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Abstract—Recent advances in forward modeling of the elec-
tromagnetic scattering properties of sea ice are presented. In
particular, the principal results include the following:

1) approximate calculations of electromagnetic scattering
from multilayer random media with rough interfaces,
based on the distorted Born approximation and radiative
transfer (RT) theory;

2) comprehensive theory of the effective complex permittivity
of sea ice based on rigorous bounds in the quasi-static
case and strong fluctuation theory in the weakly scattering
regime;

3) rigorous analysis of the Helmholtz equation and its solu-
tions for idealized sea ice models, which has led in the
one dimensional (1-D) case to nonlinear generalizations of
classical theorems in Fourier analysis.

The forward models considered here incorporate many detailed
features of the sea ice system and compare well with experimental
data. The results have advanced the general theory of scattering
of electromagnetic waves from complex media as well as homoge-
nization theory, which relates bulk properties of composite media
to their microstructural characteristics. Furthermore, the results
have direct application to microwave remote sensing and serve as
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the basis for inverse algorithms for reconstructing the physical
properties of sea ice from scattering data.

Index Terms—Dielectric materials, electromagnetic scattering
by random media, nonhomogeneous media, remote sensing, sea
ice, snow.

I. INTRODUCTION

A. Sea Ice Remote Sensing and the Interaction of
Electromagnetic Waves with Composite Random Media

SEA ICE, which covers approximately 10% of the earth’s
ocean surface, plays a major role in the world climate

system and is an indicator of global climatic change [12].
The sea ice pack forms the interface between the ocean and
atmosphere in the polar regions and mediates the exchange
of heat and momentum between them. For example, the
thickness and concentration of the ice are the primary factors
in controlling heat exchange, with thin ice and leads playing
a disproportionately large role compared to their areal extent,
while surface roughness influences momentum transfer. Due
to the effect of the winds and currents on the motion of the ice,
the pack exhibits complex dynamical behavior. Characterizing
the physical state, extent, and dynamics of the sea ice pack
is a formidable problem. However, it is of clear scientific
importance as well as practical significance in navigation and
in commercial, military, and scientific operations in the polar
regions. The sheer extent of the pack makes routine recovery
of large-scale information feasible only with remote-sensing
techniques. Due to the fact that the scattering and emission
of microwaves are sensitive to the types of variations in sea
ice properties that are of scientific and operational interest,
microwave remote sensing offers an effective way to monitor
sea ice parameters [12], [77]. Other considerations, such as
atmospheric transmission and ease of use on satellites, planes,
and ships, also contribute to the common use of frequencies
in the microwave regime.

The goal of sea ice remote sensing is to use information
on the electromagnetic fields scattered or emitted by the sea
ice to deduce the physical properties of the pack. This is
a particularly challenging problem, as sea ice is a complex,
polycrystalline composite of pure ice with random brine and
air inclusions, whose volume fraction and geometry depend
strongly on temperature, age, and growth conditions. The
surface of the ice has roughness on many scales, and it
is often covered with a layer of snow, which itself is an-
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other complex random composite whose microstructure can
vary significantly. The layer of snow may well be infiltrated
with brine or sea water. The underlying physical problem
of understanding how electromagnetic waves interact with
complex composite media, such as those present in the sea ice
system, is of considerable general interest. For consideration
of electromagnetic waves, the medium is characterized by
the local complex permittivity , which takes a wide
range of values as the positionvaries through the principal
constituents of the sea ice system: pure ice, air, brine, and sea
water. In this context, we distinguish two closely connected
problems that form the theoretical basis of remote sensing. In
the forward or direct problem, the electromagnetic scattering
properties of a multilayer random medium, such as the sea
ice system, are calculated based on knowledge of its local
complex permittivity . In the corresponding inverse prob-
lem, we wish to obtain information about and the sea
ice characteristics from knowledge of the far-field scattering
properties. In this paper, we focus on the forward problem.

Due to the random nature of the variations in sea ice proper-
ties over many length scales from submillimeter to kilometers,
we are usually most interested in effective electromagnetic
properties obtained from ensemble or spatial averaging on an
appropriate scale. Examples include the backscatter coefficient
and the effective complex permittivity. Variations in such bulk
coefficients are often related to variations in geophysically
interesting parameters in the system. The general problem of
calculating the effective properties of random composite media
has a long history, going back to the early work of Maxwell
[57] on the effective conductivity of a dilute suspension of
spheres embedded in a host of different conductivity, Einstein
[18] on the effective viscosity of a dilute suspension of rigid
spheres in a Newtonian fluid, as well as the extensive works by
Rayleigh and Kirchhoff on scattering by particles and random
surfaces. Refer to [90], [91], and [70] for comprehensive
treatments of the electromagnetic properties of various types
of random media and surfaces arising in microwave remote
sensing and other applications. We also note that in recent
years there has been considerable attention in the physics
and applied mathematics literature focused on theoretical and
numerical analysis of effective, or “homogenized” coefficients
of composite media [19], [54], [62], [34]. Examples of such co-
efficients include complex permittivity, electrical and thermal
conductivity, elastic moduli, diffusivity of turbulent fluids, and
fluid permeability of porous media. Some of the methods of
analysis that have received particular attention in recent years
include rigorous bounds obtained from translation, variational,
and complex variable methods, perturbation expansions, per-
colation models, and numerical algorithms, such as the fast
multipole method.

When electromagnetic waves interact with random media
or surfaces, a key parameter determining the nature of the
interaction and the types of analysis that can be used, is the
ratio , where is an appropriate measure of the length scale
of variations in the medium or surface andis wavelength.
For example, at C-band with frequency GHz and free-
space wavelength cm, the wavelength in sea ice,
typically satisfying , is much larger than the

submillimeter scale of variations in the brine microstructure.
In this case, the wave cannot resolve the details of this random
inclusion microstructure and the behavior of the wave is deter-
mined primarily by an effective complex permittivity, which
is a complicated (tensor) function of the permittivities of the
constituents of sea ice and the geometry of the microstructure
as well as frequency. In the quasi-static, or infinite wavelength
limit, a time-independent analysis can be used to analyze
complex . While scattering from the brine inclusions must
be incorporated into over much of the microwave region, it
is useful to consider a so-called “quasi-static” regime, in which
volume scattering from individual inclusions is relatively small
and the behavior is well approximated with a quasi-static
analysis. For example, for waves with the electric field in the
horizontal plane, so that the much longer vertical dimension of
the brine inclusions is not sampled, a quasi-static analysis of
works well at C-band, but it appears to be inadequate for data
in the 26.5–40-GHz range [30], [51]. Even at C-band, there
may be more significant scattering from larger air inclusions or
grains of snow and coherent structures, such as brine drainage
tubes and cracks. Surface scattering at C-band may also be
significant, as often there are roughness features on millimeter,
centimeter, and larger scales at the interfaces separating air
and snow, snow and sea ice, frazil and columnar sea ice, or
infiltrated and dry snow.

The electromagnetic properties of sea ice relevant to remote
sensing, such as and the volume and surface scattering
behavior, have been widely studied. The state of the art in
forward microwave modeling for sea ice as of 1992 was
comprehensively reviewed in [94]. Numerous approximate
formulas for have been developed, and various forms
of radiative transfer (RT) theory and analytic wave theory
have been applied to volume scattering in sea ice, as have
numerous surface scattering models employing tangent plane
approximation, perturbation, and integral equation techniques.
Some electromagnetic signature models treat both surface and
volume scattering, but make simplifying assumptions about
interactions between the two types. All of these models are
based on Maxwell’s equations for linear, nonmagnetic media,
but differ in the types of approximations made, in how the
medium is characterized, and in applicability to different
frequency regimes.

