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SPATIAL BOUNDS ON THE EFFECTIVE COMPLEX PERMITTIVITY
FOR TIME-HARMONIC WAVES IN RANDOM MEDIA"
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Abstract. We consider wave propagation in random cell materials when the wavelength is finite, so that
scattering effects must be taken into account. An effective dielectric coefficient is introduced, which in general
is a spatially dependent function, yet reduces, under the infinite wavelength assumptions, to the constant
effective parameter in the quasistatic limit. We present an upper bound on the effective permittivity and
a bound on its spatial variations that depends on the maximum volume of the inhomogeneities and the contrast
of the medium. Numerical experiments illustrate the rigorous results.
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1. Background. Usually, when one considers the propagation of an electromag-
netic wave in a random medium, two parameters are of importance. The first, § /4, is the
ratio of the length scales of the typical inhomogeneities in the medium to the wavelength
of the electromagnetic wave probing the medium. The second is the contrast of the
medium. Considerable effort over many decades has been applied to building effective
medium theories that are applicable to wave propagation when the wavelengths asso-
ciated with the fields are much larger than the microstructural scale. This limit where
the ratio d /4 goes to zero is called the quasistatic or infinite wavelength limit. In this
case the heterogeneous material is replaced by a homogeneous, fictitious medium whose
macroscopic characteristics are good approximations of the initial ones. The solutions of
a boundary value partial differential equation describing the propagation of waves con-
verge to the solution of a limit boundary value problem, which is explicitly described
when the size of the heterogeneities goes to zero. Similarly, in the limit when the contrast
goes to zero, convergence of the solution to the solution of a constant coefficient partial
differential equation is obtained.

The problem of finding bounds on the effective properties of materials in the quasi-
static limit has been investigated vigorously, and there have been significant advances
not only in deriving optimal bounds, but also in describing the materials that attain
these bounds. See [13] and the references within. Wellander and Kristensson [19] and
Conca and Vanninathan [4] have both recently analyzed the homogenization of
time-harmonic wave problems in periodic media, using entirely different methods. Their
results are each applicable to problems in which the wavelength of the incident field is
much larger than the microstructure.
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1114 SIMEONOVA NATHAN, DOBSON, ESO, GOLDEN

For waves in random media, Keller and Karal [11] and Papanicolaou [16] use aver-
aging of random realizations of materials in order to describe the effective properties of
the composites when interacting with electromagnetic waves. Both analyses assume that
the random materials deviate slightly from a homogeneous material; i.e., the contrast
of the random inclusions is small. Keller and Karal assume a priori that the effective
dielectric coefficient is a constant. Using perturbation methods, they approximate
the dielectric constant with a complex number, whose imaginary part accounts for
the wave attenuation.

A comprehensive overview of the subject of wave propagation in random media is
given in a book by Ishimaru [10]. Also, recent results in this field can be found in the
AMS-IMS-STAM proceedings edited by Kuchment [12].

The above methods that provide bounds and describe the behavior of the dielectric
coefficients do not account for scattering effects that occur when the wavelength is no
longer much larger than the inhomogeneities of the composite and when the contrast is
large. Results for this problem are sparse. The problem is difficult and the techniques
that come from the quasistatic regime cannot be applied directly to the scattering pro-
blem since the quasistatic methods utilize the condition that the size of the heterogene-
ities goes to zero.

Even the correct definition of “effective medium” is somewhat unclear outside the
quasistatic regime. In this work, we assume that the purpose of the effective medium is to
reproduce the average or expected wave field as the actual medium varies over a given
set of random realizations.

For simplicity in this work we consider waves in two- or three-dimensional random
cell materials (discussed in section 2.2) governed by the Helmholtz equation

Au+ w’eu = f,

where realizations of the random permittivity function &(z) belong to some probability
space. We average over all the possible material realizations to obtain the equation

Alu) + w?*(gu) = f,

where (-) denotes expected value, i.e., averaging over the set of realizations, and not a
spatial average. The source f is assumed to be independent of the material. Problems like
this arise, for example, in measurements of the properties of sea ice samples (usually
through interrogation by electromagnetic fields), or of earth samples (by either acoustic
or electromagnetic waves). We seek to find the dielectric coefficient £* that will solve the
problem

(1.1) Alu) + w?e*(u) = f,

where (u) is the expected value of the solution u. From the above two equations, it is
easy to see that the appropriate definition for ¢* is

(1.2) g = B0

Note that the definition of ¢* does not preclude spatial variations, ¢* = ¢*(z).

The definition in (1.2) is similar to the definition of the effective dielectric coefficient
of an isotropic medium in the quasistatic case. In this case, the effective permittivity * is
defined by
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BOUNDS ON EFFECTIVE COMPLEX PERMITTIVITY 1115
e(B) = (D) = (e E),

where the averaged electric field (E) = Eis a given constant, and the averaged dielectric
displacement (D) is independent of z, which ensures that ¢* in the quasistatic case is a
constant.

We can calculate the quasistatic effective dielectric constant by letting the wave-
length A go to infinity, or equivalently, by letting the frequency w approach zero. Let
e =¢gox +¢&1(1 — x), where x is a characteristic function of the material ¢;, and the
expected value of y when we sum over all possible material realizations is p;

ie., (x) =p. Let G, be the free-space Green’s function for the operator Lv = Av +

w?e;v (with the outgoing wave condition). Our problem can be rewritten to yield the

Lippmann—Schwinger equation

(1.3) u(z) = w?(e1 — &) A Goe,(lz = yDx (y)uly)dy + q(z),
where ¢ = G,,., % f. Define the operator A, : L*(Q) — L*(Q) by

(1.4 (Ao 00) = [ Gus, (2= i)y, ac

In the case when w?|e; — e[| A, || < 1,

(1.5) u=(I—w(e; — SO)Aw,sIX)_IQ»

and the Neumann series

(1.6) u=q+ (e —e0)Ape, X+
converges absolutely. Take the average over all realizations to obtain

<’U> = Q+w2(‘91 - 80)Aw,51<X>Q+
=q+o’(e; —80)pAye, ¢+ -

and
<8u> = <8>q + wz(gl - 80)<8Aw,81X>Q+ e
Thus, the quasistatic effective dielectric coefficient is

lim & = Moso(ew) _ (e)g
050 lim,, _,q(u)

=egop +e1(1—p).

Note that only the arithmetic mean, and not the harmonic mean, appears since the ma-
terial coefficients only appear in the lowest-order term in the equation. This is different
from classical homogenization for the equation V - ¢FE = 0.

Wave localization and cancellation must be accounted for when the wavelength is
on the same order as the size of the heterogeneities, which means that the effective coef-
ficients are no longer necessarily constants as in the quasistatic case, but functions of the
spatial variable. We have illustrated in section 4 that as w increases (which will decrease
the wavelength), we begin to see spatial variations in the effective dielectric coefficient
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1116 SIMEONOVA NATHAN, DOBSON, ESO, GOLDEN

due to the presence of scattering effects. Nevertheless ¢* as defined in (1.2) is a “correct”
definition of the effective dielectric coefficient, in that it reproduces the average field
response through (1.1).

Since &* cannot be calculated explicitly in general, to be useful in applications it is
important that we can bound both ¢* itself and some measure of the spatial variations in
&*. The main result of this paper, presented in Theorem 3.1, is a bound on the magnitude
of * and a local bound on the total variation, ||e*|| 5},. The estimates hold for any fixed
frequency @ > 0 and show an explicit dependence on the feature size and contrast of the
random medium.

