∣ = 18. Write B = {γ0, . . . , γ8} ⊂ D̃λ for the collection

of parameters in D̃χ with trivial genuine central character. The structure of B is given by

Table 12.1.

Each row in the table corresponds to the element γi ∈ B listed in the first column. The

second column gives the length of γi and the third column gives the image of the (integral)
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cross action for sα. The final two columns give the images of the Cayley transforms (when

defined) for the simple roots β and α respectively. If δi = Ψ(γi) then the structure of

B′ = {δ8, . . . , δ0} is given by Table 12.2.

Using the methods of [13] one verifies the matrix M for B is given by

M =



1 0 −1 0 −1 1 1 0 −1
1 0 −1 −1 1 1 −1 0

1 0 0 −1 0 0 0
1 0 0 −1 0 0

1 −1 −1 0 0
1 0 −1 0

1 0 −1
1 0

1


with respect to the ordering above. Similarly, the matrix m for B′ is given by

m =



1 0 1 0 0 0 0 0 1
1 0 1 0 0 0 1 0

1 0 1 1 0 1 1
1 1 0 1 1 1

1 0 0 1 1
1 0 1 0

1 0 1
1 0

1


with respect to the opposite order. Theorem 12.8.5 implies the matrix M equals the

antitranspose (i.e., reflection about the opposite diagonal) of the matrix m up to sign.

The reader is invited to verify this for the above matrices.



146

12.1. Structure of B

B length sα × γi β : C(γi) α : C(γi)
γ0 0 γ1 γ2 γ4

γ1 0 γ0 γ3 γ4

γ2 1 γ5 γ0 ∗
γ3 1 γ6 γ1 ∗
γ4 1 γ4 ∗ {γ1, γ0}
γ5 2 γ2 γ7 ∗
γ6 2 γ3 γ8 ∗
γ7 3 γ7 γ5 ∗
γ8 3 γ8 γ6 ∗

12.2. Structure of B′

B′ length sα × δi β : C(γi) α : C(γi)
δ8 0 δ8 δ6 ∗
δ7 0 δ7 δ5 ∗
δ6 1 δ3 δ8 ∗
δ5 1 δ2 δ7 ∗
δ4 2 δ4 ∗ {γ1, γ0}
δ3 2 δ6 δ1 ∗
δ2 2 δ5 δ0 ∗
δ1 3 δ0 δ3 δ4

δ0 3 δ1 δ2 δ4
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[5] Alexandre Bĕılinson and Joseph Bernstein, Localisation de g-modules, C. R. Acad. Sci.
Paris Sér. I Math. 292 (1981), no. 1, 15–18. MR MR610137 (82k:14015)

[6] Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Gradu-
ate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR MR2133266
(2006d:05001)

[7] J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems,
Invent. Math. 64 (1981), no. 3, 387–410. MR MR632980 (83e:22020)

[8] Bill Casselman, Computations in real tori, Representation Theory of Real Reductive Lie
Groups (Snowbird, Utah, 2006), Contemporary Mathematics, vol. 472, Amer. Math.
Soc., Providence, RI, 2008, pp. 137–152.

[9] Fokko du Cloux, Combinatorics for the representation theory of a real reductive group,
Notes from Atlas website, July 2005.

[10] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke
algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR MR560412 (81j:20066)

[11] Anthony W. Knapp, Lie groups beyond an introduction, second ed., Progress in
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