While much progress was made in the 20 years or so prior
to 1992 in modeling the electromagnetic properties of sea ice,
there has remained a large gap in how our understanding of for-
ward electromagnetic modeling could be used to quantitatively
recover sea ice parameters of geophysical, climatological, and
operational interest via remote-sensing techniques. In an effort
to fill this gap, a five-year Accelerated Research Initiative
(ARI) on Sea Ice Electromagnetics, sponsored by the Office
of Naval Research, was begun in 1992. The initiative was
interdisciplinary in nature, involving over 30 investigators at
a wide range of institutions and departments, and consisted of
three closely integrated components: modeling and laboratory
and field experiments. The principal goals of the ARI were to
improve our understanding of how the physical properties of
sea ice determine its electromagnetic behavior and, in turn, to
use this knowledge to develop and test inverse algorithms for
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recovering sea ice parameters from observed electromagnetic
data. A key step in accomplishing these goals is further devel-
opment of forward models of the electromagnetic properties
of complex media and sea ice, in particular. This paper gives
an overview of our main results on the forward problem.
How these models are used to develop inverse algorithms
is presented in [33]. What particularly distinguished the ARI
from previous efforts has been the following:

1) integration of model development with laboratory exper-
iments designed to test and help refine the models;

2) focus on the development ofinverse algorithms;
3) recent advances in the mathematical theories of elec-

tromagnetic inverse scattering and homogenization for
composite materials have been brought to bear on the
problem of sea ice remote sensing, which in turn has
led to new theoretical findings.

B. Summary of Main Results

From a forward modeling perspective, our principal results
include the following.

1) Significant refinement of approximate calculations of
electromagnetic scattering from sea ice based on the
distorted Born approximation, strong fluctuation theory,
and RT theory. Model improvement was accomplished
through close integration with experiments, incorpora-
tion of realistic features of the sea ice system, and
accounting for both volume and surface scattering.

2) Rigorous, mathematical analysis of the forward elec-
tromagnetic scattering problem and its solutions for an
idealized sea ice system, treated as a one-dimensional
(1-D) layered medium, and an inhomogeneous, dissipa-
tive half-space in three dimensions. Surprising general-
izations of classical theorems in Fourier analysis were
obtained from the layered medium theory.

3) Comprehensive theory of the effective complex permit-
tivity of sea ice and how it is determined by the
microstructural characteristics. Rigorous bounds on
valid in the quasi-static regime were obtained using an
analytic continuation method and an approximate model
based on strong fluctuation theory, which incorporates
scattering effects at higher frequencies and many de-
tailed features of the sea ice microstructure, was also
developed.

The paper is organized as follows. In Sections II and III, we
present rigorous, general results on the forward problem for
idealized models of sea ice. In Sections IV and V, we focus on
approximate methods of calculating the scattering properties
of multilayer, random media models for sea ice. These results
form the basis for the inverse algorithms in [33].

The main results are summarized as follows. In Section II,
the Helmholtz equation with an index of refraction varying
in one dimension (neglecting dissipation) is analyzed through
the introduction of “travel-time coordinates” [85]. An analog
of the Plancherel equality in Fourier analysis, which states
that the “energy” (or norm) of a function is preserved
under Fourier transform, is obtained. In particular, an equality
relating appropriate energies for the reflection coefficient in the

frequency domain and for the variation in the index of refrac-
tion, which reduces to the classical Plancherel equality in the
limit of small variations, has been discovered. While Fourier
analysis can be viewed as spectral theory for the Helmholtz
equation in a homogeneous medium, this new work can be
viewed as generalizing such ideas to inhomogeneous media.
Subsequently, the Helmholtz equation with the complex index
of refraction (including dissipation) varying in a half-space in
three dimensions is analyzed [13]. Through conversion of the
differential equation to an integral equation (with a Green’s
function kernel) that incorporates the boundary conditions at
infinity, solutions to the forward scattering problem can be
constructed. A rigorous theorem establishing existence and
uniqueness is obtained.

In Section III, we present a series of rigorous bounds on
the quasi-static effective complex permittivity of sea ice,
treated as a general two-component random medium [26], [75],
[30]. These bounds restrict in the quasi-static regime to
increasingly smaller regions of the complex-plane as we
know more information about the microstructure, such as the
brine volume and geometry, and represent an alternative to
the wide variety of approximate mixing formulas that have
been applied to sea ice. The bounding procedure exploits
the properties of as an analytic function of the ratio
of the component permittivities and is based on a Stieltjes
integral representation for involving the spectral measure
(giving the distribution of the spectrum) of a self-adjoint
operator associated with the geometry of the microstructure.
Particularly tight bounds are obtained when we further impose
the condition that the brine phase is contained in separated
inclusions. This “matrix-particle” structure forces a gap in the
spectrum, with colder temperatures corresponding to greater
separation, a larger gap, and tighter bounds. Such bounds
are valid up to the critical brine volume fraction %,
or percolation threshold, above which the brine phase is
connected on a macroscopic scale, and the sea ice is permeable
to fluid transport.

The above bounds apply to wave propagation in the quasi-
static regime. However, as frequency or inclusion size is
increased, scattering effects become more significant. Two
principal approaches have been used to deal with the problem
of incorporating scattering effects: wave theory and RT theory
[90]. In analytic wave theory, approximate solutions to the
vector wave equation arising from Maxwell’s equations, such
as the Born, or first-order approximation, are used to estimate
the scattering characteristics of the medium. RT theory, on the
other hand, begins not with Maxwell’s equations but with the
RT equation governing the propagation of energy through the
scattering medium. While this theory is heuristic, it is simpler
than analytic wave theory and incorporates multiple scattering
effects. In Section IV, we consider analytic wave theory for
a multilayer, anisotropic, random medium model of sea ice
with rough interfaces, which incorporates detailed properties
of the brine, air, crystallographic, and snow microstructures
[66], [69]. In particular, the distorted Born approximation
is used in conjunction with strong fluctuation theory to cal-
culate the scattering characteristics. This approximation for
the incoherent scattered field incorporates single scattering
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Fig. 1. Multilayer random inclusion model for sea ice.

of the coherent field, whose propagation characteristics are
assumed determined by the effective complex permittivity.
For media with strong permittivity fluctuations, such as sea
ice, this effective complex permittivity, including scattering
effects, is approximated with strong fluctuation theory [65],
[69], [90]. The results of the model calculations compare well
with laboratory data, airborne synthetic aperture radar (SAR)
data, and European Remote Sensing Satellite (ERS-1) satellite
data as well. Finally, in Section V, we consider RT theory for
a similar, multilayer random inclusion model of sea ice. A
schematic representation of such a model is shown in Fig. 1.

II. FORWARD SCATTERING THEORY

FOR THE HELMHOLTZ EQUATION

In this section, we formulate the forward scattering problem
for the Helmholtz equation for idealized sea ice models
and give general properties of its solutions. These results
lay the groundwork for the advances in inverse scattering
theory discussed in [33]. The sea ice scattering problem
can be modeled as a half-space problem in, in which
measurements are made in the upper half-space, which is
homogeneous and nondissipative, while the lower half-space
is inhomogeneous and dissipative. We consider an electro-
magnetic wave of a particular frequency in such a medium
(assumed nonmagnetic), whose time-harmonic electric field is
given by (with
in ), , with and the frequency in
Hz. The relative complex permittivity of the medium,
assumed locally isotropic, is given by

, where is the (real) permittivity, is the
permittivity of free space, and is the conductivity. In the
upper half-space occupied by air, , with zero imaginary
part. In the lower half-space occupied by sea ice, snow, and
sea water, takes a wide range of values, often with large
imaginary part, in the various media that are encountered,
such as pure ice, brine, air, fresh water, and sea water. The

electric field satisfies Maxwell’s equations, or the
vector wave equation derived from them. For simplicity, we
assume that the medium is unchanging in thedirection, and
we consider the transverse electric (TE) polarization case with

in the direction. Under the time-harmonic
assumption, satisfies the Helmholtz equation with a
spatially varying complex permittivity

(2.1)

where is the free-space wavenumber
is the magnetic permeability of free space,is the velocity

of light in free space, and the Laplacian is two-dimensional
(2-D) in the and variables. In what follows it will be
useful in (2.1) to write , where
is the index of refraction and . (We note that
it is perhaps more common to assign , with the
relative complex permittivity, but here the above definitions
will be more convenient). Equation (2.1) can be thought of
as a scalar model for electromagnetic wave propagation. It is
simpler than the full Maxwell’s equations, but it retains the key
mechanisms of variable speed of propagation and dissipation.
Equation (2.1) also governs acoustic wave propagation.