The paper is organized as follows. We pose the model problem of electromagnetic
wave propagation in a composite material in subsection 2.1. The two-component com-
posite material is random, and its structure is defined in subsection 2.2 using random
variables that describe its geometry and component dependence. In subsection 2.3 we
obtain existence and uniqueness of solutions and uniform bounds on the solutions, as
well as Lipschitz bounds with respect to the dielectric coefficients of the materials.

Both the uniform and Lipschitz bounds are instrumental in obtaining the results of
the paper. Spatial variations due to scattering effects are allowed. Bounds on the effec-
tive dielectric coefficient and its spatial variations are obtained when certain conditions
are satisfied. These results are stated in the theorem in section 3, which is proved using
methods that incorporate both PDE analysis and probability arguments. In section 4
the effective dielectric coeffient is calculated numerically in one- and two-dimensional
media, and the presence of spatial variations and their dependence on the size of the
heterogeneities and the contrast in the material is confirmed.

We note that while the paper is focused on results in two- and three-dimensional
spaces, simple modifications also provide one-dimensional results.

2. Model problem.

2.1. Electromagnetic wave propagation. Consider time-harmonic electromag-
netic wave propagation through nonmagnetic (4 = 1) heterogeneous media. Assuming
that the electric field vector E = (0,0, u) and ¢ is independent of z3, Maxwell’s equations
reduce to the Helmholtz equation

(2.1) Au+ o’su =0,

where w represents the frequency, and ¢ € L>°(R") is the dielectric coefficient. In media
with heterogeneities in all three dimensions, (2.1) models time-harmonic acoustic wave
propagation, where ¢(z) is the squared slowness of an isotropic medium.

Let our bounded spatial domain be Q C R”, where n = 2, 3. The region outside Q is
filled with a homogeneous material. In particular, assume for z ¢ Q, we have (z) = 1.
Let Sy be the sphere of radius Ry, i.e., Sy = {r = Ry}, and let Q4 = {]z| < Ry}, where R,
is chosen such that Q C Q, (see Figure 2.1).

Outside the ball Q, we separate the solution u to (2.1) into the incident and scat-
tered field: v = u; + u,. The scattered field u, can also be separated. Wellposedness of
the problem requires imposing Sommerfeld’s radiation condition as a boundary condi-
tion at infinity; i.e.,
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BOUNDS ON EFFECTIVE COMPLEX PERMITTIVITY 1117

S0 = {I‘=R0}

Fic. 2.1. Bounded random medium (Q), enclosed in a sphere Sy to form the domain Qy = {|z| < Ry}.

uniformly in all directions, where n = 2, 3 is the spatial dimension. Here, it is assumed
that the time-harmonic field is e~**u.

The linear operator T:H3(S,) — H%(Sy) (Dirichlet-to-Neumann map) defines
the relationship between the traces u,|;,_p, and d,u|_py; ie, T(ugg,_py) =
(0,uy)| (r=Ry}- The Dirichlet-to-Neumann operator defines an exact nonreflecting bound-
ary condition on the artificial boundary Sy; i.e., there are no spurious reflections of the
scattered solution introduced at S;,. We write T explicitly for the two- and three-
dimensional cases in the appendix. On the boundary Sy = {r = Ry}, the solution u =
u; + u, should then satisfy

o, u— Tu=90,u; — Tu; +0,u;, — Tuy, = 0d,u; — Tu; = c.
In this way the problem on R" is equivalently replaced by

Au+w?su=0 inQ, D Q,
(0,u— Tu)=c onS.

2.2. Random structure. We are interested in computing expected values of wave
fields as the underlying medium ranges over some class of random materials. In this
section, we define the probability space characterizing these materials.

We fill our bounded domain Q by random cell materials (see, e.g., Milton [13]). Our
two-phase random materials are constructed as follows. The first step is to divide Q into
a finite number of cells. The cells may vary in size and shape, but their volume is
bounded by a parameter.

The second step is to randomly assign to each cell a material of permittivity ¢, with
probability p or €; with probability 1 — p in a way that is uncorrelated both with the
shape of the cell and with the phases assigned to the surrounding cells. We then have a
probability space (¥s, J 5, Ps), where Ws is a set of material realizations with a o-algebra
J s of subsets of W5, and a probability measure Pg on Js with Ps(¥s) = 1. The para-
meter  bounds the volume of each cell, and its precise definition is given later in the
section.
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1118 SIMEONOVA NATHAN, DOBSON, ESO, GOLDEN

Elements ¥ € W4 are characterized by two random variables, ¥ = (m, g), where the
variable m depends on the random variable g. The variable g describes the geometry of
the material by partitioning the domain Q into N, parts, each of which is filled either
with material ¢ or material £;, which is done by the random variable m. Thus, g de-
scribes the subdivision of our domain into subdomains; once the geometry g is fixed, the
random variable m distributes the material in the subdomains. Denoting some set of
partitions of Q by I's, the variable g € I's, partitions the spatial domain Q into N,
disjoint subdomains {Qj}iv:ﬁ such that U Q; = Q. The variable m, = {my, ..., my }
assigns zero for material ¢, with probability p or one for material &; with probability
1 — pin each spatial subdomain. The real part of the dielectric constant in the composite
material is defined by

&0 ifm]-:O and 1z € Q;;

Emg(T) = {81 if mj=1 and z€Q;.

We assume without loss of generality that e, > g.
Fix a geometry g. Denote the set of realizations for geometry g by R,:

Rg:{mg:(ml,...,mNy):mjzoor m;=1,7=1,....N,}.

The set R, has 2o elements. Thus the set of material realizations, W is described as
follows:

¥s={(9.my):g€ls,m, € R,}.

The probability measure is

N‘7
(2:2) P=> [0 -p)m™G;.

myER, j=1

where Gy is the probability measure on the space of all geometries, I's. The product
describes the multiplication of the probabilities of the materials in each subdomain
Q;, which is summed over the set of all realizations for a particular geometry g.

(¥s, J 5, Ps) depends on a parameter é > 0. Let & be a whole number, independent
of 8. We make the following assumptions on the subdomain partitions in I's (see
Figure 2.2):

A1: The volume of each subdomain {Qj}j\;”1 is bounded by 6; i.e., |Q;| < 8. Note
that since the volume of Q is fixed, as § decreases, the set of realizations ¥
must change.

A2: Let k be a fixed number. For each § > 0, there exists n > 0 such that any ball
with volume 7, B, (z) intersects at most & subdomains Q; for all 2 € Q. This con-
dition excludes from consideration materials with infinitely many subdomains
interfacing at any z € Q. Here B,(z) denotes the ball of radius r = /5 /7 in
two dimensions and radius r = (2—2)1/ 3 in three dimensions, centered at .

A3: Using B,(z) from A2, define the set

Spy = (U agj) N B, (x).
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BOUNDS ON EFFECTIVE COMPLEX PERMITTIVITY 1119

Fic. 2.2. Ezample of a particular subdomain partition Q = Uj Q; in Ty, illustrating assumptions A1-A3.
For each such partition, all subdomains Q; must satisfy |Q;| < 8, there can be only a finite number k of
subdomain boundaries intersecting near any given point, and the local measure (arclength in the figure) of
the subdomain boundaries S, , must remain bounded for all 6.

There exists a constant C), (independent of §) such that the Lebesgue measure
of the set S, , satisfies

LrN(Sy,) < Cp forallz € Q.

