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The bulk conductivity 6*(p) of the bond lattice in Z¢ with a fraction p of conducting bonds is ana-
lyzed. Assuming a hierarchical node-link-blob (NLB) model of the conducting backbone, it is shown
that ¢*(p) (for this model) is convex in p near the percolation threshold p., and that its critical ex-
ponent ¢ obeys the inequalities 1 <7 =<2 for d =2,3 while 2 <1 < 3 for d = 4. The upper bound ¢ =2 in
d =3, which is realizable in the NLB class, virtually coincides with two very recent numerical estimates

obtained from simulation and series expansion.

PACS numbers: 05.60.+w, 64.60.Cn

The random-resistor network '~ is the simplest model
of a disordered conductor which exhibits complex macro-
scopic behavior in the form of a conducting phase transi-
tion. In particular, consider the bulk conductivity ¢* (p)
of the bond lattice in Z9, where the conductivity of the
bonds is either 1 with probability p, or ¢ = 0 with proba-
bility 1 —p. When ¢=0, o*(p) =0 for p < p,, the per-
colation threshold, and it is believed® that o*(p)
~(—p)' as p— p’F. In this Letter we introduce a
new approach to studying ¢*(p) when ¢ =0, motivated
by the simple observation that in numerical simula-
tions®'® the graph of 6*(p) for bond or site models in
d = 2 is always convex near p.. Our approach is to ana-
lyze d?c*/dp? and investigate the consequences for the
critical exponent ¢, assuming a self-similar, hierarchical
structure for the conducting backbone near p., and cer-
tain technical conditions.

The principal results of our investigation and the as-
sumptions under which they are obtained are as follows.
First, the most serious assumption is that the conducting
backbone near p. has a hierarchical node-link-blob
(NLB) structure.'"!? This model contains both singly
and multiply connected bonds, has “loops” on arbitrarily
many length scales in a self-similar fashion, and incorpo-
rates the few rigorously known features®'? about the
backbone on a macroscopic scale. We further make
some technical assumptions about ¢*(p): It obeys the
above scaling law near p., has at least three derivatives
for all p>p., and obeys d’c*/dp>+dc*/dp>0 at

p =1, which we have verified numerically. Under these
assumptions, we prove exact asymptotics for d’c*/dp?
as p— p.". The proof employs a novel technique where-
by d?c*/dp? for the NLB model with ¢e=0 and p near
pe is computed using perturbation theory for a*(p) (for
two- and three-component resistor lattices) around p =1,
with a sequence of €’s converging to 1 as one goes deeper
in the hierarchy. Our asymptotics yield not only convex-
ity near p., which implies ¢ = 1, but delineate in which
dimensions dza*/dp2—> 0, + oo, or a positive constant as
p— p’. Combining this information with the scaling
law d%c*/dp’~(p—p.)'~? yields the inequalities
I<t=<2ford=23and 2<r<3 for d=4. The in-
equality ¢t < 3 for d = 4 is obtained by applying a similar
analysis to d>c*/dp?> for the simpler node-link model,
and can be viewed as a mean-field bound, since it is be-
lieved that t =3 for d = 6. We stress that the convexity
and inequalities are not rigorous for the actual backbone
near p. for the original lattice, but are rigorous for the
NLB model of the backbone, under the above technical
assumptions.

