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The effective conductivity o* of an infinitely interchangeable two-component
random medium is considered. This class of media includes cell materials in the
continuum and the bond lattice on Z¢, where the cells or bonds are randomly
assigned the conductivities o, and o, {a,,g,#0) with probabilities p, and
pa=1—p,. A rigorous basis for the very old and widely used low volume frac-
tion expansion of o* is established, by proving that ¢* is an analytic function
of p, in a suitable domain containing [0, 1]. In the case of the bond lattice in
d=2, rigorous fourth-order upper and lower bounds on ¢* valid for all p,, 0y,
and ¢, are derived. The four perturbation coefficients entering into the bounds
are obtained from the first-order volume fraction coefficient using the method of
infinite interchangeability.

KEY WORDS: Effective conductivity; random resistor network; composites;
cell materials; perturbation expansions; bounds.

1. INTRODUCTION

Consider the effective conductivity ¢* of a two-component random
medium with constituent conductivities o, and o, in the volume fractions
p, and p.=1—p,. We have in mind either a cell material”’ in the con-
tinuum RY, where all space is divided into cells which are then randomly
assigned the conductivities ¢, and o, with probabilities p, and p,, or the
bond lattice in Z¢, where the bond conductivities are randomly assigned in
a similar fashion.®' Due to the difficulty of calculating ¢* for such systems,
much effort has been devoted to developing varicus schemes for obtaining
approximate information about ¢*. One of the principal approaches has
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366 Bruno and Golden

been to develop series expansions for o*, which have been primarily of two
different types. The first type is an expansion of o* in powers of p, (or p,),
the idea of which goes back to Maxwell himself® We shall refer to this
type of expansion as a volume fraction expansion. The second type involves
perturbing ¢* about a homogencous medium o, = g,,*5 ie, expansion in
powers of (1 —a,/a,), which we shall refer to as a perturbation expansion.
The coefficients in this expansion can be expressed in terms of the correla-
tion functions of the microstructure, which in practice are quite difficult to
compute.

While truncating the above expansions provides good approximate
formulas for o* when the expansion parameter is small, this procedure
typically does not provide accurate information in more delicate regimes,
such as near percolation (g, <0, P2= p,= percolation threshold), par-
ticularly when only a few of the coefficients in the expansion are available,
However, one approach which has received a great deal of attention is the
derivation of bounds on ¢* which incorporate the perturbation expansion
coefficients.”":* ® The methods that have been developed provide a way of
converting uncontrolled, truncated expansions into rigorous information
about ¢*, in the form of upper and lower bounds that are valid for all o,
0y, and p,. The bounds become tighter when more perturbation coef-
ficients are known , and converge to the actual o* if all are known. Of
course, near percolation, the upper and lower bounds typically will be
relatively far apart.

The purpose of the present work is twofold, the first of which we Nnow
describe. While the validity of the perturbation expansion is well estab-
lished™® due to the analyticity of ¢* in the variable (1—05/0,) in a
suitable domain containing 0, the corresponding question for the volume
fraction expansion has remained open. Recently, however, it was proved®
for the bond lattice that for any &, and 0, in an appropriate domain with
01, 0,#0, 6*(p) is analytic in an open neighborhood containing [0, 1] in
the complex p-plane, with, say P=p,. Here this result is extended to
infinitely interchangeable media,'®!" a class which includes both the cell
materials in the continuum and the bond lattice, thus providing for the first
time in the present context a rigorous basis for the widely used volume
fraction expansion. The proof is based on an integral representation for
o*,® which holds for general stationary random media. The key fact
about infinitely interchangeable media which allows the proof to go
through is that the perturbation coefficients are polynomials in p, It should
be remarked that the analyticity of o*(p) is presumably not true in general.
For example, 6*(p) for a periodic array of spheres of volume fraction p
embedded in a host material is believed to be analytic at p =0 only in the
variable p'”, so that o*(p) has a branch cut there (see, e.g., ref. 12). In this
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case, while the integral representation holds, the perturbation coefficients
olynomials in p.