This condition excludes from consideration materials containing subdomains
with boundaries with infinite perimeter in B,(z).
One can readily check, for example, that a simple subdivision of Q by a uniform grid
of rectangles when n = 2, or rectangular solids when n = 3, satisfies A1-A3, where § is
the maximum volume of each subregion.

2.3. Existence and uniqueness of solutions and Lipschitz bounds. For a
fixed dissipation constant e¢; > 0, define a set

A= {e =¢, +ig;:e, = ¢, for some (m, g) € ¥s}.

Given an incident field u;, we must solve the following problem:

(2.3) Au+ ?e,u+ iw’e;u =0 in Q,
d
(2.4) (a:f Tu> =c¢ on Y.

Existence and uniqueness of weak solutions, with a uniform bound, may be obtained for
materials with a little bit of absorption; i.e., &; > 0.

Throughout the remainder of the paper, in order to simplify estimates within proofs,
C will denote a constant that is independent of (e, u), whose value may change from line
to line.

Levma 2.1. For each ¢ € A, problem (2.3)—(2.4) admits a unique weak solution
u € H*(Qy). Furthermore, there exists a constant C depending on A such that
llull 2, < C, independent of & € A. Note that the constant C' depends in particular
on the fixed parameter e; > 0.

Proof. The ideas for the proof of the lemma come from the proof of a similar lemma
in [5]. Define for u, v € H*(Q)
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1120 SIMEONOVA NATHAN, DOBSON, ESO, GOLDEN

a(u, v) = VU-W—wQ/ euﬁ—/ (Tu)v,
Q) Q So

b(v)_c/%z').

Using bounds (6.3) and (6.6) in the appendix for the two- and three-dimensional pro-
blems, respectively, it is straightforward to show that a(u, v) defines a bounded sesqui-
linear form over H'(Qg) x H'(Q), and that b(v) is a bounded linear functional on
H'(Q). Weak solutions u € H'(Q) of (2.3) solve the variational problem

and

(2.5) a(u, v) = b(v) for all v e HY(Qy).

The sesquilinear form a uniquely defines a linear operator A:H'(Q,) — H'(Q;) such
that a(u, v) = (Au, v) g, and the functional b(v) is uniquely identified with an
element b € H'(Q) such that b(v) = (b, v). By reflexivity, problem (2.5) is then equiva-
lently stated as

(2.6) Au=b.

We intend to show that a is coercive by establishing a bound |a(u, u)| > ¢ > 0 for all
u e H'(Q) with [lul| g, = 1. We have

o) = [ [V~ 0? Aog,.m?—m(/%(mm)
2.7) is(/SO(Tu)a> ~iate, [ o

For the two-dimensional problem, we have

/S'D TUU_A Zym 7TL . ’ZL:TTLZ: |u’ﬂL

0 m=

where 1, are the Fourier coefficients of the trace u[g (see appendix). R(y,,) < 0 and
S(ym,) > 0 for every m. Thus,

m(/SO(Tu)a> ~0 and s</SU(Tu)a> > 0.

Similarly, for the three-dimensional case

/S (TU)T_L :/ Zyl Z Ui, Ylmu - Z)’l Z |’&lm|2’
0

S0 '1=0 m=—I m=—1

where @, are the coefficients in the spherical harmonics expansion of the trace u| So (see
appendix). R(y;) < 0 and F(y;) > 0 for every /. Thus,

%(/SO(TU){L> <0 and s(/SU(Tu)a> > 0.
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BOUNDS ON EFFECTIVE COMPLEX PERMITTIVITY 1121
Assuming || UH%II(QU = [qo,|Vul* + [ ul* = 1, and noticing that the first three terms on

the right-hand side of (2.7) are purely real and the last two terms are purely imaginary,
we find

2la(u, u)| = ‘1 — Ao(l + w?e,ul?) _m</SO(Tu)a)‘

+ ‘ — o, |u|2—3</ (M)@)‘.
Q So

For convenience, write r = [, (1+o%,)[uf*, s = [q |uf*, and

P > RV ] in two dimensions;
T2 RO X |y, > in three dimensions.

Obviously ¢, r, and s are nonnegative real numbers that depend on u (and ¢ in the case
of r). Although ¢ and s are essentially independent, r must satisfy

(2.8) (1+w%0)s <1 < (1+w%)s.
With this notation,

2la(u, u)| > |1+t — r| + w’e;s.

Note that in the case s > m, we have |a(u, u)| > Jw?e;s > ﬁ Otherwise, s <
m so that r < 1, and |a(u, u)| > 3|1+t — r| > 1. Hence, for all s, ¢ > 0, and all r

satisfying (2.8),

la(u, )| > ¢ = min {2251
a(u,v)]| > c=min{ ———,— 5.
4(1 4 w?ey) 4

The bound thus holds for every u with ||ul|41(q,) = 1 and for every ¢ € A with &; > 0.
Given this coercivity bound, direct application of the Lax—Milgram theorem (see, e.g.,
Lemma 2.21, p. 20 in Monk [14]) yields existence of a bounded solution operator A~! for
problem (2.6). Since b is fixed and bounded, it follows that ||ul| g q,) < C.

Given the bound on |[u||1q,), a uniform H?() bound follows easily, since Au =
eu is uniformly bounded in L?(y). a

Levma 2.2, There exists a constant K such that for everye,, e, € A, if uy(g,), ui(ey)
are the corresponding solutions of the Helmholtz equation (2.3)—(2.4), then u, and u;
satisfy the Lipschitz condition

(2.9) lue = usll e < Klley — &l 2.
Moreover, there exists a constant C' such that
(2.10) Ju = usllwre < CK|le, — & 2.
Proof. We subtract one of the Helmholtz equations from the other to obtain
Au, — Au, + 0’eu; — wleug, = 0.

Subtract w?e,u, on both sides:
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1122 SIMEONOVA NATHAN, DOBSON, ESO, GOLDEN
A(uy — ug) + 0%e,(uy — uy) = —0* (e, — €,) u,.

Let w = u; — u,. Thus the above equation is written as

(2.11) Aw + 0’0 = —0? (g, — &) u,.

The function —w?(e, — &,)u, € L*(Q) and thus Lemma 2.1 applies and w is a solution to
(2.11). Let us rewrite (2.11) using the operator L

— 2 0 2
Ly, w = Aw + 0’ yw = —0° (g, — &) u,.

Lemma 2.1 ensures that the inverse operator L;':L*(Q) — H*(Q) exists and is
uniformly bounded with respect to ¢, € A. Thus,

w=—wL; (e, —&)u,.

