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Classical Transpert in Quasiperiodic Media

KENNETH GOLDEM

Absiract. Classical transport coefficients such as the effective conduo-
yivity or diffusivity of & guasiperiodic medium were observed {1}
10 depend discontinuously on the frequencies of the guasiperiodic-
ity. For example, for a one-dimensional medinm with a potential
Vix) = cosx + coskx , the efiective diffusion coefficient D™{k) has
the same value D for all irrational k , but differs from D and de-
pends on & for & rafional, where it is thus discontinuous. Here we
review some receni progress [2-4] in understanding this discontinuous
behavior. In particular, a class of examples which sxplicitly exhibit
the disconiinuity in dimensions ¢ > 2 is comstructed. In addition,
we examine some rather surprising consequences of the discontinuity
for the rate of approach 1o Hmiting behavior of diffusion or conduc-
tion in guasiperiodic media as time or volume becomes infinite. It
is found that these rates can be “arbitrarily slow,” which contrasts
with the power laws observed for random media. A very general the-
orem vielding such slow rates is described, and its conseguences for
quanium ransport are also discussed.

1, Introduction. Quasiperiodic sysiems exhibit fascinating propertics
and arise in many seitings. An exampie of such a sysiem 15 a one-
dimensional medium with a potential ¥V{x) =cosx +coskx. When &
is irrational, ¥(x) is gquasiperiodic, and when Xk is rational, ¥(x} is
periodic. Mathematically, quasiperiodic media represent a special case
of stationary random ergodic media, and can be thought of as “inter-
polating” between periodic and random. One way in which guasipen-
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odicity can arise is in a modulated structure, i.e., a periodic structure
such as 2 crysial lattice which is perturbed of modulated periodicaily
with a period different from that of the underlying structure. For €x-
ample [8], TiMNiy;Fe; alloy subjected to charge density waves forms
2 modulated structure, where the periods of the alloy and the wave can
be commensurate (rationally related) or incommensuraie (irrationally
related). Another way in which guasiperiodicity can arise is apparently
through the lattice structure itself, as evidenced by the exciting discov-
ery of so-called “guasicrystals” [6], where the atoms are pelieved to be
arranged in 2 quasiperiodic manner.

In systems such as modulated structores where the period of the ap-
plied wave can be tuned to be commensurate of incommensurate with
that of the underlying siructure, ong is interested in how the physi-
cal properties of the system change as this is done. It was observed
in 1] that classical transport coefficients of a guasiperiodic medium
in BY with a potential ¥{x) and/or conductivity o{x) depend dis-
continuously on the frequencies of the guasiperiodicity. For example,
with V{x} = cosXx + coskx in d = 1, the effective diffusion coefii-
cient D7(k) has the same value T for all irrational k but differs from
T and depends on k for k rational, where it is thus discontinuous.
(Furthermore, D*(k) is continuous at irrational k)

Here we give an overview of some recent progress {2-4] in analyzing
this discontinuous behavior displayed by guasiperiodic media. The re-
sults are of two different types. The first type concerns explicit examples
of the discontinuity in dimensions ¢ > 2, where the general argument
given in [1] for 4 = 1 does not apply. In these systems, for example
in d = 2, we take a plane slice of 2 three-dimensional checkerboard of
cubes with conductiviiies o, and 0, . YWhen the plane, charactenized
by 2 matrix ¥, is at an “irrational” angle, the resulting quasiperiodic
medium has an effective conductivity tensor & (k) which is invariant
under interchange of o, and o,. The Keller interchange equality {7, 8]
then vields the surprising result that det{e”) has the same value .0,
for all irrational planes. The discontinuity is obtained by exhibiling a
particular rational angle for which det(g”) has a value different from
6,6,. Ihe checkerboard is but a special case of a general class of ex-
amples that yield the discontinuity in this way.

