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1. Patterns

Suppose X1, X2, . . . are i.i.d. random variables with P{X1 = 1} =
p and P{X1 = 0} = q, where q = 1 − p and 0 < p < 1. It is
possible to use the Kolmogorov zero-one and deduce that the infinite
sequence X1, X2, . . . will a.s. contain a zero, say. In fact, any pre-
described finite pattern of zeroes and ones will appear infinitely often
in the sequence {X1, X2, . . .} with probability one. Let N denote the
first k such that the sequence {X1, . . . , Xk} contains a pre-described,
non-random pattern. Then, we wish to know E[N ].

The simplest patterns are “0” and “1.” So let N denote the smallest
k such that {X1, . . . , Xk} contains a “0.” It is not hard to convince
yourself that E[N ] = 1/q because N has the following geometric dis-
tribution:

(1.1) P{N = j} = pj−1q j = 1, 2, . . . .

This calculation uses too much of the structure of the pattern “0.”
Here is an alternative argument, due to Robert Li Shuo-Yen (1980),1

which is more robust:
Consider the process

(1.2) Yn :=
1

q
1{X1=0} +

1

q
1{X2=0} + · · ·+ 1

q
1{Xn=0}.

Define Fn to be the σ-algebra defined by {Xi}n
i=1 for every n ≥ 1.

Then, for all n ≥ 1,

(1.3) E[Yn+1 |Fn] = Yn +
1

q
P(Xn+1 = 0 |Fn) = Yn + 1.

Therefore, {Yn − n}∞n=1 is a mean-zero martingale (check!). By the
optional stopping theorem,

(1.4) E [YN∧n − (N ∧ n)] = 0 ∀n ≥ 1.
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Equivalently, E[N ∧ n] = E[YN∧n]. But N < ∞ a.s., and both {N ∧
n}∞n=1 and {YN∧n}∞n=1 are increasing. Therefore, we can apply the
monotone convergence theorem to deduce that

(1.5) E[YN ] = E[N ].

On the other hand, YN = (1/q) a.s. Therefore, E[N ] = 1/q, as we know
already.

The advantage of the second proof is that it can be applied to other
patterns. Suppose, for instance, the pattern is a sequence of ` ones,
where ` is an integer greater than or equal to one. Consider

Zn,` :=
1

p`
1{X1=1,...,X`=1} +

1

p`
1{X2=1,...,X`+1=1}

+ · · ·+ 1

p`
1{Xn−`=1,...,Xn=1} +

1

p`−1
1{Xn−`+1=1,...,Xn=1}

+
1

p`−2
1{Xn−`+2=1,...,Xn=1} + · · ·+ 1

p
1{Xn=1}.

(1.6)

Then, you should check that {Zn,` − n}∞n=1 is a martingale. As be-
fore, we have E[ZN,`] = E[N ], and now we note that ZN,` = (1/p`) +
(1/p`−1) + · · ·+ (1/p) a.s. Therefore,

(1.7) E[N ] =
∑̀
k=1

1

pk
=

1

q

(
1

p`
− 1

)
.

Therefore, set ` = 2 to find that

(1.8) E[N ] =
1

q

(
1

p2
− 1

)
for the pattern “11.”

Exercise 1. Prove that if the pattern is “01,” then E[N ] = 1/(pq).
Hint: First show that {Wn − n}∞n=1 is a martingale, where

(1.9) Wn :=
1

pq
1{X1=0,X2=1} + · · ·+ 1

pq
1{Xn−1=0,Xn=1} +

1

q
1{Xn=0}.

Which of the two patterns, “01” and “11,“ is more likely to come
first? To answer this, we first note that {Wn−Zn,2}∞n=1 is a martingale,
since it is the difference of two martingales.