e n’l(")}tlepsec}:’ond purposel:) of this work is to derive bounds on o*(p) for 'the
bond lattice in two dimensions. These bounds incorporate perturbation
coefficients up to fourth order. What is novel is that we use the mcthgd of
infinite interchangeability!®!") to compute the perturbatlpn coefficients
from a single volume fraction expansion coefficient. In pf"trtlcular, the first
three perturbation coefficients are computed fr(){n the first-order volume
fraction coefficient, and then the fourth is obtained from the_ first three
using Keller’s interchange equality,''*'?) which holds only in d=2. It
should be noted that this method works just as easily for any .mﬁmtely
interchangeable medium in d=2 whose first-order volume fraction coef-
ficient is known. ' _

The bounds are obtained from the perturbation coemme.nts using the
integral representation method,®* ' and in particular, by 1terated' frac-
tional linear transformations,'®’ which are particularly useful for higher-
order bounds. The bounds we obtain are similar to the fourth-order
bounds of Milton!!”" for the continuum, except that since we are on the
bond lattice, our coefficients are computed explicitly, whereas theirs are
given in terms of geometrical parameters, which must subsequently be
calculated for any particular class of media. With oy =1 and 6,< g, we
have plotted the bounds for various o,, and ﬁn_d that for. 05<a,<1, our
bounds are extremely tight for all p and essentially prgvnde a formula for
a*(p). Even for ¢,=0.1 the bounds are reasonably tight. In' the case of
a,=0 the lower bound collapses to 0, but the upper bpund is nontrivial,
afthough it does not given much information in the regime p= p, = 1/2.

We note that Bergman and Kantor'® have compyted the perturbs.t-
tion coefficients up to third order analytically and to' el.ght-orde.r numeri-
cally for the bond lattice in d= 3, in an effort to o'btam xpform_atmn 'ab'ou(;
the percolation regime via the truncated perturbation series, w1'th a l.1m15_6 f
degree of success. Part of our motivation for the work here is our be ie
that, as mentioned before, it is useful to convert these uncontrolle_d series
into rigorous information about o*( p), which we have done analytically in

=2 case to fourth order. ‘ '
the dWezclose this section by remarking that the methods emp}oyed in t}ns
paper have already been applied to other( situations, such as 1nVCStlg£;.]tlIclig
the transport properties of polycrystals.t*?! We expect that these metho Csl
should be applicable to other properties of lattices, such as elasticity, an
even to some nonlinear problems.

822/61/1-2-24
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2. FORMULATION

We formulate the effective conductivity problem for general stationary
random media in the continuum,®-® which is the natural setting for the
integral representation, Subsequently, we shall consider the special case of
infinitely interchangeable media, and discuss how the lattice case fits into
the general framework.

Let (€2, P) be a probability space, and let o(x, w) be a stationary
stochastic process in x e R and w e Q. The space £ represents the set of all
realizations of the random medium, and P is a probability measure on £
which is compatible with the stationarity, ie., it is invariant under the
translation group 7,: Q — Q defined by

To(x)=w(x+y), Vi yeRY weR (2.1)

We consider two-component media, so that o(x, w) takes two values o,
and o,, and can be written as

o(x, w)=0,x(x, W)+ o;1(x, w) (2.2)

where the characteristic function y,;(x, w) equals one for all realizations w
which have medium j at x, j=1, 2, and equals zero otherwise. Let E(x, w)
and J(x, o) be the stationary random electric and current fields satisfying’

J(x, w)=0(x, ) E(x, ®) (2.3)

V-J(x, w)=0 (2.4)

VxE(x,w)=0 (2.5}

f Pdw) E(x, 0) = e, (2.6)
0

where e is a unit vector in the kth direction. In (2.4) and (2.5) the differen-
tial operators 0/0x; are replaced by the infinitesimal generators D, of the
unitary group T, acting on L*(£2, P) defined by

(T ) w)=f(r,w) (2.7)
where

Jrw)=f(x, w) (2.8)
for any f'e L*(€, P), which is a stationary process on R? and ©.0% By

stationarity, we may focus attention at x =0, and subsequently we shall
drop the x notation.
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The effective conductivity tensor ¢ may now be defined as
afi =], Pldo)o(w) Ef(®) (29)

where Ef is the jth component of E* satisfying (2.3)-(2.6). We shall only

. be interested in isotropic random media, i.e, when 0} =0*d, (although

our methods are not restricted to such media), and we then pick out one
diagonal coefficient and focus on it,

o* =ofi=| Pldw) [0,1(0) +orta(0)] Effw)  (210)