The second class of Tesults concerns some striking cOnsSequences of
the discontinuity for the rate of approach to limiting behavior of diffu-
sion or conduction in guasiperiodic media as time or volume becomes
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infinite. For example, we consider diffusion X, ina guasiperiodic po-
tential ¥(x) in R?, where lim,_ (1) = im,__E[X]]jt=D"=
tr (D"(F)}), D7(¥) is the effective diffusion tensor, and E denotes av-
eraging over diffusion paths and the phase in the potential (see Section
2). We find that when the irrational parameters characterizing ¥V (x) are
very well approximated by rationals, Z/(t) approaches its limit through
3 series of “plateaus” which correspond to the rational approximants,
where the betier the approximation, the longer the plateau. In fact, say
in d = 1 with V{x) = cosx + coskx, there is 2 dense set I such
that for each k € I, |Z{k, 1) — D™(k)|, roughly speaking, approaches
zero as { — oo “arbitrarily slowly,” i.e., more slowly than any pos-
itive function g{(#) — 0 as ¢ — oo which can be explicitly written
down (expressible). For example, when k€T, |Z{k, 1) - Dy 0
more slowly than 1/log---log?, for any fixed number of iterations of
the logarithm. (Note that the k’s in T are not expressibie.) We can
also prove corresponding statements for related functions such as the
“velocity” autocorrelation function as ¢ — oc and the freguency (w)
dependent diffusivity as @ — 0, as well as for ok, L) —o (k) — 0
as L — oo for the length (L) dependent conductivity g(k,L) ofa
finite sample of a quasiperiodic medium.

The arbitrarily slow approach that we see for guasiperiodic media 15
in marked contrast to the behavior in random systems [9-12], where
the rates of approach are widely believed to have power law structure.
Our results demonstrate that in guasiperiodic systems, the functions
characterizing the approach to limiting behavior obey no such universal
iaw, be it algebraic, logarithmic, or whatever.

The above results about rates of approach are based on a very general
theorem about any function f(k, ¢} which is continuous in k and ¢,
but for which F(k) = lim,___ f(k, f) is discontinuous on a dense set
of k’s. In this case, there is always a dense set of k’s for which the
rate of approach of f{k, 1) to F{k) is arbitrarly slow.

Due to the generality of the above theorem, any system which ex-
hibits discontinuous limiting behavior can display the arbitrarily slow
approach. For example, m guantuin transport in quasiperiodic poten-
tials {13, 141, it is found that the nature of the wave functions satisfy-
ing the time dependent Schrodinger equation with a potential g{x) =
cosx + acos(kx + #) depends very sensitively on the rationality of
% . Presumably, similar results to the above hold for appropriately de-
fined time dependent functions characterizing the approach to limiting
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vehavior, which will be briefly discussed in the lattice case at the end.

2. Formulation. We first formulate the notion of a quasiperiodic lo-
cal conductivity or potential field in B?. Subsequently we consider
+he effective conductivity and diffusion problems in such guasiperiodic

media.
Let &(0) be a function on the unit n-torus 7~ = R*/Z", 8T,
which we identify with its periodic extension to all of R". The local

conductivity field o, {x, 8) on ®? is obtained from & via
(2.1) 6 (x, ) = 6(8 + kx) = 5(1,8) ,

with transiations on R" given by

a
(2.2) €§§=§+k§=§+}: X

where k isan »n by d mairix k= {i{g, i{_gg ki k=0, i#],
k. € R". Alocal potential field ¥ (x. 9) on BY is obiained similarly
from some V(8) on T°.

The “flow” on T induced by (2.2) leaves invariant Lebesgue mea-
sure 46 on T". It is also ergodic relative to 4§ when ihe equa-
tions k,-i=0,....k,; =0 haveno simulianeous integral solutions
ieZ", [ #0 [18]. We say that k is “irrational” in this case, ie.,
when ri is ergodic, and is “rational” otherwise. When 7 = 2,d=1
and k=& = [k, kz}T, k is irrational when k,/k, is irrational. When
n>d+ 1.k can have various degrees of rationality depending on the
dimension of the ergodic components of ri .

