LECTURE 10: ITO’s FORMULA AND THE WRIGHT-FISCHER MODEL
§1. ITO’s FORMULA

(1.1) An It6 Formula. Suppose Y solves the stochastic differential equation,

(1.2) dY (t) = a(Y(t))dW (t) + b(Y (t))dt,

and recall from (2.11) of Lecture 10 that for any nice function f,

(1.8) F(V(8) = £(V(0) / (¥ (3)a(Y(s)) dW (s) / £V () [a(Y ()7 ds.

From this, and a few lines, one can show the following.

(1.4) Probabilistic Interpretation of a and b. As h | 0,

E{Y(t * h})L —Y() ‘ Y(t) = a:} LY (8)

h

Y(t) = x} — a(Y(t)).

This gives further credance to our intuition that a(z) determines the strength of the fluc-
tuation if Y enters the value z, and b(z) determines the drift (or push) if Y enters b(z).

§2. THE WRIGHT-FISCHER GENE FREQUENCY MODEL

(2.1) A Haploid Model. The haploid model is the simplest model for asexual gene
reproduction; here, there are no genetic effects due to genetic mutation or selection for a
specific gene.

Let 2N denote a fixed population size comprised of two types of individuals (more
aptly, genes): Type A and Type B. If the parent consists of 7 type-A individuals (and hence
2N — i type-B), then in the next generation, each gene becomes type-A with probability
% and type-B with the remaining probability 1 — s%. All genes follow this prescription
independently, and this works to construct a random process that evolves from generation
to generation.

Let X,, := the number of type-A individuals in generation n. Then, given that we
have simulated the process until time (n — 1) and observed X,,_; = j, we have:
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A question arises that is the genetics’ analogue of the maze-problem from Robert Thorn’s
talk:
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(2.3) Question. What is the probability that starting with ¢ type-A individuals for some
1=0,...,2N, X,, is eventually equal to 0?7 Can you answer this by simulation when N is
large? &

(2.4) A Diffusion-Approximation. Consider the entire random process g(—](“, where
k=1,...,2N, and N is fixed but large. Then, one can show that when N is large,
this process looks like the solution to the following stochastic differential equation (called
Feller’s equation) run until time one:

(2.5) dY (1) =Y@){1-Y(t)}dW (¢).

Thinking of this SDE as we did in (2.3, Lecture 10), you should convince yourself that
when the solution Y hits 0 or 1, it sticks there forever.

(2.6) An Argument to Convince you of (2.5). This is not a rigorous argument, but
its intuitively convincing: Based on the conditional-binomial formula (2.2) above, and a
few calculations involving the means and variances of binomials, we have the following: As
h — 0, and for each 0 <t <1,

2N

2
[X2N(t+%) - XZNt} ) 1 1 1
E{ oN ‘X”t_”}_ﬁ(W) (1_N>'

So let b = 55 and consider the process Yn (t) := 55 X|2n¢) to “see” that Yy should look

like Y in light of (1.4). &

Ry =

Xont = z} =0—0
(2.7)

(2.9) Simulation Project. Simulate the Wright-Fischer haploid model, as well as Feller’s
diffusion, and “compare.” You should think hard about what this means, since we are
talking about different random processes. &
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