A. Layered Media

Of significant interest in many geophysical contexts is the
Helmholtz equation for layered media, where in the lower
half-space varies only in the vertical, or depth variable .
For simplicity, we explicitly consider here only the vertical in-
cidence problem for reflection off the lower half-space ,
yielding a 1-D problem, while noting that it is straightforward
to extend the results to off-nadir reflection at either vertical
or horizontal polarization. The following analysis serves as
the basis for a causally stabilized layer-stripping algorithm
[85], [33] developed to reconstruct the index of refraction
at progressively increasing depths in the reflecting medium.
The results have been rigorously established for the case of
wave propagation in a system governed by the Helmholtz
equation without loss and without discontinuities in
the dielectric properties. Nevertheless, computational evidence
shows that simple modifications of the same results provide
usefully approximate solutions in problems, including both
dielectric jumps and loss typical of sea ice. In the following,
we summarize the forward scattering problem and an analog,
for the reflection problem, of the Plancherel equality in linear
Fourier analysis.

The Helmholtz equation governing the time-harmonic wave
field in one dimension, assuming sources only at infinity, is

(2.2)

We assume that the (dimensionless and, for now, real) index
of refraction differs from one only on the interval
and that is square-integrable on that interval. It is
well known that there is a unique solution to (2.2) that is
down-going at infinite depth.

Analysis of both the forward and inverse problems is facil-
itated by the introduction of so-called travel-time coordinates.
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Define a new “depth” variable by the relation

(2.3)

This new variable is also called the pathlength for inho-
mogeneous media and can be used to transform the Helmholtz
equation in an inhomogeneous medium to a Schrödinger-type
equation. Because is real and positive, is an invertible
function of . Define , , and
finally

(2.4)

where is the logarithmic derivative of , measuring
the depth variation in the index of refraction. Note thatis
actually a function of as well as . If we know we can
solve (2.4) for using the boundary condition at ;
then with , we can solve the differential equation (with its
boundary condition) implied by (2.3). Note that for

. A little manipulation shows that satisfies

(2.5)

where the primes denote differentiation with respect toand
the condition that we seek solutions down-going at infinite
depth takes the form as .

For , may be written in the form

(2.6)

which uniquely defines the reflection coefficient . Knowl-
edge of at all values of completely determines
and thus , in principle. The additional requirements that
the time-domain impulse response of the reflecting medium
be real and causal, i.e., that there can be no response prior to
excitation, force , for on the real axis, where
the overbar denotes complex conjugation, and to extend
analytically to the upper half of the complex-plane.

Equation (2.6) represents the wavefield above the reflecting
medium in terms of reflected and incident plane waves. There
is no similar representation at depths (inside the reflecting
medium) at which . However, defining

(2.7)

and

(2.8)

gives us a “depth-dependent reflection coefficient” ,
such that and has the physical meaning
of a reflection coefficient [in the sense of (2.6)] anywhere that

.
Our first result [85] is a precise characterization of and

and takes the form of a Plancherel-like equality. Any
square-integrable gives rise to an with magnitude
less than one at all , which satisfies the symmetry and
analyticity conditions stated above and for which

(2.9)

In fact

(2.10)

Moreover, any complex function with the stated analyt-
icity and symmetry and with finite “energy” corresponds
to some square-integrable profile . The “energy” can be
computed from the data or from the profile using (2.9) or
(2.10), respectively. A similar relation holds involving the
depth-dependent reflection coefficient

(2.11)

Equation (2.11) is useful as a diagnostic in numerical com-
putations to solve both the forward and inverse problems. We
refer to (2.10) as a Plancherel-like equality because it reduces
to precisely the Plancherel equality in the limit of small, and
thus small reflection. In particular, we recall that the linearized
scattering map at , known as the Born approximation,
is just the Fourier transform. In the limit, as, and hence ,
approach zero, asymptotically (2.10) becomes

(2.12)

which is the classical Plancherel equality.

B. Perturbed Dissipative Half-Space

We now consider the forward scattering theory for (2.1)
with dissipation

(2.13)

in the case where for , while in the
lower half-space differs from a positive constant

only in a region of compact support and differs from a
positive constant only in this region as well [13]. These
assumptions are meant to include the case of an ice floe in
sea water. As indicated above, we assume that the medium is
unchanging in the direction and consider TE polarization,
with . A number of references on the theory of
scattering from a half-space in the nondissipative case, for
layered media, and more general situations, are given in [13].

For any incident field, solutions to the direct scattering
problem can be constructed in the usual way by converting
the differential equation (2.13) to an integral equation that
builds in the boundary conditions at infinity. The kernel of
this integral equation is a Green’s function for the unperturbed
problem with outgoing boundary conditions. In particular, this
Green’s function is

(2.14)

where and , the hat denotes
2-D Fourier transform in and and with the notation
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for
for

(2.15)

for the case when and

for
for

(2.16)

for the case when , where

(2.17)

and

(2.18)

Note that since the imaginary parts of and are nonneg-
ative, the exponents in (2.15) and (2.16) are decaying.

A scattering solution of (2.13) can be constructed as the
solution to the integral equation

(2.19)

where is an incident field satisfying (2.13)
for an unperturbed system with two homogeneous
layers ( and ) and we have written

. The scattering
solution at due to a point source at should
satisfy the resolvent equation

(2.20)

The Green’s function , however, has a singularity at ,
which causes some technical problems. We therefore write the
resolvent equation in terms of the scattered wave, which
is defined by

(2.21)

It has been shown [13] that both (2.19) and (2.21) have unique
solutions in the space , for any , where

(2.22)

and

(2.23)

The forward and inverse scattering problems for (2.13) can
also be formulated in terms of a boundary value problem in the
region , with given boundary data for on . The
equivalence of the scattering and boundary value formulations
will play a key role in the development of the inverse scattering
algorithm for this problem, as considered in [33].

III. B OUNDS ON THE QUASI-STATIC

EFFECTIVE COMPLEX PERMITTIVITY

We continue our presentation of rigorous results for the for-
ward problem by considering the complex permittivity of sea
ice. Due to the wide range of relevant sea ice microstructures,
as well as the high dielectric contrast of its components, it
is in general quite difficult to accurately predict the effective
complex permittivity of sea ice, even in the quasi-static limit
where scattering effects are negligible. Nevertheless, many
models have been developed, in which typically the sea ice
is assumed to be a pure ice host with ellipsoidal brine and
air inclusions. Various effective medium theories, such as the
coherent potential approximation, have been used to derive
“mixing formulas” for . A survey of such results is contained
in [37], and more recent measurements appear in [51] and [76].
While mixing formulas are certainly useful, their applicability
to the full range of sea ice microstructures is questionable, as
the geometrical assumptions inherent in the formulas are often
not satisfied. Furthermore, they do not readily provide infor-
mation on therangeof reasonable values for, corresponding
to natural variations in the microstructural characteristics. In
view of these limitations for mixing formulas, a new approach
to predicting the effective complex permittivity of sea ice
in the quasi-static regime has been developed. A general,
analytic continuation method for obtaining rigorous bounds
on effective parameters of composite media [5], [58], [27] has
been applied to sea ice [26]. Accounting for the matrix-particle
(or host-inclusion) structure of sea ice has led to advances in
the method and to much tighter bounds [75], [30], which have
also been applied to some smart materials consisting of an
insulating matrix with conducting particles [29]. We remark
that the series of bounds considered here forms the basis of an
inversion scheme for reconstructing the brine volume and other
microstructural characteristics from data on[14], [33]. Any
single value of provides inverse bounds on microstructural
parameters. For a data set of values, the corresponding
series of inverse bounds yields an algorithm for estimating
microstructural characteristics, even though the microstructural
variations are beyond the resolution of the wave.