Given o, (x, §), we consider the electric field £ j{_ﬁg L8 = E j{ﬁ +ix)
and current field J (x, 8) = J (¢ + kx) satisfying

(2.3 Lz 0)=0,(x, BE(x. 8).
(2. V.4 =0,

{2.5) VxE =0

(26 B ax=e,
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where ¢g; is 2 unit vector in the jth direction in rY , and the integral

in (2.6) is an infinite volume average of £;{x, 8y over R .

We shall be most interested in two-component media, arising from
(2.7) &{8) mgggi(ﬁ}‘%'gz;%g{ﬁ} ;
where o, , 0y > 0, and the indicator functions p4 A8y, i=1, 2, satisfy
5{’1 + & ,=1.Dueto t+he absence of smoothness in this case, equations
(2.4) and (2.5) should be understood 1o hold weakly in an appropriaie
subspace of E,Z{T " d8) [16], where ’a% is identified with the generator

of translations in the direction of & ;.
The efective conductivity tensor ¢ =& (k, §) is defined via

(2.8) o'e, = oyx. OF (x. B

Eé
which is symmetric. If k is irrational, o" (k, 8) is almost surely (with
respect to 48 ) a constant independent of &, while if k is rational,
o* will depend on § only through the ergodic component to which §
belongs. In any dimension [16],

(2.9} o (k,8)= éim o (L,k, 8),

where o (L, k, 8) is the conductivity of 2 sample of side 2L of
g, (x, §), which in one dimension has the form

L

CR NI T e SRR

and the convergence in (2.9) isin Lz{}’"” , d8). The integration on the
right side of (2.10) can be viewed as integration over a trajectory of the
fiow 8 = k., which is ergodic only when k 1is irrational. In this case,
the integration is over all of 77, so that

(2.11) 07" = jf 6(0)]"'d8
-

is independent of k. However, when % is rational, the trajectory de-
generates to a closed orbit, over which the integration is different from
its value over all of T7, which is the source of the discontinuity.

We shall also be interested in diffusion in a potential W (x, 8} =
7(0+kx), x€R?, g 7", which is uniformly bounded and smooth,
i.e., having uniformly bounded derivatives to third order. Given ¥,
we consider the R valued process X, governed by

(2.12) dX,=-VV X )dt+dW,
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where X =0 and ¥, is standard Brownian motion with mean 0 and
cevamaﬁce matrix if, Where I is the identity. The transition density
u(x, 1) satisfies the (forward) eguation

Hu

(2.13) a7 =L'u, i};gw(é, f=0d{x),
whers

. 1
(2.14) L :5&4—*:?‘{_*\7;;{_).

For X, governed by (2.12), eX,,» converges as & — 0 Isee, e.g., 17]
to W {E (k)), with DY(k) = lim, Dk, ), D {%g zE_E{Xgii’j}?z

where E denotes expectation over Brownian momm paths in (2.12) as
well as an average over 7" with respect to the “equilibrium™ measure

(2.15) u(dg) =" g / f e
?-:1

We shall be interesied in @(k, 1) = tr(D(k, 1)) and D(k) = tr(B"(k)).
As in the case of conduction, there is an exact formula for DYk in
d=1 [see, e.g. 1],

(2.16) (D] = —{ez}féa’x{ e ax .

3. ﬁzg&er-&%meﬁﬁwmi examples of discontinuons behavior of o™ (k).
We now construct explicit examples of systems for which ¢ o (k) is dis-
continuous in k. First we look at the one-dimensional case g, (x) =
G(x, kx) where & isa checkerboard on 72 , and then we consider its
higher-dimensional analogs.