Our results for d =3 are particularly intriguing. First,
the inequality ¢ =< 2 excludes roughly one-third of pub-
lished numerical estimates of ¢ in d=3, which have
ranged from 1.5 to 2.36. Furthermore, this inequality is
based on an exact calculation of r =2 for one particular
NLB model which provides an upper bound on ¢ for the
full class. In view of this result, it is quite striking that
very recently Gingold and Lobb'? have obtained for
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d =3 the estimate ¢ =2.003 £ 0.047 from simulation on
lattices up to 803, and Adler er al. '* have obtained
t=2.02%+0.05 from a thirteenth-order series expansion.
In addition, our inequality is compatible with the results
of an e=6—d expansion,'> and the general view that
“roughly r=2".2 (We should also mention the recent
work of Roman'¢ on the ant-in-the-labyrinth problem,
who indirectly obtains a value of 1 = 2.16. However, he
acknowledges the inconsistency with other results, which
is discussed further in Ref. 13.) The recent numerical
results in Refs. 13 and 14, in conjunction with our work
on the NLB model, suggest the possibility that =2 is an
exact result for d =3. To our knowledge, the present
work is the first to relate ¢ in a direct and natural way to
the number 2, rather than to other (unknown) critical
exponents of percolation theory.

Before we begin, we refer the reader to Ref. 17. In
addition to containing the mathematical details of the re-
sults discussed here, we obtain there numerical and
rigorous results concerning the regimes in ¢ and p of con-
vexity of o*(p) for bond and site models, the principal
rigorous results being that for the d =2 bond problem,
while o*(p) cannot be convex for all p when =0, it is
convex for every € > 0 near p. = 7.

We now formulate the bond conductivity problem for
Z“, where, for simplicity, we begin with 4 =2. Take an
LxL sample G; of the bond lattice with M (~dL%)
bonds. Assigned to G, are M independent random vari-
ables ¢;, 1 <i < M, the bond conductivities, which take
the values 1 with probability p and ¢= 0 with probabili-
ty 1 —p. We attach perfectly conducting bus bars to two
opposite edges, and let o, (p) be the effective conductivi-
ty of this network, averaged over realizations of the bond
conductivities. For d =1, the bulk conductivity of the
lattice is defined as

0*(p)=Llim L* . (p). (1)

For €>0, the infinite-volume limit in (1) has been
shown to exist, 82" and for e=0 the existence of ¢* has
recently been proven in the continuum.?

The calculation of d2c*/dp? will require the following
definition. For any graph B with bonds b; of unit con-
ductivity, define

§2%6(B)= Y,

bib;

by=b;

[O',‘j(l,l)'*‘O‘,’j(0,0)
B

—0,(1,0) =, (0,1, (2)

where in (2) 0;;(1,1) =c(B) the conductivity of B mea-
sured between two vertices, o,-j(0,0) is the conductivity
of B with b; and b; removed, and so on. The expression
in (2) represents the discrete second derivative of o with
respect to p, as follows. Let G be the lattice in d =2
with bond conductivities 1 and 0 and bulk conductivity
function o*(p). If B=B(p) is a realization of occupied
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bonds of G at probability p, then'’

2 __*
247" _ 525 (B(p)) 3)

dp~
where 6%c* is the scaled infinite-volume limit of (2) and
the right-hand side in (3) is appropriately averaged.
[We are assuming in (3) that o*(p) is twice differ-
entiable for p> p. when €=0.] In (2) note that dan-
gling bonds do not contribute, so that one may think of
B(p) as a realization of the backbone at bond fraction p.
For clarity, note that at p=1, B(p) =G. We remark
that analysis of simple graphs shows that, typically, posi-
tive contributions to (2) arise from series pairs, while
negative contributions arise from pairs in parallel.

The idea now is to replace an actual backbone graph
B(p) for p near p. by a node-link-blob graph A, which is
based on the work of Stanley'' and Coniglio.'> This
graph is a “superlattice” constructed by replacing the
bonds of the hypercubic lattice G in d = 2 by first-order
necklaces composed of strings (links) and first-order
beads (blobs), and separating the nodes of G by a corre-
lation length &, as in Fig. 1(a). The beads themselves
have a hierarchical structure, as shown in Fig. 1(b), con-
sisting of two second-order necklaces in parallel, and so
on, in a self-similar fashion to order N for an arbitrary
large integer V. We assume that any kth-order necklace
has g —1 beads on it for an arbitrary large integer 8, and
that each pair of beads is joined by a string of n; bonds,
so that there are a total of Bn; string bonds on each
necklace. The fBn, string bonds on any first-order neck-
lace are called singly connected because removal of one
of them breaks the connection between nodes separated
by &. All the rest of the bonds in the NLB graph are
multiply connected, and among these it is useful to iden-

n2

(b)

