Math 6010, Fall 2004: Homework

Homework 3

#2, page 23: Recall that Y ~ N, (u, %) iff forallt € R", t'Y ~
N(t'p,t'3t). Choose t such that t; = 1 and ¢t; = 0 for j # i.
Then t'Y =Y, t'p = p;, and t'3t = o0y;.

#3, page 23: Of course, Z = AY, where

111
A:Q —10'

Therefore, Z ~ No(Apu, AXA’). This is a bivariate normal;
(5 , (10 -1
) (% 3)

#5, page 24: Each (X;,Y;) is obtained from linear combination
of two i.i.d. standard normals. That is, X; = a;1Z;1 + a;2Zi2
and Y; = bi7lZi71+bz-,gZi72, where Zl,la ZLQ, Z271, ZQ’Q, ey Zn,h Zn,g
are i.i.d. standard normals, and a;;’s and b; ;’s are constants.

Therefore,
Xq Z11
Y Z12
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where the empty parts of the matrix with A’s in it are are zero,

and
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This proves that (Xi,Y1,...,X,,Y,)" is multivariate normal.
Therefore, so is

Xi
Y1
_ X,
()_():(1 010 --- 1 0) Y,
Y 0101 --- 01 ,
X,
Y,

It is easiest to compute the mean and variance matrix directly
though. Suppose EX;| = ux, EY; = py, VarX; = 0%, VarY; =
0%, and Cor(X1,Y;) = p. Then, EX = EX; = ux, EY =
EY) = uy, VarX = 0% /n, VarY = o2 /n. Finally,

Cov(X,Y) :Cov< ZX“ i%)
:—ZZCOV i Y;) ZCOVX“YZ)

=1 j5=1
_ POXOy
—
Therefore, Cor(X,Y) = Cov(X,Y)/SD(X)SD(Y) = p. Thus,
(va) ~ NQ(#’? 2)7 where

=) == (5 )

#6, page 24: Let y; = EY; and 0? = VarY;. Also define p =
Cor(Y1,Ys).

Define 7, = Y1+ Y, and Zy = Y] — Y,. Then we are told that
Zy and Zs are independent N(0,1)’s. Note that

Y; 7 1 1
(Y;):A(Zz>whereA (_2% _2%>

Therefore, (Y7,Y5)" is bivariate normal with

0 , 1 1 —1
EY:(O) andVarY:AA—§<_1 1).




#5, page 32: Define
/
Wz(h—g%)Y:AY.
all
[INB: aa’ is an n x n matrix.] We compute directly to find that
Cov(W,a'Y) = ACov(Y,Y )a = Aa
aa’
= a —
all?
This proves that W and @'Y are independent (Theorem 2.5).
Note that A is symmetric and idempotent (i.c., A*> = A).
Therefore,

a=0.

/
HWW:WWV:WMY:YT—Yf%Y
a
la'Y|]?
lal®

Turn this around to see that ||[Y||*> = [|[W]]? + ||la'Y||?/||a]?.
Because W is independent of @'Y, the conditional distribution
of [|[Y']|? given @'Y = 0 is the same as the (unconditional) dis-
tribution of [|[W|? = ||AY||>. Thanks to Theorem 2.8, the said
distribution is x? where r denotes the number of eigenvalues of
A that are one; whence, n — r eigenvalues are zero. It remains
to prove that » = n— 1. This follows immediately from the fact
that the only non-zero solution to Ax = 0 is * = a. To see
this note that Aa = 0, so a is a solution to Ax = 0. Suppose
there were another non-zero solution to Axz = 0. We can use
Gramm—Schmitt to obtain a non-zero solution v to Ax = 0
with the property that v is orthogonal to a; i.e., v'a = 0. Note
that aa’v = 0 so that 0 = Av = wv. Therefore, there is ex-
actly one non-zero solution to Ax = 0, and that is ¢ = a.
Equivalently, the column rank of A isr=n —1.

—Y'Y -

#6, page 32: Let X; = (V; — p;)//T—p to find that X ~
N,(0,(1 —p)™1X). Because (V; - Y)/\/1—p= X, — X,

Vi-Y

= 1 1

: = AX, where A = —— (In — —1n1;) ,
YoV vi=p n

1—p

since 1,1/ is an n X n matrix of all ones. The first thing to
notice is that A1,1/ = 0. This follows from the fact that



AA

(1,1/)? = n1,1’. In particular, A* = (1 — p)~*. In addition,

1
AVarX = ——AS
vi=p
—1-pA+ L A1,1 = /T pA

vi—=p
Therefore, AVarX is idempotent. The corollary on page 30
tells us then that ||AX|]? ~ x? where r = rank(AVarX). Note
that

1 < -
|AX|* = - d (Vi-Y)
=1

Therefore, it suffices to prove that » = n — 1. That is, we wish
to prove that there is exactly one solution to AVar(X)x = 0.
This was proved in #b5, page 32; simply set a = 1,, there.

#11, page 32: One can check that Y = Aa, where A (n + 1

columns and n rows) as follows:

6 1 0 0 0 0 0
0 ¢ 1 0 0 0 0
00 ¢ 1 0 0 0
P .
000 0 0 6 1
SoY ~ N,(0,02AA’). To finish, we compute the n x n matrix,
P+1 ¢ 0 0 - 0 0 0 0
¢  P+1 ¢ 0 -~ 0 0 0 0
0 o P*P+1 ¢ 0 0 0 0
0 0 0 0 o *+1 ¢ 0
0 0 0 0 0 ¢  *+1 ¢

That iS, (AA/)Z7Z = ¢2 + 1, (AA/)i,i—l—l = (AA/)i,i—l = Qb, and
for all j & {i,i £ 1}, (AA);; = 0.