31, d=1.Let #(§) on the unit 2-torus T be defined as follows.
Divide T2 into four equal squares with the common vertex {{, 1}. On
the squares let 5(6) take the positive values ¢, o1 0, ina checkez‘beafd
arrangement, with, say, ¢, on the squaye neares% the origin. Extend this

by periodicity to the whole plane, R”, and define
(3.1) o (x) = ap(x, §=0) = &(x, kx) ,

which we visualize as the restriction of & to a trajectory of slope &
passing through the origin.
Now for g, (x) in (3.1},

(3.2) (0" () = p, (k) e, + py{k)] oy
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where pj(k} is the proportion of length that the line of slope k¥ in
R? spends in regions {squares) where & = & j=1, 2, for the above
described checkerboard. For further simplicity we assume that o, = 1
and 0, =00.

Then we have

TaeoreM 3.1. For o, {x} = a(x, kx) with & the above checker-
board of squares of o, =1 and g, =00, and k >0,

(3.3)
-}5 , k jrrational
R N T o
oY 2 e, k=L, p.g= odd, relatively prime integers
% , k= &j:;; otherwise.

The proof, by D. Barsky, is contained in the Appendix of [2].

3

39, d = 2. The analog of the checkerboard for 7~ is obtained by
dividing it into eight equal cubes with common Vertex {(3,4%,3) with
& taking the values ¢, and ¢, ina checkerboard fashion. Given kK
and this &, (2.1) defines o, (X, &), which is guasiperiodic when k is
irrational and periodic when the coordinates of both ky = (k. k)
and k, = (k3, ko) are rational,

As indicated in the Introduction, we obtain a discontinuity in det{s")
by first examining it for k irrational, and then by exhibiting a particular
rational for which its value is separated from those in the irrational case.

Our principal tool will be the Keller interchange equality {7,8] let
¢ (o,,0,) be the effective conductivity tensor of any ergodic two-
component material and et g (o,, 0,) be the effective tensor of the
material with ¢, and o, interchanged. Then

E # .
(3.4 g, {o,. 6,)0,{(0,, g,)=6,0, ,

where o*f < 9*; are the eigenvalues of the symmetric matrix ¢ . The
following observation allows (3.4) to provide information about detlg” ).

Lemwa 3.1, For k irrational, the quasiperiodic medium o, (X, )
arising from the checkerboard on 17 satisfies

(3.5) e (k;o,,0)=0(kio, 0],
je, ¢ (k) is invariant under the interchange of the componenis.

ProoF. Suppose k is irrational; then & (k) is independent of
aimost surely. However, interchange of the compenents ¢, and g, i$
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induced by (8,,08,,6,) — (6, +1,6,.8,) on T°. Thus o"(k) is
interchange invariant, [

As an immediate consequence of (3.4) and Lemma 3.1, we have

TueoreM 3.2. Let o {x,8) =68 +kx), x € R*, where & isa
checkerboard of ¢, and o, on T . Then for all irrational k&,

(3.6) det (o7 (k)) = 0,0, .

We now obtain the discontinuity. Let the cube nearest the origin
in 7° (~ [0, 133 y have conductivity ¢,. Consider the plane passing
through (1,0, 0), (0, 1, 0),and (0, 0, 1), and then translate it down-
ward so that it passes through (0,0, 3/4). Let k, span this plane
and let 8, =1(0,0,3/4). The resulting patiern %ﬁ(ia 8,) is a peri-
odic array of six~§}0in‘iaé stars with a central hexagon of ¢, , which is

“isotropic”, (ko i) =0 (%; 8,)9;; ;> dueto the six-fold symmetry
about the cemar of ﬂ}ﬁ hexagon. Eﬁewmer this array is not interchange
invariant, since p, 2 while p, = 3, which indicates that we should

4
not expect that dei{@’ (ky: 84)) =0, m .

Lemma 3.2. There exist o, and o, such that for the resulting &
and k,, 8, as above,

(3.7) det (5" (k,; 84)) # 0,0, .

The proof is obtained by using the isotropy of 55}(%{@ LB, =04, ;
and the arithmetic mean upper bound on ¢ .