Since (2.3), (2.4), and (2.10) are all linear in g(w), o* depends only on the
ratio g,/0,, that is, o* is homogeneous of degree one in the ;. Thus, it
suffices to let

=1, o,=1z2 (2.11)

and we then define
miz)=0*=| Pldw) [1,(@)+ 21:(@)] E4(o) (212)
2

It has been proven®® that m(z) is analytic off the negative real axis
(—o0,0] in the z-plane. Furthermore, from the symmetric form of the
definition of g*,&®

m(z)=Jﬂ P(dw) (x, + z1) EX - EF (2.13)

where the overbar denotes complex conjugation, m maps the upper half-
plane to the upper half-plane, ie.,

Im m(z)>0 when Imz>0 (2.14)

It is useful to introduce the new function
F(w)=1—m(z), w=1/(1-2) (2.15)

which is analytic off [0, 1] in the w-plane. In ref. 8 it was proved that F(w)
has the integral representation

F(w)=jl WO 017 (2.16)

o w—1t
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where u is a positive Borel measure on [0, 1]. This representation can be
proved either as a consequence of the Herglotz theorem in analytic
function theory" or as a consequence of the spectral theorem applied to
the operator representation of F(w) arising from (2.4)

>

Fw)=[g P(dw) o) (w+ Ty2)~'ep] e (2.17)

where I'=V(—~4)~'V ., with the differential opertors again replaced by the
generators of translations on . In the Hilbert space L(€, P) with weight
%2 in the inner product, Iy, is a bounded self-adjoint operator with norm
less than or equal to one. The formula (2.16) is the spectral representation
of the resolvent (w+ I'y,) ™', where u is the spectral measure of the family
of projections of I'y,.

We now wish to introduce a special class of stationary random media,
namely, infinitely interchangeable media."!®!'") To describe the idea, let us
consider a specific example. Let all of R* be covered with randomly
positioned, nonoverlapping spherical cells with sizes ranging to the
infinitesimal. Each cell is assigned the conductivity o, or o, with
probabilities 1 — p and p, respectively, so that the resulting medium has a
volume fraction 1—p of o, and p of g,. Suppose that we consider such
a material in which the volume fractions of ¢, and o, are 1/3 and 2/3,
respectively. The part covered by g, can be thought of as a material which
itself is composed of two materials of conductivities z, and z, that also
have been assigned at random, occupy a volume fraction of 1/3 each (of the
whole material), and happen to coincide with 0,, ie., z, = z; = ¢,. For con-
sistency we set z; =¢,. We then have a mixture of three materials Z1, Za,
and z;, whose effective conductivity we call s=s(z,, z,, z;). This new
material is a composite in its own right, and its effective conductivity func-
tion s can have any value of z;, z,, and z, as arguments. Clearly,
0*(0y, 03, p=2/3)=5(0,, 0,, 03). Furthermore, by the random nature of
the construction, it is also clear that s is a symmetric function of its
variables, ie., the conductivity s of the mixture of z,, z,, and z5 will not
change if, for example, all the cells containing z, are reassigned to contain
75, and vice versa.

In view of this example, we give the following definition.!%!!

Definition. A family of composites with effective conductivities
c*(o,,0,,p), 0<p<l1, is said to be infinitely interchangeable iff
o*(a,, 0, p) is a continuous function of its three arguments gy, 04, and p,
and for each integer » there exists a function $y(2 1, 2,) such that:

(i) s, 1is an infinitely differentiable function around Zy= e

=z,=1,

{
?

- Al
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(ii) s, is homogeneous of degree 1, i.e., §,(AZ 5., A2,) = 48,(Zees Z,)-
(iii) s, is symmetric in its variables, ie.,
Sn(zl H ZZa"',Zn) = Sn(zila Ziy"'ﬁ Zi,,)

for any permutation (i, i5,..., {,) of the indices i,..., n.
For each integer k <n we have

o* (0, 04, (N—Kk)/0)=58,(0 1 O, Tp0ey T2)

where on the right-hand side there are k of the ¢, and (n—k) of
the a,.