It should be noted that the analytic continuation method,
which exploits Stieltjes integral representations for the ef-
fective parameters, has been used in a variety of contexts,
including bounds on dispersion implied by finite frequency-
range Kramers–Kronig relations [60] and the effective diffu-
sivity of tracers in a turbulent fluid [3]. Recently, we have
used the Stieltjes properties of effective transport coefficients
to establish a rigorous connection between phase transitions in
statistical mechanics and the transition in transport properties
that occurs at a percolation threshold [28], such as that
exhibited by sea ice at its critical brine volume fraction

%.
Let us now describe the analytic continuation method and

how it is used to obtain bounds on the complex permittivity
of sea ice. Consider a two-phase random medium in all of

, with an isotropic local complex permittivity ,
taking values and , the permittivities of brine and ice,
respectively, with , a stationary random field in
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and , where is the set of all realizations of the random
medium. We write , where

is the characteristic function of medium 1, which equals
one for all realizations having medium 1 at and equals
zero otherwise and . Let and be
the stationary random electric and displacement fields, related
by , satisfying

(3.1)

where is a unit vector in the th direction,
for some , and means ensemble average over

or spatial average over all of . The effective complex
permittivity tensor is defined as

(3.2)

For simplicity, we focus on one diagonal coefficient
. Due to homogeneity of effective parameters,

for any constant depends
only on the ratio and we define .
The two main properties of are that it is analytic off

in the -plane and it maps the upper half plane to
the upper half plane, so that it is an example of a Stieltjes,
or Herglotz function.

The key step in the analytic continuation method is obtain-
ing an integral representation for . For this purpose, it is
more convenient to consider ,
which is analytic off in the -plane [4]. Then [27]

(3.3)

where is a positive measure on . This formula
is essentially a spectral representation of the resolvent

, obtained from (3.1) and (3.2), where
and in is convolution

with the free-space Green’s function for . In the Hilbert
space with weight in the inner product, is a
bounded self-adjoint operator with norm . In (3.3), is a
spectral measure of . One of the most important features
of (3.3) is that it separates the parameter information inor

from information about the geometry of the mixture, which
is all contained in .

Statistical assumptions about the geometry are incorporated
into through its moments . Comparison of the perturbation
expansion of (3.3) around a homogeneous medium ( or

)

(3.4)

with a similar expansion of the resolvent representation for
[27], yields

(3.5)

Then if only the volume fractions and
are known, and if the material is statistically
isotropic. In general, knowledge of the -point correlation
function of the medium allows calculation of (in principle).
Expansion (3.4) converges only in the disc ,

and the integral representation (3.3) provides theanalytic
continuation of (3.4) to the full domain of analyticity. In
this way, information obtained about a nearly homogeneous
system can be used, remarkably, to analyze the system near
percolation as or .

Bounds on , or , are obtained by fixing in (3.3),
varying over admissible measures(or admissible geome-
tries), such as those that satisfy only , and finding
the corresponding range of values of in the complex
plane. Two types of bounds on are readily obtained. The
first bound assumes only that the relative volume fractions

and are known, so that only need be
satisfied. In this case, the admissible set of measures forms a
compact, convex set. Since (3.3) is a linear functional of, the
extreme values of are attained by extreme points of the set
of admissible measures, which are the Dirac point measures
of the form . The values of must lie inside the circle

, and the region is bounded by
circular arcs, one of which is parametrized in the-plane by

(3.6)

To obtain the other arc, it is convenient to use the auxiliary
function [6] , which
is a Stieltjes function like , analytic off , with a
representation like (3.3), whose representing measure has mass

. Then in the -plane, the other circular boundary of
has a parameterization similar to (3.6). In the-plane,
has vertices and and collapses
to the interval when

and are real, which are the classical arithmetic (upper)
and harmonic (lower) mean bounds, also called the elementary
bounds.

If the material is further assumed to be statistically isotropic,
i.e., , then must be satisfied as well.
A convenient way of including this information is to use the
transformation [6], [25] . The function

is, again, a Stieltjes function having a representation like
(3.3) with representing measure, with only a restriction on
its mass . Applying the same procedure as for
yields a region , whose boundaries are again circular arcs.
In the -plane, has vertices that collapse to the interval

(3.7)

when and are real with which are the famous
Hashin–Shtrikman bounds [38]. We remark that higher order
correlation information can be conveniently incorporated by
iterating the above transformation, as in [25].

As mentioned above, tighter bounds oncan be obtained
if the material has a matrix-particle structure with separated
inclusions. In this case, the support of in (3.3) lies in
an interval , as observed
in fundamental work by Bruno [11]. The further the sep-
aration of the inclusions, the smaller the support interval
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and the tighter the bounds. We will indicate later
how these values of and are chosen for relevant mi-
crogeometries. A convenient way of incorporating the support
restriction is to first consider a new variable, defined by

. Then the interval in the
-plane gets mapped to in the -plane and the function

is analytic off in
the complex -plane. Then there is a positive measureon

such that

(3.8)

With , the spectral width, it can be shown
that if only the volume fractions are known and

if the material is statistically isotropic.
While the details become somewhat involved, bounds onare
obtained through a similar extremal procedure to that outlined
above applied to and its auxiliary functions. If just the
volume fractions are assumed, we obtain for matrix-particle
composites a region in the complex -plane, and if the
medium is further assumed to be statistically isotropic, we
obtain a region . and provide improvements
over the complex elementary and Hashin–Shtrikman bounds

and . Refer to [30] for the details.
In order to illustrate the above series of bounds, we briefly

describe how to compare them with data in [2]. Given a sea ice
sample of temperature C and salinity parts per thousand
(ppt), the brine volume is calculated from the equation of
Frankenstein and Garner [21]. Given the frequencyGHz as
well, the complex permittivity of the brine is computed from
the equations of Stogryn and Desargent [84]. Furthermore,
although the brine microstructure tends to be elongated in
the vertical direction, since only vertically incident waves are
considered in [2], we assume that the geometry is isotropic
within the horizontal plane, in which case we take
above. (Marked anisotropy within the horizontal plane in the
presence of a well-defined current direction during growth
was considered in [31].) While the sea ice is actually a three-
component medium, we have found that very close agreement
of the two-component bounds with the data can be obtained
[14], [30] if we slightly adjust the complex permittivity
of the ice by treating it as a composite with a small volume
fraction of air and calculating its effective permittivity with
the Maxwell–Garnett formula

(3.9)

where [56],
, and , air volume fraction, is calculated via the

equations in [16] from the density of the sampleand .
It should be remarked that the three-component case can also
be treated with the multicomponent bounds obtained in [25],
[59], and [61], although the mathematics involves holomorphic
functions of several complex variables, and it is quite a
bit deeper than the two-component case, with a number of
unresolved issues.

Finally, to compare the data with our matrix-particle bounds,
we assume that within the horizontal plane, the brine is

contained in separated, circular discs, which allows us to
utilize the explicit calculations in [11] of and . In
particular, we consider discs of brine of radius, which hold
random positions in a host of ice, in such a way that each
disc of brine is surrounded by a “corona” of ice, with outer
radius . Then the minimal separation of brine inclusions
is . Such a medium is called a-material, where

. For such a geometry, Bruno has calculated [11]

(3.10)

Smaller values indicate well-separated brine (and presumably
cold temperatures), and corresponds to no restriction
on the separation, with , so that
and reduce to and , respectively. Examination of
photomicrographs of the brine microstructure in the sea ice
samples of [2] indicates that even when the ice is quite cold,
with brine volumes below the percolation threshold %,
corresponding to a critical temperature C at salinity
5 ppt, the brine inclusions are quite close, and it is very
difficult to estimate appropriate values of. Instead, for a
given data set at a particular temperature, we choose a value
of that best captures the data, and it is always quite close
to one. (Computationally, we find that because of the high
contrast in the components, the bounds and are
extremely sensitive to small changes infor near one.) By
carefully comparing our bounds to data over a wide range of
temperatures, we have found that as the temperature increases,
i.e., as the percolation threshold is approached and the
brine inclusions grow closer, the data sweep across from one
side of the region to the other (while the regions becomes
larger as the brine volume increases) andincreases as well.
Once the temperature is above, the data require that
and the matrix-particle assumption is no longer valid. This
fascinating behavior is illustrated in Fig. 2, which compares
data from samples 84-3 and 84-4 ( ppt) in [2] with
the bounds as the temperature is varied over a wide range.
We remark that above the critical temperature, the brine phase
becomes connected and the sea ice is permeable, allowing
percolation of brine, sea water, nutrients, biomass, and heat
through the ice. In the Antarctic, this transition in the fluid
transport properties plays a particularly important role in snow-
ice formation [1], in heat fluxes through the ice [52], mixing
in the upper ocean, and in the life cycles of algae living in
the sea ice [22]. Furthermore, brine percolation has significant
implications for remote sensing of sea ice, such as affecting
its dielectric properties as above and allowing flooding of the
surface, which can alter microwave signatures [39], [53]. In
[32], the striking similarity of sea ice microstructure to that
of compressed polymer/metal powders [43] is exploited to
provide a theoretical prediction of the critical brine volume
of sea ice via percolation theory and the geophysical and
biological implications of brine percolation are explored.