Theorem 3.2 and Lemma 3.2 together vield a discontinuity in
det (o7 (k)) at k = k,. Since det{g”™) is a continuous function of &,
we have

Cororiary 3.1. Let o, and o, be as in Lemma 3.2. Then " (k)
is discontinuous at k= K,

We have constructed here only one example of a rational k for which
the discontinuity can be proven. When the denominators in the rational
numbem in k are much larger, so that p, and p, are both very close to

, the groef mveimﬁg the simple bound will not work, as much ‘{1ghfier
bemnﬁs on o° would be required. Nevertheless, we expect that o (k)
is discontinuous at “most” rational k.

3.3, d > 3. For 4 > 3, the inequality

(3.8 al(o,, 0,)0,(0,, 0,) 2 0,0,
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replaces {3.4), for all pairs of eigenvalues o, and f:?; . which was first
proved by Shulgasser [18]. Since Lemma 3.1 holds for 77 as well as
73 , slight manipulation of (3.8) yields

TurorEm 3.3. Let a,(x, ) = 6(8+kx), x € RY, d 23, where
5 is a checkerboard of o, and o, on T", n 2 d+ 1. Then for all

irrational k,
(3.9) det (" (1)) > (0,0,)""

The discontinuity is established by finding rational k for whach there
are o, and o, such that det (g" (k) < (5,. 52)df z

We remark that whenever interchange of o, and ¢, in the ambient
environment & on R is induced by a change in realization £ — g,
which, in fact, can be assumed to be a translation, the conclusions of
Theorer 3.2 for d = 2 or Theorem 3.3 for 4 2 3 hold. This observa-
tion vields a large class of media which exhibit the discontinuity in the
same way as the checkerboard.

3.4. Phase averaging. Let us consider explicitly the “vhase” § of the
tocal conductivity field, for example in one dimension with o, (x, 8) =
A+cos(x+8,)+cos(kx+6,), 4> 2. Then o"(k, ) will depend on
g for k rational but not for k& irrational. For the = 2 checkerboard
example one can see this as well by observing that for k irrational the
relative volume fractions p, and 7, = 1—p of g, and o, are mde-
pendent of phase, with p, =7, = i, while for k rational they depend
on phase. In other words, the discontinuity in ¢" arises from a discon-
tinuity in the microgeometry, as characierized by the volume fraciions.
Tt is surprising that even after averaging over phase, the discontinuity
persists, which we can prove in d=1. Given ¢,(x, 8) = 5(8 + kx),

§eT", define
(3.10) o7 (k) = _[ (&, 0)d8 |
Tﬁ

where o (k, 8) is the effective conductivity of a,{x, §). Also let
{5’}“1 be given by the right side of (2.11). Then, using Jensen’s in-
equality, we can prove

THEOREM 3.4. For d =1,

(3.11) g k> 7.

EY N
Furthermore, equality holds in (3.11) if and only if ok, 8) is indepen-
dent of 8 (almost surely with respect to d§ on 7.
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While we believe but have not yet proven that the discontinuity is
generally present in higher dimensions for g, (k), which is the analog
of (3.10) for d = 1, we can prove

TueorsM 3.5. For d 2 1, @, (k) is upper semicontinuous in k.

4. Arbitrarily slow approach fo limiting behavior, We now discuss the
consequences of the discontinuity for the rate of approach 10 limiting
hehavior of diffusion and conduction in guasiperiodic media. First, we
present a general result about functions with discontinuous limit from
which a1l the results about diffusion and conduction follow.

4.1. General resulis on approach to limits. The statement of the basic
theorem is aided by the following

DerFmITION. For two functions g{f) and A(¢) with lim,_ __ g(6) =0
and lim,_ __ A(f) = O, we say that g(f) is greater than A{¢) infinitely
ofien,

(4.1) glt) > At}
if there is a sequence {, — oo such that
{4.2) glty>n(t,), ¥n.