Tt should be noted that all examples of symmetric cell materials in the

1 1 3 int (10,11}
literature are infinitely interchangeable. ' .
As in the more general stationary random case, it suffices to consider

o,=1 and g, =z In this case, we define again

m(z, p)=c*(g,=1,0:=2z p) (2.18)

Via (iv), we have

m(z, (n—k)/n)=s,(1,., 1, 2o, 2) (2.19)
with (n—k) of the z's on the right-hand side. o

We finally consider the bond lattice in Z“, which is a specnfil case of
both the above classes of media. Each bond is randomly assigned the
conductivity ¢, or ¢, with probability 1— p and p, respectiyely. The sp%;?
©Q from the stationary random setup can be identified with {al,.cr_z} .
Here the unitary translation group of (2.7) is generated py comp'osmon.of
the operators T;* =T, and T, = T_,, where ¢, is a unit vector in the ith
direction. We can then define the forward and backward difference
operators

(2.20)
(2.21)

Dy =TF—1I

D =I-T", i=1,.,d
which act on L?(, P), where I is the identity operator. Thf:: stationary ran-
dom current field is J(w)= (J,(@)s.n, Jo(®)), where': ],-(w) is tbe C\_lrrent in
the bond emanating from the origin in the positive ith direction. The
electric field E(w)= (E,(®),..., E4(w)) can be defined by

Ji(w)=0,(w) E{w), i=1,.,d (2.22)

i
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where
agiw)=0,31 (w)+0o,15(w), i=l,.,d (2.23)

is the conductivity in the bond emanating from the origin in the positive
ith direction, and x| and y) are the characteristic functions of medium 1
and medium 2, respectively, in that bond. For simplicity we shall drop the
“1” superscript from subsequent y, and y,. Equations (2.4) and (2.5) then
take the form

Y D7 Ji(w)=0 (2.24)

D} Ej(w)—D} E/(w)=0 (2.25)

while (2.6) still holds.

The effective conductivity ¢* is still defined in the same way as above,
and all of the results stated, including the representation formula, still hold
in the present context. It should be remarked that the operator I in the
lattice case is replaced by

r=vV*(—4)"'V—. (2.26)

where V¥ = (D#,.., DF) and (—4) ' is the inverse of the lattice Laplacian
[see (3.9)].

Clearly the bond lattice satisfies properties (i)-(iv) of an infinitely
interchangeable medium. [The continuity of o*(s¢,, o,, p) in its three
variables is only a technical aspect of the definition, but can be proven for
the bond lattice in a variety of ways, and is certainly obvious physically.
The proof can be reduced to showing that ¢*(o,, o5, p) is monotonic
in p for real o, and ¢,."%'"] Thus, the bond lattice is infinitely inter-
changeable.

3. PERTURBATION AND VOLUME FRACTION EXPANSIONS

In this section we first exhibit the perturbation expansion and its
coefficients for general stationary random media. Subsequently we establish
the validity of the volume fraction expansion for infinitely interchangeable
media by proving analyticity of m(z, p) in p.

The perturbation expansion around a homogeneous medium (¢, = o,
w=00) is obtained as follows. For |w| > 1, (2.16) can be expanded to yield

Ho | Ky | Ha
Fowy=bo B Ky _
(w) w +w2+w3+ (3.1)
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where the p; are the moments of u,
l .
u,-=f #du(t) 0 (3.2)
’ 0

Equivalently, (3.1) can be written as a Taylor series for m(z),

m{z)=1+ Z a,(z—1) (3.3)
i=1
where .
a,-=d",.1 =(=1)" "y (3.4)
dz =1

By equating the |w| > | expansion of (2.17) to (3.1), we obtain

pi=(-1 )j_[ P(dw) [x2(Ix2Yex] - ey (3.5)

$2

for any k=1, 2.
Clearly, for any medium,

Ho=Pp2=P (3.6)

the volume fraction of o, =1. . .
In the case of the bond lattice, (3.5) for j=1 and j=2 becomes

M= “L P(dw) %D (= 4)7'Di 12 (3.7)

d
fa= ), f P(dw) 1o D (=4) ' D D} (=4) 7 Dy (38)
j=1"0
where the operator (—4) ! is expressed as discrete convolution with the
lattice Green’s function,

(=)' flx)= ), &lx »)f() (3.9)
ye 1"
where g(x, y) solves

—1 X=y

Ag(x,y)={ 0 xty (3.10)

While (3.7) is fairly easy to calculate, the calculation of (3.8) becomes
somewhat involved.'® For j>3, u, apparently cannot be calculated
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expl‘icitly, except, of course, p,; in d=2, which we calculate in the next
section.