Define T to be the smallest integer k ≥ 1 such that the sequence
{X1, . . . , Xk} contains either “01” or “11.” Then, we argue as be-
fore and find that E[WT − ZT,2] = 0. But WT − ZT,2 = (pq)−1 on



MORE APPLICATIONS OF MARTINGALE THEORY 3

{“01” comes up first}, and WT − ZT,2 = (1/p) + (1/p2) = (p + 1)/p2

on {“11” comes up first}. Therefore,

0 = E[WT − ZT,2]

=
1

pq
P {“01” comes up first}

+
p + 1

p2
[1− P {“01” comes up first}] .

(1.10)

Solve to find that

(1.11) P {“01” comes up before “11”} =
p + 1

p + 1 + (p/q)
.

Thus,

P {“01” comes before “11”} < P {“11” comes before “01”}

⇐⇒ p

q
< p + 1 ⇐⇒ p >

√
3− 1

2
.

(1.12)

Exercise 2. Find the probability that we see ` consecutive ones before
k consecutive zeroes.

2. Quadratic Forms

Let {Xi}∞i=1 be a sequence of i.i.d. random variables. For a given dou-
ble array {ai,j}∞i,j=1 of real numbers, we wish to consider the “quadratic
forms” process,

(2.1) Qn :=
∑ ∑
1≤i,j≤n

ai,jXiXj
∀n ≥ 1.

Define a∗i,j := (ai,j + aj,i)/2. A little thought shows that if we replace
ai,j by a∗i,j in Qn, then the value of Qn remains the same. Therefore,
we can assume that ai,j = aj,i, and suffer no loss in generality.

The quadratic form process {Qn}∞n=1 arises in many disciplines. For
instance, in mathematical statistics, {Qn}∞n=1 belongs to an important
family of processes called “U -statistics.”

Here, we wish to prove the following theorem that is essentially due
to Dale E. Varberg (1966)2.

Theorem 2.1. Suppose E[X1] = 0, E[X2
1 ] = 1, and E[X4

1 ] < ∞. If∑∞
i=1

∑∞
j=1 a2

i,j < ∞, then limn→∞(Qn−
∑

1≤i≤n ai,i) exists and is finite
a.s.

2Convergence of quadratic forms in independent random variables, Ann. Math.
Statist., Vol. 37, No. 3, pp. 567–576 (1966)
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Proof. Let An :=
∑

1≤i≤n ai,i. Then, a direct computation reveals that
{Qn−An}∞n=1 is a mean-zero martingale. We plan to prove that {Qn−
An}∞n=1 is bounded in L2(P). Because boundedness in L2(P) implies
boundedness in L1(P), the martingale convergence theorem does the
rest.

Thanks to the symmetry of the ai,j’s we can write

(2.2) Qn − An = 2Un + Vn,

where

(2.3) Un :=
∑ ∑
1≤i<j≤n

ai,jXiXj and Vn :=
∑

1≤i≤n

ai,i

[
X2

i − 1
]
.

Because (x + y)2 ≤ 2(x2 + y2) for all x, y ∈ R, it follows that

(2.4) (Qn − An)2 ≤ 8U2
n + 2V 2

n .

Therefore,

(2.5) E
[
(Qn − An)2

]
≤ 8E[U2

n] + 2E[V 2
n ].

The second expectation is in fact the variance of the sum of n indepen-
dent random variables. Therefore,

(2.6) E[V 2
n ] =

∑
1≤i≤n

a2
i,iVar(X2

1 ).

Therefore, supn E[V 2
n ] < ∞. Similarly, we seek to prove that E[U2

n] is
bounded in n. In order to do this we compute directly to find that

(2.7) E[U2
n] =

∑ ∑
1≤i<j≤n

a2
i,j,

which is of course bounded. �

Exercise 3. Prove that E[UnVn] = 0. Use it to show that

(2.8) E
[
(Qn − An)2] = 4

∑ ∑
1≤i<j≤n

a2
i,j + Var(X2

1 )
∑

1≤i≤n

a2
i,i.
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