We now state the principal result,
TueoreM 4.1. Ler flk, 1) : RY x [0, o0) — R satisfy the following
conditions:
(i} flk,t) is jointly continuous in k € rY ezfza’ t€{0, )},
(i) lim _ _ flk, 1} = F{k) exisis forall k € R”
(iiiy F (%;) is discontinuous on a dense set A C E
Then for any sequence of functions {g{1}, 1 € g, 90)} with lim,_ gj{f)
= 0 foreach j, there exists adenseset I C RY such that foreach ke I,

(4.3 Sk, -Fl> g, YJ.

The idea of the proof is to construct each k in T as the lmit of
a sequence {k_} such that F is discontinuous at each k . Because
of the discontinuity at k,, F(k,) can be bounded away fmm Flk)
while k, is arbitrarily close 1o k. Then for a corresponding arbitrarily
long time f(k, 1) is close to F{k,), which serves as 2 “plateau” for
f{k, t}. These arbitrarily long plateaus give rise to the slow decay of
I f(k, 1) — F{k)| as stated in the theorem.
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A rather striking consequence of Theorem 4.1 involves the notion of
an expressible function, i.e., one which can be defined, either explic-
itly or implicitly, using standard mathematical symbols. An example
of such an implicitly defined function is one that satisfies, say, a dif-
ferential or integral equation which has 2 unigue solution. Since any
expressible function is determined by a finite string of symbols from a
finite alphabet, there are only countably many such functions. Clearly,
then, we have

CoroLrrary 4.1, Ler flk, 1) satisfy the conditions of Theorem 4.1,
Then there exisis a dense set T C R such that for each b €T,

(4.4) ik, - Flk)] > gz .
for every expressible function g with im,__ g(f) = 0.

We remark that there is no contradiction here because for k € I,
|/ {k, ) — F{k}| is not expressible.

To appreciate how slowly | f(k, 1) — F(k)| decaysfor k€T, observe
that 1f(k, 6)~F(k}| > {log--- k}gz}”i , { — oo, for any fixed number of
iterations of the logarithm. Indeed, no law, be it algebraic, logarithmic,
or whatever can capture the behavior of |f{k, ) ~ F(k)|, not even in
the weak sense of upper bounds.

While T in the above resulis is dense, it is presumably of Lebesgue
measure zero, so that it is analvtically “small”. However, by replacing
condition (i) above with a slightly stronger one, namely that F{k) =
w(k) for some continuous ¢ when k ¢ A and F{k) # ¢{k} when
k € 4, I’ can be shown to be a dense E%. That is, it iz a densg,
countable intersection of open sets, which is (fopologically) generic,

4.2. Diffusion in guasiperiodic potentials. We now apply Corollary
4.1 t0 Z{k, 1) and related functions. While conditions (i} and (ii) are
clearly satisfied by, say, @ (k, 1}, we must discuss condition (ii1). In one
dimension, given any ¥, one can in principle check the explicit formula
for D"(k) to see if it is discontinuous on a dense set in R. Typically
there is a dense set of rationals on which D"(k) is discontinuous. (In
fact, typically D({k) satisfies the sironger condition mentioned at the
end of the previous section.) In higher dimensions, although an explicit
formula for D7(k) is lacking, we believe for the following reasons that
typically I¥" (k) is discontinuous on a dense set in ®" . First, as argued
in [1], the integrals involved in representation formulas for D" are
averages over trajectories on tori which depend discontinuously on k, as
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in one dimension. Secondly, the findings of Section 3 for o (k) (which
can be defined via a diffusion process) suggest that the discontinuity is
generic. Accordingly, we shall state our resuits for systems with this
property, and make the following

DEFINITION. A potential 7 on T" is “typical” if D"(k) is discon-
tinuous in k on a dense set in Y.

Now, applying Corollary 4.1 to Z(7), we have

Tuporem 4.2. Let V on T" be typical. Then for diffusion X, in
RY sarisfying (2.12) with Vy(x, ) = P(@+kx), x € B, £ €T,
there is a dense sei T C RY such that for every k€T,

(4.5) 2k, ) D ()} > g1},
Jor every expressible function g(t) with im,___g{1)= 0.