.We now wish to establish the validity of the volume fraction expansion
for infinitely interchangeable media,

mz, p)=1+ Y, az)p’ (3.11)

Fix £¢>0, and let

D ={z]|z—1|<1—¢} (3.12)

To establish (3.11), we shall prove that for any ¢>0 and any ze D,
m(z, p? is analytic in p in a suitable domain in the p-plane. The idea of thlé
proof is to produce an open neighborhood of [0, 1] in the p-plane for
wh.ich the a;=a;(p) in (3.3) are sufficiently bounded so as to obtain
pnlfornl convergence of (3.3). One of the key steps in the proof is contained
in the following result.

Lemma 3.1.
al(p)=(—
equal to i

Proof. From (2.19) it folows that

3. Fpr infinitely interchangeable media, the coefficient
1) u;_y in (3.4) is a polynomial in p of degree less than or

(3.13)

dm/( n—k !
W(l’m>= Y, s
n i=1 qeq
where. Q, is the set of all strings of length / in the indices & + 1,..., n that
contain exactly j different indices, and

VERLLITI
=g (s )

di

(3.14)

0 .
Let Q, pe the spt of all strings of length i that contain exactly the indices
L,.., j. Since s, is a symmetric function, we have

2 s

gEQj

n—k )
=< i ) ZQQS,1=(n—k)-»-(n—k—j+1)b}(n) (3.15)

where

i 1
bin)== 3. s

I (3.16)

R A
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We then have from (3.13)
@(1 ”'k)=(n—k) bi(n) + (n—k)(n—k — 1) by(n)
dz n
+ ot (n=k) - (n—k—i+1)bin) (3.17)

Notice that hi(n) does not depend on .
Let us now take i sequences of integers k!, I=1,.., 1 such that

ne

lim, _, ,,(n—k’)/n=1/i, and substitute k =k, into (3.17). We obtain

; ! —k! ,
d—’7;<15n k”>=u[”b'1(”)]
dz n "

+(n—kf,)~-(n——/c’ i+1)

"

[n'bi(n}] (3.18)

'

_ Equation (3.18) for I </<i is a system of linear equations for the i

quantities n/bi(n) (1<j<i). As n tends to infinity, the matrix of
coefficients converges to a nonsingular Vandermonde matrix. So, for large
n, we can solve for the unknown using Cramer’s rule,

nibi=41/4, (3.19)

' The determinant 4, tends to a nonzero limit. Since the left-hand side of

(3.18) also has a limit, so does the determinant A4’ . (The continuity in p of
the derivatives of m with respect to z follows from the continuity of itself
in both variables and Cauchy's theorem in z.) It follows that the limits

lim n'bj(n)=c, (3.20)

exist. Finally, taking the limit as n — co with (n—k)/n—p in (3.17) yields

D py=cyp+ o e (321)
dz

We are now ready to state the following result.

Theorem 3.1. For any infinitely interchangeable medium, and for
any ¢> 0, there exists anropen neighborhood ¥, in the complex p plane
such that [0, 1]< ¥, and m(z, p) is analytic in D, x V,, with D, given in
(3.12).

Proof. Fix &> 0. Since for pe [0, 1], po(p) = p and 1;(p) 2 14 1(P)
for all » [via (3.2)1,

(3.22)

la;(p) <1, pel0,1]
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Now. we must extend what we can of (3.22) into the complex plane.
Cons1der S={peC|p¢[0,1]}. Conlormally map S onto the unit disk U
in the { plane, so that p = co gets mapped to { =0, and [0, 1] gets mapped
to the unit circle |¢| = 1. Since a,(p) is an ith-order polynomial in p, a,({)
has at worst an ith-order pole at { =0. Thus {'a,({) is analytic in U. Since
la ()] <1 for |{] =1, by the maximum modulus principle,

()] <

4

Thus, for any small §'>0, there is a small §>8'>0 such that in the
annulus 4; defined by 1> [{|>1—§/,

(el (3.23)

la(OI<(1+3),  (ed, (3.24)
For any ze D,, we can choose & and & such that
[(T+d)z—1) <k <1 (3.25)

Now let V, be the set in the p plane that maps to A,. Then for peV, and

zep,;, la;(p)z—1)'| <k’< 1. Then (3.3) converges uniformly in D, x V,,

which proves the theorem. -
As a consequence of Theorem 3.1, we have the following result.