IV. A NALYTIC WAVE THEORY

FOR MULTILAYER RANDOM MEDIA

For the interpretation of geophysical remote-sensing data,
analytic wave theory [90] has been used to develop scattering
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Fig. 2. Comparison of 4.75-GHz data (circles) on the complex permittivity�� of sea ice at different temperatures with the boundsR1 (outer, dotted),R2

(inner, dotted),Rmp
1

(outer, solid), andRmp
2

(inner, solid).R1 assumes only knowledge of the brine volume, andR2 assumes statistical isotropy as well.
R
mp

1
andRmp

2
further assume that the sea ice is a matrix-particle composite with theq values indicated. Note that as the temperature increases, the data

move across the regionR2 (while the regions become larger), andq increases, indicating decreased separation of the brine inclusions. ForT = �2:5 �C,
which is above the percolation threshold, the matrix-particle assumption is no longer valid, so thatq = 1 andRmp

1
andRmp

2
reduce toR1 andR2.

models for heterogeneous layered media such as sea ice. It is
based on the vector wave equation

(4.1)

where is the free-space wavenumber. By writing
the local complex permittivity in terms of a constant,
reference permittivity and fluctuations about it

(4.2)

then (4.1) can be converted to an integral equation

(4.3)

where is the dyadic Green’s function for the homogeneous
medium with complex permittivity and is the solution
of (4.1) with . In analytic wave theory, there are
two principal choices for the reference permittivity. The first
is , the mean of . The second is ,

where is the effective medium theory approximation for the
quasi-static effective permittivity. With , iteration
of (4.3) starting with generates a Neumann
series for , and truncating it at first order yields the Born
approximation. The associated Dyson equation for the mean
field can also be treated with a similar type of expansion.
Various approximation schemes are based on inclusion of
certain types of terms in the expansion, such as the bilocal
approximation, which includes those contributions from higher
order terms that can be written in terms of products of bilocal
(two-point) diagrams. Approximations based on the choice
of are valid for small fluctuations . However,
for media such as sea ice, where these fluctuations can be
quite large, it is more productive to choose , which
leads to strong fluctuation theory. The singular nature of the
dyadic Green’s function is taken into account, and the bilocal
approximation of (4.3) for an auxiliary field, or its Dyson
equation, is used to approximate the scattering coefficients
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and the effective complex permittivity (including scattering
effects). This theory is most accurate when the system is near
the quasi-static regime, as it is, roughly speaking, an expansion
about the quasi-static case, while the local fluctuations in
may be large.

Layered medium models have been developed with the Born
approximation for an isotropic two-layer [95], isotropic multi-
layer [96], anisotropic two-layer [48], or isotropic-anisotropic
three-layer configurations [7] to calculate radar power returns
or conventional backscattering coefficients. For polarimetric
remote sensing, Mueller and covariance matrices that char-
acterize fully polarimetric scattering properties of the media
are calculated for an isotropic two-layer [9] or an anisotropic
two-layer configuration [8]. In isotropic media containing
spherical scatterers, depolarization giving rise to the cross-
polarization return is due to the second-order and higher
order terms (multiple scattering) [9], [98]. However, stronger
depolarization effects can come from the first-order term
(single scattering) for anisotropic media [48], [8], or for
nonspherical scatterers [64].

For dense media such as sea ice, the distorted Born ap-
proximation is applied [17], [74], [46]. This approximation
takes into account dissipation, scattering losses, and also the
modification of the wave speed due to embedded scatterers.
In this case, multiple scattering has been considered to some
extent. Physically, the first-order distorted Born approximation
describes the single-scattering process of the mean field and
can be interpreted as a first-order multiple scattering process.
Further improvement has been obtained with a renormalization
technique, which has been carried out to first-order [24],
second-order [86], and higher order for a half-space isotropic
random medium [15]. For a two-layer anisotropic medium,
renormalization has been applied to derive the Dyson equa-
tion for the mean field and the Bethe–Salpeter equation for
the scattered field, which are solved, respectively, under the
nonlinear and the ladder approximations [49].

For media with strong variations in the permittivity, such as
sea ice, strong fluctuation theory [88] is used in conjunction
with the distorted Born approximation, which is what is used
here. Effective permittivities for isotropic and anisotropic
random media have approximated with strong fluctuation
theory [88], [80]. Scattering coefficients are then calculated
under the distorted Born approximation with these effective
permittivities [89], [87], [41], [63]. With a knowledge of
the scattering coefficients, the emissivity of the ice can be
determined using Kirchhoff’s radiation law [71]. For sea
ice, the brine inclusions are usually small compared to a
wavelength in the microwave frequency range and have a
permittivity distinctively higher than that of the background
ice; thus, strong fluctuation theory is particularly suitable.

An important advantage of analytic wave theory is the
preservation of phase information. Since it is derived from
wave equations for layered media with the use of dyadic
Green’s functions [95], [97], [47], wave theory solutions
contain all multiple interactions due to the boundaries at
the layer interfaces; therefore, all coherent effects for wave
propagation in different directions, such as constructive and
destructive interferences, are included.

To accurately model electromagnetic wave scattering in sea
ice, it is necessary to consider the realistic complexity of sea
ice and to define domains of model input parameters con-
strained by the sea ice physics. Sea ice is an inhomogeneous
medium composed of an ice background, brine inclusions,
air bubbles, and solid salt. The electromagnetic properties
of these constituents are characterized by permittivities and
permeabilities, which relate material characteristics to elec-
tromagnetic fields by constitutive relations. Except for air
bubbles, the sea ice constituents, such as seawater brine and
pure ice, are dispersive with large variations, especially in
the imaginary part of the permittivity as a function of wave
frequency [20], [84].

Ice crystallographic structure determines the anisotropy of
sea ice. Depending on the orientation distribution of the
crystallographic -axes, with an associated orientation distri-
bution of layers of brine inclusions, sea ice can effectively be
isotropic, uniaxial, or biaxial. The electromagnetic properties
of sea ice are strongly related to the temperature, salinity,
and density. These parameters together govern the thermody-
namic phase distribution of sea ice constituents [16]. Surface
roughness and surface conditions, such as frost flowers, slush
layer, hummocks, and snow characteristics (grain size, density,
thickness), also impact the scattering from sea ice. Details
of sea ice characteristics and their effects on electromagnetic
properties can be found in [66].

A. Strong Fluctuation Theory for the Effective Complex
Permittivity of Sea Ice at Microwave Frequencies

The application of analytic wave theory to sea ice, and in
particular the distorted Born approximation, depends on being
able to account for the strong permittivity fluctuations encoun-
tered in sea ice. Here we consider strong fluctuation theory for
the effective complex permittivity. The sea ice is represented in
general as a three-component random mixture consisting of the
three phases: pure ice, brine, and air. The description of sea ice
as a random medium has been verified by statistical studies of
random spatial variations in ice salinity and bubble distribution
[92], [72], [65]. The ice is frequently also anisotropic due
to the presence of brine inclusions that can have a much
greater vertical than horizontal extent. In a general random
medium, the local value of the permittivity at any point
is described by the random permittivity tensor . The
definition of this tensor at a particular location depends on the
complex permittivity at that location and the local geometry.
The permittivity fluctuations are assumed to be statistically
homogeneous. Strong fluctuation theory provides a consistent
solution for both the effective permittivity, accounting for
scattering losses, and the propagation of electromagnetic fields
in the medium in terms of the spatial correlation functions of
the components. We begin with consideration of the theory for
a general random medium and then present results arising from
the detailed assumptions of the most recent models of sea ice.