For both two- and three- dimensional materials, the Sobolev imbedding theorem implies
that H*(Q) C C%(Q) [1] and hence ||u,||;~ is bounded, so

Nl < 12 i e llee = sl sl < Klle, — e,

To prove the second part of the lemma, we use the Sobolev imbedding theorem and
interpolation inequalities. We prove that w € W?¢ for any ¢ such that 3 < ¢ < co.
Using the interpolation inequalities in [1] we see that for any solution u of (2.3)—(2.4)

2 1-2 2 1-2 1-2
A0 < AUl AulljC < @?[|ull20leul 220 < w?e) > Y ull o

Thus u € W24, However, the Sobolev imbedding theorem [1] implies that W24(Q) C
CL(Q); i.e., there exists a constant C such that

(212) Hut - us”l,oo < C”ut - us”W” < OKH‘C"L‘ - 85||L27

where

Julli oo = max sup|D*u(z)|.
0<lar|<1 zeQ

We deduce the Lipschitz condition (2.10) from (2.12). O

We also obtain a Lipshitz-type bound that estimates the proximity of solutions u
of the Helmholtz equation (2.3)—(2.4) and the solution % of the constant coefficient
Helmholtz equation, where the constant coefficient is the expected value of ¢; i.e.,
&= (e) =egp+&1(1 — p) + ig;. The bound is in terms of the local proximity of the ran-
dom medium ¢ and the homogeneous medium &. For any subdomain QcC Q, we define
the diameter

d(Q) = sup [z — yl.
z,y€Q

LemMA 2.3. Let @ be the solution to the Helmholtz equation with constant coefficient
& =¢egp+e.(1 —p)+ isy, still satisfying the boundary condition (2.4)

(2.13) Al + 0% i = 0.
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Letv > 0 and3 < g < oo be given. Then there exist constants K* and K}, andy > 0
such that if Q is divided into N' nonoverlapping subdomains O; such that d(O;) < y for

alli=1,...,N', then
/(5—8)dm>+v
0;

/07(5 —e)dz) + Cv)é

for all realizations (u, &) with ¢ € A, and u satisfying (2.3), (2.4).

For any given tolerance v > 0, the lemma gives the existence of a number y > 0
(depending on v) such that bounds (2.14), (2.15) hold for all realizations of the material
e € A, provided only that the diameter d(O;) of the covering subdomains O; is less than
y. This lemma will be a key component in the proof of the main Theorem 3.1, allowing
global control of the solutions w in terms of local averages of the coefficient & over
subdomains.

Proof. In the following proof, the difference between the solutions of (2.3) and
(2.13) is written in terms of the solution operator Lg‘l. This compact solution operator
is approximated by a sequence of finite-rank operators L', written in their canonical
form in terms of orthonormal basis functions. These measurable functions are approxi-
mated outside of a set of small measure by continuous functions. The domain Q is di-
vided into N’ nonoverlapping subdomains O; of diameter at most y such that the
uniformly continuous functions are approximated by a sequence of step functions with
characteristic functions of O;. Holder continuity of u is proven, and the difference be-
tween the solution u for every z in O; and the maximum of u over the set O; is bounded
in terms of the diameter y. All of these are combined to give the desired inequalities. The
details of the proof follow.

Subtract the two equations (2.3) and (2.13) and manipulate them to get the
equation

N’

(2.14) |l — @l < K* (Z

=1

and

N’

215 il < K@ (K (X

i=1

A(u— 1) + 0?8 (u— 1) = w?(& —¢&)u
for any realization (e, ). Thus, we can apply the solution operator Lgl to obtain
u—1=w?L'(( —¢&)u).
Now, L:! is a bounded operator L;':L* — H? and a compact operator L;':L? — L?.

Since Lgl:L2 — I? is compact, it can be approximated by a sequence of finite-rank

operators L', and for every given error v; >0, there exists M; such that

L1 — Lg1||L2(Q).L2<Q) <, for n > M, [6]. We apply the triangle inequality to obtain

lu— il = 02 L5 — e)ull
< L = L gy B — &l lull 2 + 0?1 L B — )

< Cvy + || L (& — &) ull 2,

where C is independent of the material . Finite-rank operators can be decomposed
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N
n
Lt E wl'((& —&)u, g7') 12,
i=1

where g7 € L?(Q) and w? € Range(L,'). Thus,

1221 (E —e)ull2 = (& —&)ugjde

N
< Iwtll| [ E —e)uotds
1=

Fix n > My; g is a measurable function on Q. Given v, > 0, there exist continuous
functions v} on Q such that |S,,| = m{z:g}(z) # v} (2)} < vy for each i=1,....N
[17]. Decompose the integral

/(5_5)“9?‘195:/ (5_8)U9?d$+/ (& —&)ugldu.
Q Q\S,, S

vo

I?

Using this we obtain the following bound for each i =1, ..., N:

‘/ (€ —e)ugPdz| + ’/ (& —e)ugld
s,

L (€= yusta| 18 = llel . Bl Nl < \ / (5 — e)uglds

The function v} is continuous on the compact domain Q and thus it is uniformly con-
tinuous and can be approximated by a sequence of step functions ¥ »». Divide Q into N’
nonoverlapping subdomains O; such that d(O;) < y. Define ¥ = Zf\il a ' Xo,, where
X 0, is a characteristic function of the subdomain O;. For every given error vz > 0, there
exists y > 0 such that ||v! — ¥ |~ < v3. Thus,

‘/ (€ —e)ugtdz| = ‘/ (€ —e)uvidz| = /(s —e)uv”dm—/ (& —e)uvlde
Q\s,, Q\s,, Q s

vo
< A(é—swv?dw 118 = ell e S, lull o 107

(s —&)ugldz| <

<

1
+ CQU%.

< /(5 —&)u(v? — ¥, )dz| + + CQvé
Q

/(é —&)uyydz
Q

!
o = ¥ llp=llE = ellpllullp~ + Cavs

/01(5—8)ud:c

Lemma 2.2 implies there exists a constant K such that || ul| ;2 < K for every realization
u. Since H? imbeds in C%!/2, there exists a constant K; such that

< /(E —&)uyydz
Q

< £—¢) a; dx
S A Z Xo

=1

N/
+ C3vs + 02‘)2 < Z|GN|
=1

1
—+ 031)3 + CQU%.

u(z) — u(y)] < Kplz—y|'/?
for all u and for all z, y € Q. Let

i
uj, I;é%}f u(x)
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and we have
lu(z) — uy| < Kpy'/?

for all z € O,. Thus,

‘/ (€ —&)ugldx
Q\8,,

<Z|aN|/ (€—¢e)(u—ul)dz +Z|aN’
< Kpyt/? a’ / & —e)dx| + al’
< Ky ZI | 01( ) ;\ |

=1
A(g _ e)ds

We obtain the desired bound by taking y, vy, and vj sufficiently small. Let Cy'/2+

Cyv3 + C3v3 < v; hence
/ (5—8)0336) +v.
0;

The interpolation inequality [1] states that there exists a constant K; such that

1
—+ 031)3 —+ 02])%

/OT@ — &)(u})da
/| (&~ e)(u )

1
+ 03\)3 + CQV%.

1
+ C3vz + Cyvj

N

<Oy 24y lal |lug)

=1

N

(2.16) lw— || < K* (Z

i=1

1 1
lfullwro < Kpllullfpo,llelz-

Since W7 imbeds in L* for 3 < ¢ < oo [1], there exists a constant C such that
lw = @l < Cflu = @l yro.

Also, the interpolation inequality for LP-spaces [8] states that when 3 < ¢ < oo,

-2
llullgr < IIUIILzIIUHm

Combining the above inequalities and the bound (2.16), we prove the second bound in
the statement of the lemma

1 ot ~d r
lu = all g~ < CKpllu = al[jye,llu = Glfp < CKllu — Gl |u — UIleHu - UII o

<k (3 )+). o

3 A(g—e)dz

3. Effective dielectric coefficient. The expected value (u) of the solution u of
the Helmholtz equation (2.3)—(2.4), which depends on the random variables through its
dependence on the composite material, is defined, recalling (2.2), as follows:
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Nﬂ
(3.1) <u>:L udP:£ S TIet ™ @ = p)mule, . 2)dGs.

6 myeR, j=1

Note that () is an expectation over material realizations, not the spatial variables, so
that (u) is in general still a function of z. Thus, the effective dielectric coefficient, defined
in (1.2) as

is a function of the spatial variable z.

