MORE APPLICATIONS OF MARTINGALE THEORY

DAVAR KHOSHNEVISAN

1. PATTERNS

Suppose X, Xy, ... are i.i.d. random variables with P{X; = 1} =
p and P{X; = 0} = ¢, where ¢ = 1 —pand 0 < p < 1. It is
possible to use the Kolmogorov zero-one and deduce that the infinite
sequence X1, Xo,... will a.s. contain a zero, say. In fact, any pre-
described finite pattern of zeroes and ones will appear infinitely often
in the sequence {Xi, Xs,...} with probability one. Let N denote the
first k£ such that the sequence {Xj,..., X;} contains a pre-described,
non-random pattern. Then, we wish to know E[N].

The simplest patterns are “0” and “1.” So let N denote the smallest
k such that {Xi,..., X;} contains a “0.” It is not hard to convince
yourself that E[N] = 1/q because N has the following geometric dis-
tribution:

(1.1) P(N=jl=p""q j=12,....

This calculation uses too much of the structure of the pattern “0.”
Here is an alternative argument, due to Robert Li Shuo-Yen (1980),
which is more robust:

Consider the process

1 1 1
(1.2) Y, = 51{){1:0} + 51{){2:0} +-ee 51{Xn:O}-

Define .#,, to be the o-algebra defined by {X;}?, for every n > 1.
Then, for all n > 1,

1
(13) Bl | Fu = Yo+ P(Xan =0]5) =Y, + 1

Therefore, {Y,, — n}>?, is a mean-zero martingale (check!). By the
optional stopping theorem,

(1.4) E[Yyan — (NAR)] =0  "n>1.
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1A martingale approach to the study of occurance of sequence patterns in re-
peated experiments, Ann. Probab., Vol. 8, No. 6, pp. 1171-1176 (1980)
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Equivalently, E[N A n| = E[Yyan|. But N < 0o a.s., and both {N A
n}ee, and {Ynan}o2, are increasing. Therefore, we can apply the
monotone convergence theorem to deduce that

(1.5) E[Yy] = E[N].

On the other hand, Yy = (1/q) a.s. Therefore, E[N] = 1/q, as we know
already.

The advantage of the second proof is that it can be applied to other
patterns. Suppose, for instance, the pattern is a sequence of ¢ ones,
where ¢ is an integer greater than or equal to one. Consider

Lnyg = 1@ 1ix,=1,. x,=1y %1{)(2_1 ..... Xep1=1}
1 1
(1.6) R ﬁl{xn_gﬂ ,,,,, Xo=1} + 77 1x, =1, x,=13
+L1{X_ —1,..,X =1}+"'+l1{x —1}-
pg_g n—ty2=1,.,Xn D n

Then, you should check that {Z,, — n}2, is a martingale. As be-
fore, we have E[Zy /] = E[N], and now we note that Zy, = (1/p*) +
(1/p"~1) +---+ (1/p) a.s. Therefore,

) Emziizz(g_l).

Therefore, set ¢ = 2 to find that

1 /1
(1.8) E[N] = - (—2 - 1) for the pattern “11.”

g \p
Exercise 1. Prove that if the pattern is “01,” then E[N] = 1/(pq).
Hint: First show that {IW,, — n}5%, is a martingale, where

1 1 1
1.9 Wn = _1X:,X: + o4+ —1 Xpo1=0,Xn= + -1 Xp,=0}-
(1.9) D La=0.Xa=1) D La=0Xa=1) + C1px=0)

Which of the two patterns, “01” and “11,“ is more likely to come
first? To answer this, we first note that {W,,— Z, 2}°° , is a martingale,
since it is the difference of two martingales.

Define T' to be the smallest integer £ > 1 such that the sequence
{X1,..., X} contains either “01” or “11.” Then, we argue as be-
fore and find that E[Wy — Z7o] = 0. But W — Zrs = (pg)~* on
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{017 comes up first}, and Wr — Zro = (1/p) + (1/p*) = (p + 1)/p?
on {“11” comes up first}. Therefore,

O - E[WT - ZT,Q]

1
= —P {“01” comes up first}

(1.10) pq
1
+ p; [1 —P{“01” comes up first}].
Solve to find that
p+1
1.11 P {“01” comes up before “11"} = ————.
Ay { S )

Thus,
P {“01” comes before “11”} < P {“11” comes before “01”}

(1.12) p V3—1

— —-<p+l1l = p> :
q

2

Exercise 2. Find the probability that we see ¢ consecutive ones before
k consecutive zeroes.

2. QUADRATIC FORMS

Let {X;}22, be a sequence of i.i.d. random variables. For a given dou-
ble array {a;;}75_, of real numbers, we wish to consider the “quadratic
forms” process,

1<ij<n

Define a; ; := (a;; + a;;)/2. A little thought shows that if we replace
aij by ai; in @, then the value of (), remains the same. Therefore,
we can assume that a; ; = a;;, and suffer no loss in generality.

The quadratic form process {Q,,}°2; arises in many disciplines. For
instance, in mathematical statistics, {Q,}°>; belongs to an important
family of processes called “U-statistics.”

Here, we wish to prove the following theorem that is essentially due
to Dale E. Varberg (1966)2.

Theorem 2.1. Suppose E[X;] = 0, E[X]] = 1, and E[X}] < co. If
Doy gy @F; < 00, then limy, oo(Qn =7 <ic,, @ii) exists and is finite
a.s.

2Convergence of quadratic forms in independent random variables, Ann. Math.
Statist., Vol. 37, No. 3, pp. 567-576 (1966)
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Proof. Let A,, := %", _,., ai;. Then, a direct computation reveals that
{Q, — A, }2, is a mean-zero martingale. We plan to prove that {Q,, —
A}, is bounded in L?(P). Because boundedness in L?(P) implies
boundedness in L!'(P), the martingale convergence theorem does the
rest.

Thanks to the symmetry of the a; ;’s we can write

(2.2) Qn — Ap =20, +V,,

where

(23)  Up:=)_Y a;;XiX; and Vyi= Y a; [X7—1].
1<i<j<n 1<i<n

Because (z + y)? < 2(x* +4?) for all z,y € R, it follows that

(2.4) (Qn — A,)? < 8U2 +2V2.

Therefore,

(2.5) E [(Qn — Ay)?] < 8E[U7] + 2E[V;2].

The second expectation is in fact the variance of the sum of n indepen-
dent random variables. Therefore,

(2.6) E[V?] = Y a}Var(X}).
1<i<n

Therefore, sup,, E[V?] < co. Similarly, we seek to prove that E[U?] is
bounded in n. In order to do this we compute directly to find that

(2.7) BU =Y ai,
1<i<j<n
which is of course bounded. O

Exercise 3. Prove that E[U,V,,] = 0. Use it to show that

(28)  E[(Qu—A)"=4>) a4+ Var(X7) Y ai,.

1<i<j<n 1<i<n
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