FIG. 1. Node-link-blob model of the conducting backbone
near p.. In (a), the nodes are a correlation length & apart, and
are connected by necklaces of beads (blobs) and strings (links)
with n, bonds connecting two beads. The beads have a self-
similar structure, as shown in (b), with 7, bonds connecting
two beads.
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tify the Bn; string bonds on a second-order necklace as
doubly connected, since it is possible to remove two of
them (in parallel) and break a connection between
nodes. Based on a result of Coniglio’s,'? implying in our
context that the number of singly and doubly connected
bonds between the nodes both diverge with exponent 1 as
p— p., we assume that n,=2Bn, Because of self-
similarity, we assume that

nj—1=2Bn;, j=2,...,N. (4)

Relation (4) can be used to solve for the n;, j>1 in
terms of n, with n,=n /2, n3=n|/4ﬂ2, and so on, and
we refer to the NLB graph as 4(n;). In this model the
percolation limit p— p.* is characterized by the limits
ni,B,N,E— o, so that the lengths of all orders of neck-
laces, and the numbers and sizes of all orders of blobs,
diverge as p— p.*.

Before we give the asymptotics of §26*(4(n,)), we
must discuss the conditions under which they are proven.
Consider 6*(g,,4,) for the bond lattice in Z¢ with three
conductivities 1, €, and €, in proportions p, g, and g,
in addition to our standard two-component conductivity
o*(p). We require that o*(g,,g2) has second-order
partials at ¢, =g¢>=1 for all ¢,6;,=0, and that ¢*(p)
has two derivatives at p =1 for all ¢=0. For ¢, ¢, and
€,> 0, these conditions are satisfied by our general re-
sults'” that o*(p) is analytic for all p € [0,1] and
c*(q1,92) is analytic for all (g,q,) €[0,1]1x[0,1].
The e¢=¢, =0 requirements will be assumed, although
Kozlov?® has proven the existence of do*/dpl,,=; for a
class of continuum analogs.

The second main condition is that given the hypercu-
bic base lattice G for 4(n,),

* 2 %
cG)=49"| 49 >0.
dp dp- p=1

In any d=2, do*/dp|,=1=d/(d—1),' while d’c*/
dpzl,,=1, if negative, is quite small, e.g., = —0.21 in

(5)

p=1

d=2,""" indicating that *(p) is quite straight near
p =1, so that (5) is satisfied. Condition (5) amounts to a
consequence of the long-held view that effective-medium
theory (giving a straight-line solution) provides an accu-
rate description of o*(p) near p =1, which also holds for
general lattices. In fact, the asymptotics below can be
proven for a variety of periodic base lattices G which
satisfy (5), and presumably hold even for random lat-
tices.

We may now state our principal result.

Under the above assumptions, for fixed, large n,, S,
and N,

o

i+ b
820(4(n) =a,~x(G)/3n1+_ZOa_’"_‘__bL

, (6)

ﬂi
where (ay) ~'=X/L,($)7 and the series in (6) con-
verges, so that
52%6* (4 (nl))~ﬂ§—(ﬁ_¥ﬂ >0, n.BN.E>oo. (7)
The idea of the proof'” of (6) is first to write
526(4(n)))= Y Sik (8)

jk=1

k=
where & is the sum of all contributions to 6%0(A4(n,))
in (2) arising from pairs with one bond in a jth-order
string and the other in a kth-order string, which is in ei-
ther the same or a different first-order necklace. Now let
zx be the conductivity of a single first-order necklace
with one bond removed from a kth-order string, with
zo=ay/pn, for no bond removed, z, =0, and