Our main theorem gives a bound on the effective dielectric coefficient and its spatial
variations provided we have a lower bound on the expected value of . Such a bound is
proven to exist for sufficiently small §. The theorem shows that as the maximum volume
0 of the subdomains decreases, so does the magnitude of the spatial variations, and as
0 — 0, the effective coefficient equals the constant predicted by the quasistatic case.

TueoreM 3.1. Let e*(z) be the effective dielectric coefficient of the medium defined
by (1.2). There exist 85 > 0 and a constant C* such that for all 0 < § < 8,y and any
zy € Q, the local total variation of €* satisfies

8,

/ |Ve*|de < C*le; — g
B,(z)

where 1 is determined as in assumption A2. As the size of the inhomogeneities goes to 0,
the spatial variations decrease in magnitude, and £*(x) — pey + (1 — p)e;.

Thus, |¢*(z)| is uniformly bounded above for all z, and the spatial variations of &*
are bounded in terms of the size of the inhomogeneities § and the contrast of the med-
ium |e; — gg).

Proof. The proof applies to one-, two-, and three-dimensional random media. In
order to obtain a bound on |&¢*| = ‘|<Eu“>>“, we must obtain a lower bound on the denomi-
nator |(u)|. We show that a uniform bound exists provided § is chosen sufficiently small;
ie., [(u)] > ¢ > 0for all € Q. The proof is based on a probability argument that shows
that the probability that the solutions u will be within a certain radius « from the solu-
tion of the constant boundary value problem with dielectric constant & = pey+
(1 — p)e; goes to one as the maximum volume § or the contrast |&; — &y| goes to zero.
The probability 8 that a solution u lies outside the circle with radius @ depends on the
parameter §, and 8 — 0 as § — 0. This prevents (u) from equaling 0 and gives a lower
bound on |(u)| > ¢ > 0. The numerical experiment in Figure 3.1 illustrates this argu-
ment, and the proof follows.

We let o and B be arbitrary constants such that 8 <1 and o < K;. We want to
prove that for every such « and 8, one can find § > 0 such that

{w)] = (1= B)(A—a) - K,

where |||/~ = A and ||u||;~ < K;.

We use Lemma 2.3. There our domain Q was divided into N’ nonoverlapping sub-
domains O, such that d(0;) < yforalli=1, ..., N'. Note that the subdomain partition
O, is independent of the material partitions € =U Q;, which vary randomly over the set
of all realizations. The partition O; allows (through Lemma 2.3) the computation of
local ensemble averages of the material coefficients, which tend toward a constant as
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Im

1

0.95F

0.9}

0.851

0.8r

Im

075} ©

0.7}
Ky

0.651

0.6}

0.55 " " " "
-0.6 —0 5 —0 4 —0 3 —0 2 —0 1 0 01 02 03 04
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F1G. 3.1. Proximity to the constant coefficient solution. Left: from numerical experiments, solutions u for
a medium with 10 layers at x = 0.5 (dots) and the solution to the constant coefficient problem 4(0.5) (square);
right: for an appropriate parameter 8, the probability that solutions u cluster within a circle with center @ and
radius o is 1 — B. The probability B that solutions lie outside this circle depends on 8, and B — 0 as 6 — 0. All
solutions are contained in the circle with radius K, since ||ul|~ < K.

the scale § of the material partition decreases. Each O; contains at most N subdomains

; and subdomains Q; N O;. We are guaranteed that any subdomain Q; coming from
materlal realizations has volume less than or equal to 8; hence [Q; N O] < 8. Denote by
x the indicator function assigning 1 if we have material ¢4 or 0 if we have material ¢; in a
given domain. Given the radius o and using Chebyshev’s inequality 7] and estimate

(2.15), we obtain
b=l <002 P(Ks (03] [ - o) +4) <)

> P| max
2

(e1(1 = p) + eop)| OM] — <EOZXJ|0M| +81<|0M| _ZXJ|OM ))‘

J=1

(3:2) N ~ e
<%> >Pp EN: |OM| p|0M|‘ (&)

K*N'(e1 — &)

()"

M M :
Z |O| plO |' K*N'(e; — &)

|
%
=

=1

=

=1
K )IK*N' — 2 N
>1- (< a)q_ U([((z)q %)) Var(zxjm%) —1-p

=1

Here OM is the set O, over which the quantity |/, ( 0,(€ — €)dz| is maximized and the sets
OM Q; N OM, and x ; is the indicator function of the set OM We have also used the
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fact that ( ffz 1 X;103]) = p|OM]. We notice that the random variables y ; are indepen-
dent and calculate the variance

N

N N
var(300,1041) = 310} PVar(e,) = 1~ ) Y OFF < (1 - )
=1

=1 =1

Thus,

B

Jj=1

(e ey (5 o)

IA

(K5 ) 1K N (61 — e
ol = v (K, )

)>2p(1 —p)N&2.

We have shown that the probability that solutions u are within a radius « of the
constant coefficient solution @ goes to one as either 6 or the contrast in the medium
le; — &g| goes to 0.

Let us call |[u — @|| ;~ < « condition L and call the complement condition L¢. Define
the conditional expectations

udP
<’U,|L>E% and (u|L°) =

Ju, (1) wdP
P(L")

and note that P(L) > 1— 8 and P(L®) < . The expected value (u) is given by
(u) = P(L){ulL) + P(L*){u| L),
and using estimate (3.2), we obtain
[(w)| = (1= B)[(ulL)] = BI{ulL7)].
If u satisfies condition L, then wu satisfies the inequality
el = 1l - > A—a.
Now using the uniform upper bound ||u||;~ < K;, we obtain the desired result:
(u)| = (1= B)(A—a) - BK;,
where the constant § depends on §, the maximum volume of the subdomains, and on the
contrast |e; — gg|, and B — 0 as 8 or |¢; — &y] — 0. Thus by picking the appropriate

o and B, where § is controlled by the parameter §, we obtain the lower bound |{(u)| >
¢ > 0 for all x € Q. This provides a bound on the effective dielectric coefficient

e < £
C

The uniform lower bound on |(u)| is utilized in proving that ||e*|| g,y < C*|e; — &8,
as follows. Formally, the gradient Ve* is given by
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(w){(Ve)u) + (u)(eVu) — (Vu){eu)
(u)? ’
where Ve is understood in the sense of a distribution. Now choose 8 such that

[{u)| > ¢ > 0. We want to bound the numerator in terms of this § and the contrast
le; — &g]. First we bound

(3.3) Ver =

(34) [{u)(eVu) — (Vu){eu)| < C18le; — &)

pointwise, where C is a constant. In the proof we use the Lipschitz bound (2.10) from
Lemma 2.2.

The bound (3.4) is obtained by looking at material realizations that differ only in
one particular subdomain Q; and realizing that the pointwise difference in solutions
propagating through two such material realizations can be bounded in terms of the
L?-norm of the difference in the two materials, where the two materials differ only
on the subdomain Q; with [Q;] < 6.

Fix z. Divide the set of material realizations ¥4 into two subsets W5 = ¥9 U ¥},
where W9 is the subset of realizations such that e (z) = g, and W} is the subset of realiza-
tions such that &(z) = &,. Representative elements of the subsets ¥} and W} are shown
in Figure 3.2. For each geometry g, let Rg and R; be subsets of the set of material assign-
ments 1, such that

RY={m, = (my, omy,)imy =0 for z € Q;},
and
Ry ={my = (my, ....,my ):im; =1for z € Q;}.