Corollary 3.1. For any infinitely interchangeable medium, and for
any ¢>0, there exists a §>0 such that for any pe B, = {Ipl <8} and

- _[ ) o .
zeD,={|z—1|<1—¢}, the Taylor series in P, or volume [raction
expansion,

m(z, py=14+ Y a,z)p’
i=1

converges uniformly. Furthermore, for any of the above p and z, the
double Taylor series in p and (z—1)

(3.26)

m(z, p)=1+ i Bip'(z—1)

Lj=1

(3.27)
converges uniformly,

The first-order coefficient «, in (3.26) has been calculated for the bond
lattice in any dimension, ?*2
d(z—1)

A4z

(3.28)

In addition, in ref 23, expressions for «, in d=2 are derived and are
evaluated numerically.
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" 4. PERTURBATION COEFFICIENTS FOR THE BOND LATTICE

Here we use the property of infinite interchangeability to compute the

* perturbation coefficients a;=a,(p) in (3.3) to fourth order for the bond

lattice. The first three are computed in any dimension and the fourth is

computed in d=2. ‘ .
In (3.6) it was remarked that for any medium, a,(p)= p. To explain

our procedure, we begin by rederiving this elementary result. From (2.19)
and the symmetry of s,, we have

n—k\ dm( n-—k .
= = -—k S”
a1< n ) dz (1’ n ) (n="k)

ds
sl=="1(1,.,1
’ EJ:,( )

n

(4.1)

where

To compute «,, it then sufflices to compute s). To do this, we note that

(4.2)

Sz, 2)=12

Thus,
(4.3)

[
ns, =1

or s!=1/n. Now (4.1) and (4.3) give a,[(n—k)/n]=(n—k)n and, by
continuity, a,(p)= p, for all volume fractions p. _ . ‘
Let is nlow compute the second-order coefficient a,. Two differentia-

tions of (2.19) yield

@ 1 E;]E):(n-—k)s,‘,‘-%(n—k)(n-—k~l)s,',z (4.4)
dz2\7 n
where ,
d%s, ) 0%, Lo
it =3 b 1 and 5= (L )
We wish to determine s!' and s!% To do this, we differentiate (4.2) twice
to obtain
nsit 4 n(n—1)52=0 (4.5)
which gives us one relation between the two unknowns. Now call
2.
Ax) =21, 0) (46)

dz?
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We clearly have

1 __

sy = Ay(1/n) (4.7)
and from (4.5) it then follows that
5,0 = —Ay(1/n)/(n—1) (4.8)

Substitution of (4.7) and (4.8) into (4.4) gives

d*m( n—k W=k (m—kn—k-1)
—_— | = Al - 4.9
dz* <1’ n ) nA (H)’: n n(n—1) } (49)

Finally, given any volume fraction p, we take a limit in (49) as

n— 0, k-0, and (n—k)/n-> p. Now, from (4.6) and (3.26) we clearly
have

1 2
lim nd, (—):d 21y (4.10)
P " dz*
and so the limiting form of (4.9) is
d*m d?u,
—_— = 1 — .
o (L) =2 (1) pll~ p) (4.11)

For the d-dimensional bond lattice, we have from (3.28) that

d*a, 2
3 )= ——
dz* (D d
so that
_1d’m _—p(1—p)

ax(p)=5= (L, p) (4.12)

d

The above procedure can be generalized"™'" to allow for the
computation of any perturbation coefficient from appropriate information
about the dilute limit. Specifically, knowledge of the first r coefficients
¢y, 0, Of the volume fraction expansion yields the 27+ 1 perturbation
coefficients a,..,a,,,,. To do this, it is necessary to use as many
“homogeneity relations” like (4.5) as possible. If derivatives of order i are
being considered, then [(i+1)/2] independent homogeneity relations can