In strong fluctuation theory for a random medium [88],
[79], [83], [64], the bilocal approximation is used to obtain
the following analog of (4.1) for the mean electric field
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propagating in the medium

(4.4)

where is the effective permittivity tensor in strong fluctu-
ation theory, given by

(4.5)

In (4.5), is the quasi-static permittivity tensor that describes
the propagation of the electric field in an effective medium
without volume scattering effects, which is discussed further
below, and

(4.6)

is the contribution due to scattering from inhomogeneities. In
(4.6), and are defined as follows. The dyadic Green’s
function associated with the medium of constant permit-
tivity satisfies

(4.7)

where is the unit dyad and is the Dirac delta function.
can be decomposed as

(4.8)

where is the principal value of . is the integral
operator defined by convolution with . The random tensor

in (4.6) is defined by

(4.9)

which is determined by the local fluctuations
and the delta function coefficient of the dyadic Green’s
function.

The quasi-static effective permittivity tensor is chosen
such that the mean value of is zero [88]

(4.10)

This condition removes secular terms in the diagrammatic
expansion of an appropriate version of (4.1) for the auxiliary
field . For the special case of scalar local and
effective permittivity and a spherically symmetric correlation
function so that , [90]

(4.11)

Then the condition (4.10) for -component media with con-
stituent complex permittivities in the volume
fractions takes the form

(4.12)

The resulting expression for is the Polder and van Santen
mixing formula [73], which is equivalent to Bruggeman’s
effective medium theory approximation to the actual quasi-
static effective complex permittivity (which was treated
rigorously in the previous section) [10], [42], [45]. While this
effective medium formula provides a good approximation to
the actual in many situations, it does not always accurately

capture the behavior of the system. For example, for two-
component media in the high-contrast limit or ,
the effective permittivity exhibits singular behavior near the
critical volume fraction for percolation of one of the phases
and near the percolation threshold exhibits power law
behavior described by certain critical exponents. In general,
the effective medium formula gives incorrect values for these
critical exponents. It should be remarked then that a limitation
of strong fluctuation theory is that the quasi-static limitas

of the effective complex permittivity in (4.5) is not
the actual value considered rigorously in Section III above,
but it is the effective mediumapproximation, which does not
accurately capture the actual behavior of some random media.
A theory of effective parameters in the scattering regime that
has the correct quasi-static limit would be quite desirable.
Nevertheless, strong fluctuation theory provides an excellent
approximation in many cases of interest.

Now, the scattering contribution to (4.5) is assumed to
be that from an unbounded random medium and we ignore
boundary effects. It is calculated using

PV

(4.13)

where we have used the summation convention for repeated in-
dexes,PV denotes principal value, and is the correlation
function of the permittivity fluctuations defined by

(4.14)

where the overbar denotes complex conjugation. The validity
of (4.13) requires that the electric field does not oscillate too
strongly over the volume where the kernel of the integral is
significant, which effectively means that the correlation lengths
should not be larger than the wavelength. For sea ice, this
approximation is sufficiently accurate for wavelengths greater
than a few millimeters. The tensor is the key to strong
fluctuation theory. It takes into account explicitly the delta
function part of and allows the effects of rather large
permittivity differences, such as those between ice, brine, and
air to be incorporated accurately.

The application of the above formulation to the development
of a particular model requires the following steps:

1) determine based on the geometry of the inhomo-
geneities;

2) determine using (4.10);
3) determine the components of and using (4.7)

and (4.8);
4) determine from (4.14);
5) calculate from (4.13).

In practice, this process is quite complex and the details differ
significantly depending on the model used. For specific details,
refer to [64], [79], [83], and [90].

Before proceeding to individual models, we note that,
if the correlation statistics of the medium have azimuthal
symmetry about the vertical axis, the form of the permittivity
can be simplified somewhat. In particular, and will be
diagonal and is symmetric [83] but can have off-diagonal



1666 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 5, SEPTEMBER 1998

(a) (b)

Fig. 3. Calculated values of�� and attenuation for wet snow [solid and dotted lines], assumingdgrain = 1 mm. (a) density= 0:442 Mg/m3, pwater = 0:251.
(b) density= 0:558 Mg/m3, pwater = 0:624. The open symbols denote the observations. Redrawn from [82].

components

(4.15)

The component arises from the tilt of the inhomogeneities
away from vertical, and for the case of no tilt, it will be zero.
Further, if the statistics are locally isotropic, as for snow or
frazil ice where the crystal structure is jumbled, we have the
further simplification that .

In order to model arctic sea ice, we assume that the system
consists of a set of homogeneous layers of snow and saline
ice. Both snow and ice layers are random mixtures of pure
ice, brine, and air, whose permittivities are known functions
of frequency and temperature. The appropriate values are
reviewed in [37]. Each type of mixture is subject to constraints
imposed by observed structural properties, including the vol-
ume fractions, shapes, and orientations of each constituent, and
these constraints depend on ice type.

For the case ofsnow, the ice grains are assumed to be
oriented isotropically in a discrete layer or layers on top of
the ice. The structure in each snow layer is also assumed to be
homogeneous. The snow may contain liquid at temperatures of
0 C and below when brine is transported upward by capillary
action from the underlying ice. Brine is commonly found in
the snow on first-year ice [35], [50]. Stogryn [82] represents
wet snow as an assembly of ice grains where the water is
distributed in pendular rings at grain contact points and in thin
films surrounding the grains. The fraction of water in the film
around the ice grains is estimated to be (0.261–0.724 ),
where is the water volume fraction. He assumes that the
correlation functions are exponential with correlation lengths

(4.16)

Recent work by M̈atzler [55] shows that, because the ice grains
quickly undergo metamorphism and become distorted, it is
more accurate to use . At centimeter and long
millimeter wavelengths, the effective permittivity is not very

sensitive to the choice of . Representative results from [82]
are shown in Figs. 3(a) and (b). Rather close agreement is
obtained between theory and observation for both real and
imaginary parts of the permittivity. Note that for this data set,
particular care was taken to determine the liquid water content
of the snow samples.

For dry snow, Zurket al. [99], [100] have taken into account
the effects resulting from the tendency of snow grains to
cluster. They find that clustering does not significantly affect

, but it increases significantly. The amount
of the increase depends on the fractional volume occupied
by the ice grains and the degree of clustering, and it is
most significant for low-volume fractions in which the grain
placement is less constrained. This model provides a realistic
representation for the observed spatial distribution of grains in
natural snowpacks.

The principal case of interest forsea ice is first-year
congelation ice, where the ice occurs as groups of platelets
packed together to form grains with brine inclusions embedded
between the platelets. The bulk salinity can range from
about 4 to greater than 15 ppt. The brine inclusions are in
general elongated and tend to be oriented vertically, but they
can be tilted away from vertical [44], [36]. Varying amounts
of air bubbles are also present giving densities in the range
0.92–0.88 Mg/m.

The model of Stogryn [83] assumes that sea ice is a three-
phase (ice, brine, vapor) random medium with azimuthal
symmetry about a vertical axis, and that a prolate spheroidal
correlation function describes the brine inclusions. The brine
inclusions are assumed to be tilted from vertical at a mean
angle so that has the form shown in (4.15). The
brine volume is determined from the bulk salinityppt and
temperature C using the equations of Frankenstein and
Garner [21]. Vapor is then determined from the bulk density
and the inclusions are assumed to be spherical. They contribute
only to the diagonal terms of . Fig. 4 shows a comparison
of calculated values of the real and imaginary parts of
for sea ice at two different temperatures compared with the
observations of [93]. In addition to the results for first-year
ice, the model has representations for frazil ice and multiyear
ice. For further details, refer to [83]. Recently, the integrated
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(a) (b)

Fig. 4. Calculated real and imaginary parts of��
11

for sea ice [solid and dotted lines] compared with the observations of Vantet al. [93] [circles and squares].
Ice salinity is 10.5 ppm, ice density is 0.91 Mg/m3, �B = 24

�, andlp=lz = 200, wherelp is the correlation length in the radial direction. Redrawn from [83].

(a) (b)

Fig. 5. Effects of density differences on the (a) real and (b) imaginary parts of��
11

for young sea ice as a function of temperature for an extended
warming sequence. The solid circles are the experimental results, the solid curve is for the calculated results, and the dash-dotted curves are for the upper
and lower bounds by varying the bulk ice density by�5%. Redrawn from [65].

formulation in [16] that relates the brine volume and vapor vol-
ume to , and bulk density has been incorporated; however,
it produces only small changes in the results presented here.