Thus, R, = R) U R}. The expected value of u is given by

(u)(x):/ udP = Z le (1 — p)™u(e,, . 2)dGs

1“6meR

=P Zﬂpl (1 —p)MudGs + (1 —p /FZle (1 — p)udGy

L) 11
myER, %

Ts 0 =1
myER, 12

= P<U>~Pg + (1 - P)<U>\p(13,

Fic. 3.2. Sample materials in ‘IJ% and ‘F}s for fized x. Left: material realization ¥ ; right: corresponding
material realization Y| obtained by switching material £y with material €1 in the domain containing x.
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where <U>\yg = (ule(z) = gy) and <U>ql}, = (ule(z) = &;). Using this notation we can
rewrite

(u)(eVu) = (Vu)(eu)

= 1p(1 = p) () (Vhgr — (u)ys (Vo)

+eop(1 — p)((whgr (Vu)go — (whyn (Vu)y).

For every material described by ‘Pg, there exists a material described by ‘P}s such that the
two materials differ only in a subdomain Q; > z. Let us call uy, the solution of the
Helmholtz equation when the material realization belongs to ‘{‘g and uy, the correspond-

ing solution of the Helmholtz equation when the material realization, differing only in
m;, belongs to ¥§. We have

VqlN

‘/ uv,l(x)dP—/ Uy, ( dP’ le mi(] — Z|uw1 =y, [(2)dGs
¥ s =1 11
< bllpHUx/f (my, g) — uy, (Mo, g)|
m/|&1\’1
mOER
< CKsup||8¢1(m1,g) — &y, (mo, g)ll o < CKdley — &g
9€ls
my R}

moery

The preceding comes from the fact that for any material realization in ‘I‘}s, there exists a
material realization in ‘Pg. The application of Lemma 2.2 yields the second-to-last
inequality. Thus, we have that |(u>.y; - (u>\yg| — 0 pointwise as § — 0. By a similar

argument, \(Vu)wé - (Vu}.y(ﬂ < CKdle; — gg|, and |(Vu>\ytls - (Vu).yg| — 0 pointwise
as 0 — 0. Now,

|<U>\Pg<v >\111 - <U>\Pg <Vu>l1ﬂg|
(3.5) < (g | (Vb — (T | + [V | gy — ()]

Referring to Lemmas 2.2 and 2.1, we know that u € C4(Q), and that there exist con-
stants K| and K, such that ||ul|;~ < K; and |Vul|;x < K, for every u. Then

[(whgo (Vu)gr — (u)gr (Vpgo | < KCley —eol6(Ky + Ky) =0 as 6 =0
and similarly for the second term in (3.5). Thus, we obtain the following bound:

[(u)(eVu) — (Vu){eu)]
< e1p(1 = p)[(u)yo (Vihyr — (u)y1 (Vg
+£0p(1 = p)[{u)yr (Vapyn — (whyn (V)i |
(3.6) < KCp(1—p)(e1 + &9)ler — &0l (K1 + K3)8.

Looking back at (3.3) to get an upper bound on |Ve*|, we now want to prove that
[{(Ve)u)| < Cyble; — gp] in the distributional sense.
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Since &(z) equals a constant in every subdomain Q;, Ve =0 there, and the
only problem occurs at the interface between two or more subdomains with different
materials, where ¢ is discontinuous and Ve is defined only in the distributional
sense.

Fix a realization ¥, such that z, is at the interface between k& subdomains €;,
j =1...k with alternating materials ¢y and &; in them. This assumption will pose no
loss of generality since the other cases are attained at material realizations satisfying
our assumptions. Call ¥4 the realization that has the same geometry as realization
¥y, but with the materials in the k& subdomains interfacing at z, switched, e.g.,
Figure 3.3. Without loss of generality, let realization ¥, have material g in Q;; thus
realization ¥4 has material &; in the same subdomain ;. Let ¢ be a test function
¢ € CF°(Q,R") such that supp¢ C B, (z;). We can find V(e,)u, at zy in the general-
ized sense:

/ ue V(ey)pdz
B, ()

= (&1 — 80)/ Uy PV o0 n0,) 4T + (81 — 80)/ Ua PV y(,na,) 4T+ -+
9(Q1NQy) 9(2,MQ3)
+ (1 — 80)/ Uy PV, ney) AT + (81 — 80)/ Ug PV o0, na,) 4,
o€, 1N€Y) 9(Q1NQy)

where 9(©; N €,) is the interface between subdomains Q; and Q, and vy ng,) is the
unit normal vector to Q; on the interface with €,. Note that vy na,) = —Vaa,na,)-
Similarly, we find that V(eg)ug at z, in the generalized sense is

B, ()
=—(e1— 80)/ ugpvyo,na,) dr — (81 — 80)/ ugdvyq,ne,) dr— -
0(Q1NQy,) 0(Q,NQy)
— (&1 — 80)/ ugPv oo, nay)dr — (81 — 80)/ ughvQ,na,) 4
9(Q)-1NQy) a(Q1NQ;)

Divide again ¥4 into three subsets ¥s = ¥§ U W§ U ‘Pg : ¥§ is the subset of realiza-
tions such that z; is inside some subdomain; ¥§ is the subset of realizations such that x,
is at the interface between &k subdomains Q;, j = 1... kfor any integer k with alternating

FiG. 3.3. Sample materials in ¥§ and ‘I’g for fized x on the boundary between several materials. Left:
material realization W, ; right: corresponding material realization g obtained by interchanging the materials
at domains interfacing at x.
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materials ¢, and &; in them and material ¢, in Q;; ‘P'g is the subset of realizations such
that 7y is at the interface between k subdomains Q;, j = 1...k for any integer k£ with
alternating materials £; and ¢; in them and material &; in Q;. Note that (Va}Tg =0.
Utilizing assumptions A2 and A3, we obtain

(s
B, ()
oNg-1

k N,
k k e i
<les _80|H¢”L°¢ZHXQJ”BV/G >op(t=p) ] p" (0 —p)" e — upll 1~ dGs
Jj=1 6 =1 =1

#j+1...
j+k

< EKCC,p(1—p)|gll1<le1 — go|*6.
(3.7)

Note that the inequality
lug — ugll = < KK Cley — &6

comes from Lemma 2.2 and the fact that for any material in ¥§, one can find a material
in ‘P’g , which differs only on the subdomains €; through Q, ;, each with volume less than
or equal to 6.

Choose ¢ small enough that |[(u)| > ¢ > 0. Using the lower bound |(u)| > ¢ > 0,
(3.6), and (3.7), we obtain

Cley — &¢|8]|p]| 1
2

< Cfley — &¢l6,

(3.8 / |Ve*|dx <
B, (w)

where Ve* is defined in the generalized sense. This will ensure that ¢* € BV(Q), and
thus, we can bound the spatial variations of ¢*

V(e*, Q) = sup {/ e*divgdz:¢p € CHQ,R"), (|9l 1~ < 1}
o

§C’/|V£*|d9§—>0 as § or |e; —egy| — 0.
Q

The formula that prescribes the appropriate § takes into account the contrast |e; — &g
in the medium (Theorem 3.1, (3.6), and (3.8)).
Note that

(eu)  peoluhen + (1 —pler(u)w
(W) plu)yn + (1= p)(upyr

8

*

FOR—

Since |<u>.¥é - <u>wg\ — 0 pointwise as § — 0, we obtain that e* — peg + (1 — p)e; as
8 — 0, which is consistent with the quasistatic case since by letting § — 0, we are effec-
tively operating in the quasistatic limit. O
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We can obtain an estimate of how much ¢* differs from the expected value &:

[(eu) — &(u)
[(u)
< Ipeo(uhy, + (1 — pler(u)y, — (peg + (1 — pley)(p{u)y, + (1 — p){(wy, )]

le* —&| =

< PO = pler — eof[(u)y, — (u)y|

< p(1—p)Cley — &l6.