be obtained. This is illustrated in the following computation of the
coefficient of a;.
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From (2.19), we have
@ t n;—]i) -k 4 3n—k)n—k—1)s"
>\ n
+(n—=k)n—k~n—k—=2)57" (4.13)
We thus need to obtain the unknowns s!'', s1'%, and s,>. By homogeneity,

we have the equations

s(zpnz)=2 (4.14)

and

${Zsn 2, 1) =12z8,(1, 1, 1/2) (4.15)

n

i ar z’ he left and n—1 of the I’s on
where in (4.15) there are n—1 of the Z’s on t -1 .
the right. Three differentiations of Eqs. (4.14) and (4.15) give the following
two independent equations for the unknowns:

s 4 3(n=1)st+(n—1)(n— 2)s!=0 (4.16)
ns' 4 3(n—1)(n—2)st?+ (n—1)(n—2)(n— 3)s}¥ = =35 (4.17)
No other independent equations can be obtained by homogeneity. To

complete the system (4.16), (4.17), we use again information from the
dilute limit. Let us define

d3
Ay(0) =75 (1,0) (4.18)

1t is clear that

dme 1\ _ l) (4.19)
S'1,11=-(-1-ZT(1,;1’>——A3("

The system (4.16), (4.17), (4.19) can now be solved, and we obtain,
using (4.7),
sitt = A3(1/n)
“112:__A2(1/)7)+A3(1/n) (420)
o n—1
123_3A2(1/11)+2A3(1/n)
ST = ) (n—2)
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Putting these results into (4.13), we obtain

d3m(1’n—k>=[n—k_3(n—k)(n~k—- 1)

3
dz n n n(n—1)

(n=k)n—k—1)(n—k—2 1
+2 )] nA3<—> (4.21)

n{n—1)(n—2) n

+I:~ 3(n——k)(n—k——1)+3(n—k)(n—k—I)(n—k—2) 1
n(n—1) n(n—1)(n—2) ] Az( )

Now, given a certain volume fraction p,owelet n, k— oo in such a way that
(n—k)/n~ p. To do this, we notice that from (4.18) and (3.26) we have

, 1\
lim nd,|(-}=—=
3 ()1) dz? (1)

H—-r

(4.22)

From (4.10) and (4.22) we see that the limiting form of Eq. (4.22) is

d*m d’?
— (1, p)=[p—3p3 31d % __dz
5 (L =0p=3"+ 2" 23 (1) =30 = "] 5 (1) (4.23)

For the d-dimensional bond lattice, we have from (3.28)

d%x, ! -2

& =7 (424)
and

du, | 6

T ( )ZF (4.25)
Therefore, after minor manipulations, we obtain

as(p) =
(p) == pI—=p)[1+(d-2)p] (4.26)

I -di ion¢
n the two-dimensional case (d = 2) the even-order coefficients can be

easily obtained from the previ (7.24) i :
equality, 114 previous ones™** by using Keller’s interchange

m(z, pym(l)z, p)==z (4.27)
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For instance, differentiating (4.27) four times yields
a a 1

a4=-2—3(2a1-3)—32(a2—a1+3)+§a1(a1—1) (4.28)

Putting the results we have already obtained into (4.28), we obtain for the

« two-dimensional square lattice

ay(p)=3p(l—p)p*~p—1) (4.29)

5. FOURTH-ORDER BOUNDS ON m(z, p) FOR THE
SQUARE LATTICE

In this last section we use the perturbation coeflicients found in the
previous section to obtain rigorous, fourth-order upper and lower bounds
on m(z, p) valid for all z<1 and pe[0,1]. We shall only sketch the
method here, as all of the details of this well-established procedure can be
found in ref. 16. For simplicity, only real z’s are considered, although
complex z's can be handled as well by a similar procedure.

