LECTURE 6: STARTING SIMULATION
§1. THE ABC’S OF RANDOM NUMBER GENERATION

(1.1) Computing Background. I will start the lectures on simulation by first assuming
that you have access to (i) a language (such as C or better still C); or (ii) an environment
(such as Matlab.) If you do not know how to use any programming, you need to get a
crash-course, and your T.A.’s (in particular, Sarah and Robert) will help you along if you
seek their help. At this point, you should make sure that you (i) have a computer account;
and (ii) know how to log in, check mail, and run a program that you know how to run.

(1.2) Generating a Uniformly Distributed Random variable. All of simulation
starts with the question, “How do I choose a random number uniformly between 0 and 12’
This is an intricate question, and you will have a detailed lecture on this topic from Dr.
Nelson Beebe later this week or the next. These days, any self-respecting programming
language or environment has a routine for this task (typically something like rand, rnd,
or some other variant therefrom). Today, we will use such random number generators to
generate a few other random variables of interest; we will also apply these methods to
simulate random walks.

(1.3) Generating a +£1 Random Variable. Our first task is to generate a random
variable that takes the values +1 with probability % each. Obviously, we need to do this
in order to simulate the one-dimensional simple walk.

The key observation here is that if U is uniformly distributed on [0, 1], then it follows
that P{U < 1} = 1. So, if we defined

_ [+, U<y,
(1.4) X = {—1, iU > L

then P{X = +1} = P{U < 1} = 1 and P{X = —1} = P{U > 1} = 1. That is, we have
found a way to generate a random variable X that is +1 with probability % each. This

leads to the following.
(1.5) Algorithm for Generating £1-Random Variables

1. Generate U uniformly on [0,1]
2. If U %, let X :=+1, else let X := -1
(1.6) Exercises. Try the following:

(a) Write a program that generates 100 independent random variables,
each of which is £1 with probability % each.

(b) Count how many of your generated variables are +1, and justify the
statement that, “with high probability, about half of the generated
variables should be +1.7

(c) Come up with another way to construct +1 random variables based
on uniforms; a variant of (1.5) is acceptable.

21

(1.7) The Inverse Transform Method. We now want to generate other kinds of
“discrete random variables,” and we will do so by elaborating on the method of (1.5).
Here is the algorithm for generating a random variable X such that P{X = z;} = p,
7 =0,1,... for any predescribed set of numbers xq, z1, ..., and probabilities pg, p1,.... Of
course, the latter means that pg, p1,...are numbers with values in between 0 and 1, such
that po +p1 +--- = 1.

(1.8) Algorithm for Generating Discrete Random Variables.

1. Generate U uniformly on [0,1]
2. Define

Zo, if U<p0’
z1, if po < U < po+ p1,

X = Z9, if p0+p1§U<po+p1+p2,

(1.9) Exercise. Prove that the probability that the outcome of the above simulation is
z; is indeed p;. By specifying xg,21,... and pg,p1, ... carefully, show that this “inverse
transform method” generalizes Algorithm (1.5).

(1.10) Exercise. In this exercise, we perform numerical integration using what is some-
times called Monte Carlo simulations.

(a) (Generating random vectors) Suppose that Uy, ...,Uy are indepen-
dent random variables, all uniformly distributed on [0,1], and con-
sider the random vector U = (U, ...,Uy). Prove that for any d-
dimesional hypercube A C [0,1]¢, P{U € A} = the volume of
A. In other words, show that U is uniformly distributed on the
d-dimensional hypercube [0,1]%.

(b) Let Uy,...,U, be n independent random vectors, all distributed
uniformly on the d-dimensional hypercube [0,1]%. Show that for
any integrable function f with d variables, the following holds with
probability one:

n 1 1
(1.11) nli_)n;o%;f(Ug):/o /0 flxy,...;zq)dzy - - dxg.

(c) Use this to find a numerical approrimation to the following inte-
grals:

i. fol e~ da.
ii. fol fol y® dx dy.

22

§2. SHORT-CUTS: GENERATING BINOMIALS

(2.1) The Binomial Distribution. A random variable is said to have the binomial
distribution with parameters n and p if

(2.2) P{X =j} = (?)pj(l—p)n_j, j=0,1,...,n.

Here n is a positive integer, and p is a real number between 0 and 1.

(2.3) Example. For example, suppose n independent success/failure trials are performed;
in each trial, P{success} = p. Then, if we let X denote the total number of successes, this
is a random variable whose distribution is binomial with parameters n and p. &

(2.4) Example. Suppose &1, ...,&, are independent with P{{ = 1} = p and P{{ =0} =
1—p. Then, X :=&; + -+ + &, is binomial.

Proof: Let & = 1 if the ith trial succeeds and &; = 0 otherwise. Then X is the total number
of successes in n independent success/failure trials where in each trial, P{success} = p. &

(2.5) Example. If S,, denotes the simple walk on the integers, then S,, = X1 +---+ X,
where the X’s are independent and every one of the, equals +1 with probability % each.
On the other hand, ¥; := (X, + 1) is also an independent sequence and equals £1 with
probability 3 each (why?) Since X; = 2Y; — 1,

(2.6) Sn=2) Y;—n.
=1

Therefore, the distribution of the simple walk at a fixed time n is the same as that of
2 x binomial(n, p) — n.

(2.7) A Short-Cut. Suppose we were to generate a binomial(n, p) random variable. A
natural way to do this is the inverse transform method of (1.7) and (1.8). Here, zy =
0,21 =1,...,2, = n, and p; is the expression in (2.2). The key here is the following short
cut formula that allows us to find p;;; from p; without too much difficulty:

n . .
. — 741 1— n—j—1
Pj+1 (j N 1)10 (1-p)

= p X n! X pj(l _p)n—j
p—1 (G+DIxn—-j7—-1)!

b n_j n Yl n—j
= — X — X) 1-— 7
p—1 j+1 (J)p(P)

D n—j

= X —-
p—1 541

ij.

So we can use this to get an algorithm for quickly generating binomials.

23

(2.9) Algorithm for Generating Binomials.

1. Generate U uniformly on [0,1].

. Let Prob:=(1—p)" and Sum:= Prob.

3. For j=0,...,n, do:
i. If U < Sum, then let X =j and stop.
ii. Else, define

N

Prob n—j
Prob := X X Prob, and Sum := Prob 4 Sum.

1—Prob 541

You should check that this really generates a binomial. [

(2.10) Algorithm for Generating the One-Dimensional Simple Walk. Check that
the following generates and plots a 1 — d simple walk.

1. (Initialization) Set W:=0 and plot (0,0).
2. For j=0,...,n, do:
i. Generate X = +1 with prob. % each.
(See (1.5) for this subroutine.)
ii. Let W:=W+ X and plot (j,W).

If you are using a nice plotting routine like the one in Matlab, try filling in between
the points to see the path of the walk.

(2.11) Exercise. Generate 2-dimensional simple walks that run for (a) n = 100 time
units; (b) » = 1000 time units.

24