4. Numerical experiments. Without loss of generality, assume that the dielec-
tric coefficient of the medium is

(4.1) e(z) =1+ zx(z, ¥) + ie;,

where the function x (z, ¥) is a random characteristic function in z, and z is the contrast
in the medium. The main Theorem 3.1 showed that the spatial variations in the effective
coefficient are bounded by the contrast in the medium z (or as appears in the theorem,
2z =|e; — &g|). Although our analysis in the previous sections required ¢; > 0 to guaran-
tee stability, we found the results of the numerical experiments were insensitive to small
€;. All of the results in this section take ¢; = 0.

We observe the spatial dependence of the effective dielectric coefficient by numeri-
cally calculating ¢* and graphing it as a function of z. In these numerical experiments, ¢*
is calculated by dividing the interval (0,1) into the corresponding number of intervals m,
each layer of length %, and going through all possible realizations by assigning in each
layer either material of type one or material of type two, both with probability % The
solution u for each particular layered material is computed by the transfer matrix
method [18]. Sample realizations in the case of a six-layer medium are given in Figure 4.1.
In these numerical experiments w = 53, corresponding to a free-space wavelength
A= %” ~ 0.118. The graph on the left shows the sample six-layer medium, composed
of material of type one (g = 1) in the first, second, and fifth layers, and material of
type two (g1 = 2) in the third, fourth, and sixth layers (above), and the real part of
the solution u (below). In the interest of space, in all of the figures that follow, only

25 25
2 - | 2
15 15
w
1 — 1 —
05 05}
0% 01 02 03 04 05 06 07 08 09 1 % 071 02 03 04 05 06 07 08 09 1
X X

5 j
=
T o i
i
1t d
20 01 02 03 04 05 06 07 08 08 1 0 o1 02 03 04 05 06 07 08 09 1
X X

Fic. 4.1. Sample realizations in a siz-layer medium: € (top) and corresponding real part of u (bottom).
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the real part of the solution will be graphed. The imaginary part generally looks
qualitatively similar. The graph on the right shows a six-layer sample medium, com-
posed of material of type one (g5 = 1) in the first, second, and sixth layers, and material
of type two (¢; = 2) in the third, fourth, and fifth layers (above), and the real part of the
solution wu.

The expected (u) is obtained by evaluating the solution u for each realization and
multiplying it by the probability of the particular realization; i.e.,

Nﬂ
(= > ule.my) [[p' (1 —p)m.

myER,

In the case when both materials are assigned according to probability %, each solution u
is multiplied by (%)m The expected (gu) is computed similarly. We observe that when
the length of the layers is 1 /6, the spatial variations of £* are more pronounced than in
the case when the length of the layer is 1 /16 (Figure 4.2).

Re(e)

Im(e)

Re(e)

Im(e)

0 02 04 06 08 1 >0 02 04 06 08 1
X X
Fic. 4.2. Spatial variations. Upper left: real and imaginary * in a medium of siz layers; upper right: real
part of (eu) (dashed line) and (u) (solid line) in a medium of siz layers; lower left: real and imaginary €* in a
medium of sizteen layers; lower right: real part of (eu) (dashed line) and (u) (solid line) in a medium of sizteen
layers.
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F1a. 4.3. Spatial variations. Upper left: real and imaginary €* in a medium of ten layers and contrast
z = 0.5; upper right: real part of (eu) (dashed line) and (u) (solid line) in a medium of ten layers and contrast
z = 0.5; lower left: real and imaginary * in a medium of ten layers and contrast z = 12; lower right: real part of
(eu) (dashed line) and (u) (solid line) in a medium of ten layers and contrast z = 12.

The numerical experiments also show that the spatial variations decrease in mag-
nitude when the contrast z between the two materials is small (Figure 4.3). In these
experiments we are looking at a ten-layer medium and w = 53. We vary the contrast.
In the first experiment, we assign material of type one (¢y = 1) or material of type
two (e; = 1.5), both with probability % In the second experiment, we assign material
of type one (gy = 1) or material of type two (g, = 13), both with probability % The
dependence of the magnitude of the spatial variations on the contrast in the medium
is obvious.

An important feature of these results is that even for real material coefficients €, €1,
the resulting effective €* can contain a substantial imaginary part, which accounts for
damping of the expected (u) as it propagates into the medium. As the numerical experi-
ments show, the amplitude of (u) generally does in fact decay as it propagates into the
medium, and the effect is accentuated for higher contrast and higher frequencies. This is
due to two phenomena. First, for higher contrast and higher frequencies, scattering in-
creases for each realization u, and less energy propagates into the medium. Second, the
phases of the waves for individual realizations u become less correlated as one moves
deeper into the medium, so that phase cancellation tends to reduce the amplitude of
the averaged wave (u). The imaginary part of ¢* accounts for these effects, without
directly modeling the scattering and phase cancellation.

A question may arise as to the practical utility of modeling with an effective para-
meter ¢* with spatial variation as large as the one shown in the lower left of Figure 4.3.
We think in fact that there is probably little use for such a parameter, and the point of
this paper is not to advocate for its practicality. Instead, these results are to quantify the
spatial variation of ex as a function of contrast and length scale, so that as one moves
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away from the quasistatic parameter regime, one can have some understanding of the
viability of modeling ensemble average wave behavior with an effective material
parameter.

Numerical experiments are performed in a two-dimensional random medium, which
is periodic in the z direction. The medium is obtained by randomly picking points in a
square cell with sides equal to 27 and drawing circles of random radii around the ran-
domly selected points. The coordinates of the points and the values of the radii are
drawn from a normal distribution. After the cell is divided into subdomains, either ma-
terial g, or material ¢, is assigned to each subdomain, both with probability 1 /2. The
variational problem (2.6) was discretized with a first-order finite element method, using
piecewise bilinear elements on a uniform, rectangular grid. The design variable ¢ was
approximated by a piecewise constant function on the same uniform grid. The nonlocal
boundary operators T defined by (6.1) in the appendix were approximated by explicitly
calculating the Fourier coefficients of the traces of the finite element basis, then
truncating the sum in (6.1). The resulting finite element scheme can be shown to con-
verge and to conserve energy, provided all the propagating terms are included in the
sum [2]. This discretization leads to a large, sparse (except for the boundary terms),

3
0%

SN

S %

o
oS e S S SIIIIIII Y SSORSOE
ostesderliet ittty
A0SR
Sttt
("

3¢

Fic. 4.4. Sample material1: constitutive materials g = 1 and e, = 1.5 (top). Contributions from sample
material I to the real part of solution u (bottom,).
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Fic. 4.5. Sample material IL: constitutive materials ey = 1 and &, = 4 (top). Contributions from sample
material I to the real part of solution u (bottom).

non-Hermitian matrix problem, which for simplicity is solved using the direct sparse
solver in MATLAB.