i =zo(l+y /g7, 9)

where y,— 0 as k— oo geometrically fast. There are
analogous formulas for the various forms of z; with two
bonds removed, say, in series or in parallel. Then
through representations like (2) and (3), we obtain for-
mulas for the §; in terms of derivatives of o* (p) and
c*(q1,92) at p=1, such as

k=2,

* 2 %
5”=zo[ﬁn1(ﬂn;—l)%(p=l,h|)+(ﬁn1)zdd:2 (p=l,h1)}’ (10)
S12=z0|(Bn y24e” )+ (Bn))> 80" (=1 hy ko) (1
12 0 1 dp v/ NO 1 aqla(hP hi,nal |,

where (do*/dp)(p=1,h,), e.g., is for G with bond con-
ductivities 1 and h, =0, with h;y =z4/zo. As k— oo,
hy— 1, and as B— oo, by — 1 for all k = 2, and similar-
ly for hjx =z;/zo. The necessary control of the & is
then obtained either from (5), or from perturbation
theory around a homogeneous medium (e=1 or ¢ =¢,
=1), which establishes (6). All the details appear in
Ref. 17.

We wish to make the following remarks concerning
the above result. First, a result similar to (7) holds if we

[

replace (4) by n;—,=n;B;n;, where the blobs of order
Jj—1 are made of n; necklaces in parallel, with reason-
able assumptions about n; and B;. Even if the blobs
have a more complicated superlattice structure them-
selves, an analog of (7) presumably holds. Also, as not-
ed above, (7) can be proven for a variety of base lattices
G. Finally, while the principal assumption of the NLB
graph replacing the actual backbone is quite serious, our
proof of (6) shows that the dominant contribution to (7)

2925



VOLUME 65, NUMBER 24

PHYSICAL REVIEW LETTERS

10 DECEMBER 1990

comes from &;;, which comes from macroscopic contri-
butions in the NLB graph, where the model reflects well
the actual structure. A similar result will hold for any
reasonable assumption about microscopic backbone
structure.

We now proceed to the implications of (7). First, its
positivity establishes convexity of o*(p) for the NLB
model, which implies [under our assumptions, including
scaling and the existence of three derivatives of ¢*(p)
for all p> p. when ¢=0] that t =1, for any d = 2 (the
inequality ¢t =1 has been previously established in a
different manner in Refs. 24 and 25). Now let A(n,) be
the length of a first-order necklace, so that A(n;)
=~Bn+p%n+ - +p"ny=0nPn,, O =2 02" By
(7), we then have

le(n])

8%6*(4(n)))~ g2

5 nlaﬂsNaé—'m, (12)
where py =ayx(G)/8y, so that py = % for large N in
d=2. Since all the parameters n,, 8, N and & are
diverging as p— p.*, we can define a whole class of
NLB models by how fast A(n;) scales to o relative to &.
By the structure of the model, clearly A(n;) =&, and
typically, A/é— oo. Thus as a consequence of (12) we
have in d =2 and 3

8%6*(A4(n)))— +o, n BN, E— o, (13)
except in d =3 when A(n,) =Cé&, C= 1, in which case
626*(4(n)))— pC>0, (14)

where p=limy - pn. In d =4, if A and & are scaled so
that A(n)/&972— 07, then

§%6*(4(n)))—o0t. a15)

Under our assumptions, in particular, that d’c*/dp?
~(p —p.)' "2, we then have, collecting our results

1=<t=<2, d=23; 2<t<3, d=4. (16)

In (16) the last inequality t <3 for d =4 is obtained
by a result that §36*(4'(n))~C22(n,)/E97? for a
simpler node-link graph A'(n;), which is believed to be
adequate in higher dimensions.?® For models in d =4,5
which satisfy A2(n;)/£? 72— oo, we have §°6*(4(n,))
— oo, 50 that d°c™*/dp>~(p—p.)'~3— oo, which gives
the inequality.
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