A series of models has been developed by Nghiemet al.
[64]–[67], culminating in a multispecies, anisotropic medium
with vertical anisotropy. They assume that the brine pockets
and vapor inclusions in sea ice are triaxial ellipsoids, including
spheroids and spheres as special cases. For sea ice, the
ellipsoids are oriented with their longest axis vertically and
have random azimuthal orientations. The resultingis of
the form of (4.15) with . For snow, the grains are
represented as randomly oriented ellipsoids for whichis a
scalar. They investigate in detail the effects of distributions
of size, shape, orientation, and phase of the brine and vapor
inclusions.

Representative results showing a comparison with the ob-
servations of Arconeet al. [2] are shown in Fig. 5. By
including the effects of actual salinity and temperature varia-
tions combined with brine loss from the samples at the higher
temperatures, they obtain good agreement over a wide range
of temperatures.

The formulations of both Stogryn and Nghiemet al. rep-
resent the snow cover as an isotropic medium and take
into account the anisotropy present in sea ice and the ther-

mal processes associated with the evolution of the ice. The
principal differences are in the tilt of the brine inclusions
and assumption of ellipsoids versus spheroids. More subtle
differences involve the precise shapes of the inclusions, which
are unfortunately quite variable in actual sea ice and depend
not only on the present state of the ice and snow but on their
temporal evolution. Although no direct intermodel comparison
has been made, each model produces reasonable values of
both real and imaginary parts of the effective permittivities
for actual values of brine volume and bubble density and
realistic representations of the microstructure of the ice. We
conclude that these models are useful for determiningand
have sufficient flexibility to incorporate improvements in our
understanding of the physical properties of sea ice.

B. Distorted Born Approximation for Sea Ice

We now present the scattering calculation for sea ice under
the distorted Born approximation, assuming that the system
consists of layers . For example, we may
have , the upper half space of air, , the
cover layer such as snow, , the sea ice layer, and

the lower half-space of sea water. To account for
the medium anisotropy, the effective permittivity in layer

is described by the tensor from strong fluctuation
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theory discussed in the previous section. A polarimetric radar
or scatterometer can measure the backscattered field for all
polarizations, including magnitude and phase. Ensemble av-
erages of scattered field correlations are used to obtain the
complete set of polarimetric backscattering coefficients. These
coefficients constitute a covariance matrix or a Mueller matrix,
characterizing polarimetric scattering properties of the layered
medium [63]. Now, the scattered field intensity
for in the upper half space is given by

(4.17)

where is the mean dyadic Green’s function of
the anisotropic, layered medium. For the observation point
in layer and the source point in layer is
the mean incident field in the effective medium with complex
permittivity tensor is the volume occupied by layer

, and is the correlation function of the scatterers in
layer , defined in (4.14), with variance (depending
on the volume fractions and permittivities of the sea ice
constituents). The summation convention for repeated indexes
has been used on the lower indexes in (4.17). Implicit in
(4.17) are averages involving the probability density function
of scatterer orientation angles and in layer as well as
the probability density function of layer thicknesses. The an-
gular probability density is determined by the crystallographic
-axis distribution. [The indexes in (4.17) may

be considered as vectors, indicating the relative orientation
of the ellipsoidal scatterers in a given layer relative to the
global coordinate system; see [69] for details.] The correlation
function can be written as

(4.18)

where is the Fourier transform of

(4.19)

with correlation lengths and related to the
effective size and shape of the scatterers [64]. The scattering
correlation (4.17) accounts for the physical and structural
properties of the anisotropic sea ice, wave interaction with
the medium interfaces, and effects of the cover layer.

Polarimetric backscattering coefficients are calculated
from

(4.20)

where the subscripts and in the linear polarization
basis can be for horizontal polarization or for vertical
polarization, is the distance from the radar, and is the
illuminated area. In the covariance matrix, the conventional
backscattering coefficients and

are the diagonal elements. The cross-correlation
coefficients are and . The copolarized ratio is

, the cross-polarized ratio is , and the complex
correlation coefficient between the horizontal and vertical
returns is . Complex mathematical
expressions of for sea ice covered by media such as
snow and frost flowers have been derived and can be found
in [64], [66], and [69].

The microwave emissivity of the snow-ice system, where
for horizontal polarization and for vertical polar-

ization, can then be determined from the scattering coefficients
as follows:

(4.21)

where is the incident wave propagation vector, is
the scattered wave propagation vector in the direction specified
by the polar angle and azimuthal angle , and is the
Fresnel reflection coefficient for a plane wave incident on the
ice. The resulting brightness temperature measured near the
surface including the contribution reflected from the sky is
given by

(4.22)

To take into account the vertical structural variations in the
ice, a multiple layer formulation has been developed [78],
where the properties of the medium are constant in each
layer but can differ between layers. This formulation has been
extended to strong fluctuation theory and applied to snow and
sea ice [81]. Specification of the reflection coefficient of
the coherent mean field in the medium and the components of
the dyadic Green’s function are determined by solving certain
Ricatti equations that involve the effective permittivity tensor.
The correlation statistics of both ice and snow are assumed
to have anisotropy with a vertical optic axis and azimuthal
symmetry. This represents the observed physical properties of
sea ice (with random distribution of axes in the horizontal
plane) extremely well and simplifies the problem sufficiently
that only two Ricatti equations need to be solved to specify all
the components of the dyadic Green’s function. The scattered
field correlation is determined as described above, making use
of an appropriate version of (4.18) for this case.

Surface roughness also impacts wave scattering from sea
ice. Natural interfaces in sea ice are rough with various length
scales from large-scale hummocks to small-scale roughness.
The lower interface, such as the boundary between sea ice
and water, can also be rough. In the layered configuration, we
must take into account the effects of wave-boundary interac-
tions, differential propagation delay, and wave attenuation of
ordinary and extraordinary characteristic wave types in the
anisotropic layered media. Hummocks modulate the small-
scale rough surface scattering. Assuming the hummock and



GOLDEN et al.: SEA ICE FORWARD ELECTROMAGNETIC SCATTERING MODELS 1669

(a)

(b)

Fig. 6. Comparison of theoretical calculations based on the distorted Born approximation to CRRELEX data on bare sea ice for (a) backscatter coefficients
and (b) polarimetric signatures.

the small-scale roughness are statistically independent and
stationary Gaussian processes, the total roughness profile is
a convolution of the individual roughness profiles at different
scales. This convolved profile is used to calculate the com-
posite rough surface scattering subject to the medium and
propagation effects in the multilayered configuration [66].

In the following, we present applications of the model to
ground-based, airborne, and spaceborne radar data for sea
ice. Fig. 6 compares the theoretical calculations and measured
results for a layer of bare sea ice grown during the Cold
Regions Research and Engineering Laboratory Experiment in
1993 (CRRELEX 1993) [68]. The data are obtained by the
Jet Propulsion Laboratory (JPL), California, Institute of Tech-
nology, Pasadena, ground-based polarimetric scatterometer
operated at C-band (center frequency at 5 GHz). The com-
parisons are good for backscattering coefficients [Fig. 6(a)]
and for normalized polarization signatures [Fig. 6(b)]. Fig. 7
is for snow-covered first-year sea ice and multiyear sea ice
with snow and hummocks in the Beaufort Sea. The JPL
airborne SAR data were obtained during the Beaufort Sea
Flight Campaign in 1988 near 75N latitude and 142 W
longitude. The spaceborne SAR data for sea ice in the Arctic

were measured by the first ERS-1 for vertical polarization [67].
The model results compare well with both the spaceborne and
airborne radar data.

In summary, the layered model for sea ice scattering ac-
counts for the three phases present in sea ice, the orientation
distribution of crystallographic-axes, nonspherical geometry
of brine pockets and other inhomogeneities, anisotropy of
columnar ice, thickness distribution in thin ice, a brine layer
and snow cover, roughnesses at sea ice interfaces, and melt
hummocks. The model compares well with measured data in
general and provides physical insights into sea ice signatures
observed by remote sensors to interpret the signature behavior
and assess the retrieval of important geophysical parameters
of sea ice.