We remark that the k’s in I' here are irrationals that are very well
approximated by rationals. Furthermore, in one dimension, and pre-

sumably in higher dimensions, Theorem 4.2 holds for a dense ¥ set
as well,

We now wish 1o state results corresponding to Theorem 4.2 for other
functions of interest, namely the “velocity autocorrelation” functicn
and the frequency dependent diffusivity. The “velocity autocorrelation”
function {VAF) is defined by

(4.6) c()=E[VV(X) - VVX)]Z0,
which is related 1o Z'(k, ) via
H o0
(4.7) Gk, D) :@*(gwé f ds j cluydu .
a s

Now, frora Theorem 4.2 and (4.7) we can prove

TueoreM 4.3, Letf V oon T betypical with X, asin T, heorem 4.2.
Then there is a dense sei I C RY such that for every k€T,

(4.8) clk, 1) > Ay,
1.0,
for every expressible h which is integrable on 0, o},

In order 1o state our last result of this subsection, we iniroduce the
frequency dependent diffusivity

o~ e 2 -
(4.9) Dk, w) = a}f TUE X,

Lt
¢
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which can also be written in ferms of the VAF

(4.10) Bk, w)=1- jf ek, 1) dr |
[

By applying an @ — 0 version of Corollary 4.1 10 D(k, w}, where

tim,_,D(k, @) = D'(k), we have

TusorEM 4.4, Let V on T" be typical with X, as in Theorem 4.2.
Then there is o dense set T C R" such that for every ke T,

(4.11} 1Dk, ) - D'(K)| > g{w) , @—0,
for every expressible function g(w) with im ,_,glw)=0.

4.3. Conduction in guasiperiodic media. Recall from Section 2 that
" (L,k, §) is the effective conductivity of a sample of side 2L of
g, (x, @), which in d = 1 has the form (2.10). W are interested in
averaging ¢ (L, k, 8} over T7 to obtain

-~

(4.12) ok, L) :J{ o'k, L, 8)dd |
?-fz

which is continuous in k, as well as L. Then

(4.13) 5%&195’ (k,L)y=e_ (k) ,

where o, (k) is the same as in Section 3.4.

As in Section 3, we say that & on 77 is “typical” if &, (k) is discon-
tinuous in k on a dense subset of R" . We have again using Corollary
4.1,

Tuzorem 4.5, Let & on T7 betypical. Thenfor & (k, L} in{4.12)
arising from a local conductivity field o, {(x , §) = ¢{8 +kx}, there exisis
a dense set T ¢ RY such that for each k€T

(4.14) o (k, ,zi}——a;{g);iz gLy, L—ooc,
for every expressible function g{L) with im, | g(L)=0.

4.4. Quanium transport in guasiperiodic potentials, We consider the
time dependent Schridinger eguation on the lattice Z in one dimension
defined by the Hamiltonian

{415} Ef-——f_\.+sccs,2;zkxj s xjﬁz ,
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where A is the discrete Laplacian in d=1. When k is rational, H
has purely absolutely continuous spectrum, and

. . = i 2 2
(4.16) ble,ny=3 le" flxpl'x;
je=—oo
which is a quantum analog of the mean squared displacement for some
initial f of compact support, has “hallistic” asymptotic behavior. That
is, when k is rational,
. . k,t *
(4.17) hmx@{k,f}zhmﬁ‘——z’——}?zﬁ (k) >0.
Fromr [ el i
However, when ¢ is large enough and k is irrational with good dio-
phantine properties, then H has only localized states [1%,28]. In this
case it can be shown [21] that

(4.18) lim Z(k, =0,

so that F(k, 1) apparently displays discontipuous limiting behavior
similar to @k, 1) for classical diffusion, with & (k, t) continuous in
k and ¢. Presumably B"(k) is discontinuous on a dense set. Then
shere exists 2 dense set I such that for each kel,

(4.19) Bk, 1)~ B0 2, £(0)

for every expressible function g with lim, __ g{f) = 0. Presumably
the ks in such a I are irrationals that are very well approximated by
rationals.
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