Let G(w) be defined by

_(tdudr)
G(w)_fo S w>l (5.1)
with peM,,
1
M,= {positive Borel measures on [0, 1]“ du= a} (5.2)
0

Note that M, is a compact, convex set whose extreme points are Dirac
point measures ad,.(dt) concentrated at any t* € [0, 1]. Further note that
the assumption that pe M, is equivalent to knowing the first-order term in
the perturbation expansion of G(w) about w= o0,

G(w):a/w+ ceey, w>1 (53)

For fixed w, the extreme values of G(w) under (5.3) are obtained by
evaluating (5.1) with the above extremal measures. In particular, the mini-

mum of G(w) is

G(w)=ajw (5.4)

In the present situation, F(w) in (3.1) for the d=2 square lattice is
known to fourth order,

By M Ha
we oW w

F(w)=#7v9+ (5.5)
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where
- _pi-p) _pl-p)
Ho= D, Hi = 2 5 Ha= 4
(5.6)
_pU=p)[1+p(1—p)]
H3= 8

In order to use (5.4), we successively transform F(w) three times using
fractional linear transformations which preserve functions of type (5.1), to
obtain a function which is known only to first order. First we let

1 1
e 5.7
: Bo WF G-7)
which has the expansion
Yo Vi V2
Fo=-0gt 2, )
L R (3:8)
Hy
Vi == == (59)
0 #(2)
Ha
V=5 — 5.10)
Yo (
1y 22U, @l
o N Y £ (5.11)

Ko Mo My

where the v; are the moments of a positive measure on [0, 1]. Subse-
quently, we consider

1 1
Fy=——— .
TV WF, (5.12)
which has the expansion
=0 (5.13)
woow

N Y2

o Ve’ l Yo Yo (>:14)

where the #; are moments of a positive measure on

[0, 1]. Finally, we
consider

ol L _mm,

SRR (5.15)
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Applying (5.4) to (5.15) yields an upper bound on m(z, p),
1
m(z, p)< 1 (5.16)

B w/to — [1/va—no/(w —11/10)] -

where w=1/(1 —2z).
To obtain a lower bound on m(z, p), we apply the same procedure to

1 1 —wF

=l ——=— (5.17)
Eovy=1 m w(l —F)
which has the expression
)y 0, 6, 0
aw=@+%+ﬁ+%+ (5.18)
W wo W W
0, =1—
0]=,U.(,——u(2,~#1 (5.19)
0y =ty — ta— 2itopty + 15— 113
0y = s — ity — (2o o + 17) + 2o pty = 3ty
Whereas (5.16) is of the form
m(z, p)< g1, 2, fos Hys Hay H3) (5.20)
the corresponding lower bound can be written as
1 |
sg iy 1, 00, 61, 92,03 (521)
m(z, p) z

The bounds are plotted for various values of z in Fig. 1. For comparison
we have included the second-order (Hashin-Shtrikman) bounds,

P (5.22)
fz=1)+(1—p)/2

Sm(:,p)él-{»l

where 0<z< 1 (see, e.g., ref. 8). In the case of z=0 we have ?.ISO ploFted
some numerical data of Kirkpatrick®® along with his effective medium
theory solution.

822/61/1-2-25
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Fig. 1. Bounds on the effective conductivity m(z, p) of the two-dimensional square lattice for ; LEDGMENTS
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DAAL 03-88-F-0110, and the work of K.G. by AFOSR through grant
Also in this case we have plotted the straight-line effective-medium theory solution of . R-90-0203
Kirkpatrick® along with some data from his numerical simulations. X AFOSR-90- .
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One-Dimensional Harmonic Lattice Caricature
of Hydrodynamics: A Higher Correction
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Corrections to the hydrodynamic limit for an infinite chain of coupled harmonic
oscillators are obtained. This makes more precise the asymptotic picture for this
type of evolution of a system with infinitely many degrees of freedom.

KEY WORDS: Harmonic oscillators; hydrodynamic limit; higher correction;
local equilibrium.

1. INTRODUCTION

In refs. 1 and 2 the limiting hydrodynamic equation was established for the
infinite chain of harmonic oscillators as well as a “next” approximation
which is valid for a longer macroscopic time interval. The limiting Euler-
type equation reads

—Q-F(t;x, 0)y= A(f))f—ﬁ(z; x, 0)

1.1
ot ax (1.1)

where £(1, x, 8), e [ —n, n), is the spectral density 2 x 2 matrix function at
a (macroscopic) moment e R at a (macroscopic) space point xe R, A4(0),
@ e[ —m, n), is the matrix function of the form

0 —l/cu(B))

1.2
w(8) 0 (12)

A(9)=ia)’(0)<
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