V. RT THEORY FOR MULTILAYER RANDOM MEDIA

In microwave remote sensing of earth terrain, volume and
rough surface scattering give the principal contributions to
radar backscatter responses. For volume scattering, both the
random medium model, in which the scattering effects are ac-
counted for by introducing a randomly fluctuating permittivity,
and the discrete scatterer model, in which randomly positioned
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Fig. 7. Comparison of theoretical calculations of backscatter based on the
distorted Born approximation to SAR data for snow-covered sea ice in
the Beaufort Sea, measured by ERS-1 and during the Beaufort Sea Flight
Campaign.

particles are used to represent the volume inhomogeneities,
have been used to calculate the electromagnetic scattering
[23], [40], [90], [91]. As for the contribution from rough
surfaces, different methods have been applied over the years to
study such scattering. For example, for slightly rough surfaces,
where the root mean square (rms) height is much smaller
than the wavelength, the small perturbation method (SPM)
is used. On the other hand, when the radius of curvature
of the surface is large, the tangent plane approximation or
Kirchhoff’s method can be used [40], [90], [91], [23].

RT theory has been applied extensively to model elec-
tromagnetic wave propagation and scattering in geophysical
media [23], [40], [90], [91]. Even though the RT approach
deals only with the intensities of waves and neglects their
coherent nature, it accounts for multiple scattering and obeys
energy conservation. The propagation characteristics of the
Stokes parameters associated with the fields are governed
by an integrodifferential equation, the RT equation, which
involves the extinction matrix, describing the attenuation of
the specific intensity due to absorption and scattering, and the
phase matrix, characterizing the coupling of intensities in two
different directions due to scattering. The RT theory has been
applied to scattering problems with highly complex geometry.
Flat or rough surface boundary conditions can be imposed at
the interfaces of a multilayered structure, and the rough surface
scattering effects can be included in the RT model. While
some of the material in this section has appeared elsewhere, it
serves as the basis for the RT—thermodynamic inverse model
in [33]—and for completeness, we include it, particularly the
formulation for multilayered systems such as sea ice.

We now consider a multilayer random medium with layers
, as in Fig. 1 with . Layers and

are homogeneous half-spaces representing air and sea water,
with appropriate complex permittivities. Layers
have boundaries at ,
with thicknesses , and background permittivities

. Each layer contains types of scatterers, where
each type is described by its fractional vol-

ume permittivity size and orientation
distribution. Each interface can be either flat or randomly
rough, with the corresponding variance and correlation
length describing the roughness. The RT formulation for
a multilayer medium containing discrete ellipsoidal scatterers
and the numerical technique for solving the RT equations are
described in the following.

The specific intensity at height for propa-
gation in the direction inside each scattering layer

is described by the generalized RT equation

(5.1)

where and are the Stokes vector, the phase
matrix, and the extinction matrix inside layer, respectively.
The Stokes vector associated with a wave with electric
field , where and denote orthogonal
polarizations, is defined as

(5.2)

where is the characteristic impedance and denotes the
ensemble average (here is not to be confused with the
identity matrix). The energy transport can be interpreted in the
following heuristic way. As the intensities propagate through
an infinitesimal length , there is an attenuation

due to both absorption and scattering loss, but they also
get enhanced by the scattering from all other directions
into the direction of propagation . This coupling is
characterized by the phase matrix and accounted for in
(5.1) through integration over the solid angle.

The phase matrix relates the Stokes vector associated
with the incident field to the Stokes vector associated with the
scattered field, and it is obtained as follows. The scattering
function matrix that maps the incident field

in direction to the scattered field
in direction is given by

(5.3)

where the scattering amplitudes are functions of the shape
and permittivity of the scatterer. The associated incident and
scattered Stokes vectors are transformed via the 44 Stokes
matrix , whose components are functions of

and [90]. The phase matrix
is obtained from by incoherent averaging over the type, di-
mension, and spatial orientation of the scatterers. For example,
the phase matrix for a mixture of one species of ellipsoid is
given by

(5.4)
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where is the number of scatterer per unit volume,
and are the length of the ellipsoid semimajor axis, and

are the Eulerian angles that describe the orientation of the
ellipsoid, and is the joint probability density
function for the quantities .

The total extinction matrix can be obtained by summing
the scattering and absorption losses in the medium [90]. The
components of this 4 4 matrix are functions of

(5.5)

where is the wavenumber in the background medium
and denotes average over the orientation and

size distribution of the scatterers, as in (5.4).
For a layer containing -different types of scatterers,

each with its own size, orientation distribution, and fractional
volume, the phase matrix can be obtained by incoherent
averaging over different scatterers. The total absorption and
scattering loss matrices due to -type of scatterers can
also be calculated by incoherent averaging of the matrices
associated with each scatterer type.

The boundary conditions necessary to solve for the Stokes
vector inside layer are as follows. At interface

(5.6)

and at interface

(5.7)

where and and are the
elevation angles in the local coordinate system of layers
and , respectively, and are related toby Snell’s law.
The matrices , and in (5.6) and (5.7)
are the respective coherent reflection, incoherent reflection,
coherent transmission, and incoherent transmission matrices
for the boundary between regionsand . For a slightly rough

interface, the small perturbation method can be used to solve
for these matrices [90].

The boundary conditions at interfaces 1 and (
and ) are slightly different and can be written
as follows. For interface 1 we have

(5.8)

and at interface

(5.9)

where is related to by Snell’s law.
Both iterative and discrete ordinate eigenanalysis methods

have been used to solve the RT equations [90]. Details of these
two techniques can also be found in [90]. The iterative method
is appropriate for cases of small albedo in which absorption is
dominant. The discrete ordinate eigenanalysis method provides
numerical solutions for more general scattering cases. The
Stokes vector and the phase matrix are first expanded into
a Fourier series in the azimuthal angle. Then, the set of
integrals over are carried out analytically to eliminate the

dependence in the RT equations. The resulting equations
are further solved using the Gaussian quadrature method by
discretizing the angular variable for each harmonic of .
Finally, the RT equations are transformed into a set of coupled
first-order differential equations with constant coefficients.
This set of equations is thus solved using the eigenanalysis
method by obtaining the eigenvectors and eigenvalues and by
matching the boundary conditions.

For a plane wave incident in region 0, the incident intensity
is given by

(5.10)

The scattered wave in region 0 can be calculated by using the
following equation:

(5.11)

The backscattering coefficient is obtained as

(5.12)
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where can be for vertical or for horizontal polarization
and the subscripts and denote the incident and scattered
waves, respectively.

VI. CONCLUSION

A number of advances in the forward theory of electro-
magnetic scattering from sea ice have been made. Significant
refinements of existing methods, such as analytic wave theory
and RT theory, have been developed through incorporation of
realistic features of the sea ice system and close integration
with experiments. These forward models include both volume
and surface scattering and account for important features
of sea ice, such as bulk anisotropy, its multilayer character
with rough interfaces between the layers, and inclusion size
and orientation distributions for brine and air. Alternative
approaches that are new to the sea ice remote-sensing literature
have also been introduced. Analysis of the Helmholtz equation
for idealized sea ice models has led to rigorous results that
lay the foundation for further theoretical advances in both
forward and inverse scattering for complex media, includ-
ing unexpected generalizations of key theorems in Fourier
analysis. A general bounding method from the mathemat-
ical theory of homogenization for composite materials has
been applied to the effective complex permittivity of sea
ice. Accounting for the microstructural feature that the brine
phase is contained in separated inclusions for temperatures
colder than the percolation threshold has led to significant
improvement in the bounding method itself. At present, the
bounds apply only in the quasi-static case, where scattering
from individual inclusions is negligible. The effective complex
permittivity of sea ice in the scattering regime has so far
been estimated only with strong fluctuation theory, which is
most accurate in the weakly scattering regime, near the quasi-
static case. While many questions concerning the interaction
of electromagnetic waves with sea ice remain and the above
findings have opened up important new avenues for further
research, nevertheless, the body of work presented here has
deepened our understanding of how the physical properties of
sea ice determine its electromagnetic signature.
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