In all two-dimensional numerical experiments, the frequency w = 1.2. In Figure 4.4
a single material realization (top) and the real part of the corresponding solution u
(bottom) for a medium with contrast z = 0.5 (as defined in (4.1) are displayed. In
Figure 4.5 another material realization (top) and the real part of the corresponding
solution u (bottom) for a medium with contrast z = 3 are shown. The average (su)
is obtained by calculating & u for each material realization, summing up over realizations,
and dividing the sum by the number of realizations. In our experiments the number of
material realizations is 75000. The expectation (u) is calculated similarly. The effective
coefficient ¢* is the quotient of these quantities: ¢* = %

In Figure 4.6 the expectations (u), (¢u), and the effective dielectric coefficient for
the random medium with contrast z = 0.5 are shown. Let us investigate the effect of
increasing the contrast z in the medium on the magnitude of the spatial variation in
¢*. In Figure 4.7 we have shown the averaged quantities (u) and (gu) for a random
medium with contrast z=3. The spatial variations of the effective coefficient
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Fic. 4.6. Averaged quantities of a medium with contrast z = 0.5: real part of (u) (top); real part of (ew)
(middle); real part of e* (bottom,).
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(Figure 4.7) are much larger in magnitude for the medium with the greater
contrast.

5. Conclusions. When we consider wave propagation in a medium for which the
size of the inhomogeneities is of the same order as the wave length, scattering effects
must be accounted for and the effective dielectric coefficient is no longer a constant,
but a spatially dependent function. In this paper we study the spatial variations of
the effective permittivity, obtaining an estimate that shows the dependence on material
contrast and length scale. Numerical experiments confirm the presence of spatial varia-
tions and their dependence on the size of the inhomogeneities and the magnitude of the
contrast. The purpose of this study is to gain some understanding of the viability of
modeling ensemble average wave behavior with an effective material parameter, as
one moves away from the well-studied low-contrast, low-frequency parameter regimes.

Appendix. In two dimensions using polar coordinates (r,8) and assuming no
incoming waves, the exterior scattered solution is

Ugy (T, 0) ZA H. (wr)e™?,

m=1

where H (wr) are Hankel functions of first kind. Suppose that the Dirichlet data wu;, is
given on the circle. The interior solution u,;, € L?(S;), and thus it has a Fourier series
representation

o0

zm8
um E

=1
where

R 1 2w
Um = 5=

5 w(wRy, 0 ) e~ "™ d6'.

The constants 4,, are found from the Dirichlet condition to be

U
A, =
" H}n(wRO)
Thus the radiating solution is given by
00 Hl . '
ug(r,0) = 77”((07”) i,y €m0
m(wRO)

Differentiating in the radial direction and setting r = R leads to

00 0H o0H,,

=w Z Ty e™0 = (Tu,)(6).

0

Thus, we see that
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o0 ()Hm 6!) ) .
(61) =w Z ( or ) ’\mezme’
m 0

where ¥, are the Fourier coefficients of v, where v satisfies the Helmholtz equation (2.1).
Let

(62) Vm = wL

By using the properties and identities of Hankel functions, it can be shown that
S(vm) > 0 and R(y,,) <0 for all m.
For m > 0 and r in compact subsets of (0, c0), we have [3]

2™Mm!
H (wn)] < O
(Cl)?”)m
The derivative of the Hankel function is
oH;, mH, (or)
7(0”") =,  ~ oH,, (7).
This way we can bound the ratio
oH!
o %) @R _ o
Hm(wRO)
We obtain the bound
0 0H! 2
o (wRy)
T 2 < 1 2\—1| or 0 A2
Tl 4, < D2 1+ m) 3| e ol
<370+ m2)dm?fh,|
m=1
2\i 1~ 12 2 2
(63) <D0 +mAinf < Clolly < Clholiyg,

where we have used the trace imbedding theorem [1].
In three dimensions using spherical coordinates (r, 0, ¢) assuming e(z) = 1 and no
incoming waves, the scattered solution is

Ueg T 0, ¢ Z Z Blm C()’I” Ylm(e ¢)

=0 m=—1

where h} (wr) are spherical Hankel functions of first kind and Y,,(6. ¢) are the normal-
ized spherical harmonics. The latter form an orthonormal complete set of L?(S,) [15].
Suppose that the Dirichlet data is given on the sphere. Since u;, € L*(S), it can be
expanded into spherical harmonics as
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00 !
me¢ Zzulmylmed)

=0 m=—1

with

By = / W(Ry. 0. ¢') Y, (0. ¢')dS".
So
The constants By, are found from the Dirichlet condition to be

alm
B m = *
: hi(wRy)

Thus,

Differentiating in the radial direction and setting r = R gives

oh!
U > Sh(wRy)
r (RO’H’ ¢) = lz:(;w 2} Q)R(j) ”L_Zlulm Ylm 9 ¢) ( us)(ev ¢)
We see that
= (5 @)
(6.4) (T0)(0, ) = Zw(f’q ) S i Vinl0. ).
=0 hl( 0) m=—1

where 0, are the coefficients in the spherical harmonics expansion of v, where v satisfies
the Helmholtz equation (2.1).

Let
%(a)R )
6.5 =i 0

The following is obtained by very slight modification of the analysis of the exterior
scattering problem discussed in [9]: for all I, Iy, > 0 and Ry, < 0.

The Sobolev space H*(.S;) with real parameter s consists of all distributions f such
that

00 l
Z Z 1+’1 |flm|2 < 00,
=0 m——

where ]A‘lm are the spherical harmonics Fourier coefficients and A; = I(I + 1), [ > 0 is the
eigenvalue of the Laplace-Beltrami operator on Sy. For [ > 0 and r in compact subsets
of (0,00), we have

20
(wr)F

The derivative of the spherical Hankel function is

by (@r)] < C
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d—h}(wr) _ 1 <a)h11(wr) B hi(wr) + a)rh}ﬂ(wr)).
or 2 r

This way we can bound the ratio

on!
o (ORo) oy
hi(oRy)
We then obtain the bound
o aHl (a)R )
2 0 2
IITUIIH% ; 3) (1+1(1+1)) Hl( o) |01

8

I
<w C(1 + (14 1)3] oy 2
=0 m=—1

(6.6) < Cllvll2 < Cllvll g

where we have used the trace imbedding theorem [1].

Acknowledgments. The authors would like to thank Andrej and Elena Cherkaev

and Graeme Milton for valuable discussions and suggestions, and the referees, whose
suggestions greatly improved the paper.

[1]
2]

3]

(10]
1]

[12]

[13]
(14]
[15]
[16]

(17]
(18]
(19]

REFERENCES

R. A. Apawms, Sobolev Spaces, Academic Press, Orlando, FL, 1975.

G. Bao, Finite element approzimation of time harmonic waves in periodic structures, SIAM J. Numer.
Anal., 32 (1995), pp. 1155-1169.

D. Covrton, Partial Differential Equations, The Random House, New York, 1988.

C. Conca AND M. VANNINATHAN, Homogenization of periodic structures via Bloch decomposition,
SIAM J. Appl. Math., 57 (1997), pp. 1639-1659.

D. C. Dosson AnD L. B. SiMeEoNOVA, Optimization of periodic composite structures for sub-wavelength
focusing, Appl. Math. Optim., 60 (2009), pp. 133-150.

L. Duprey anp P. MIKUSINSKI, Introduction to Hilbert Spaces with Applications, Academic Press,
Burlington, MA, 2005.

R. M. DubLEY, Real Analysis and Probability, Cambridge Stud. Adv. Math. 74, Cambridge University
Press, Cambridge, 1989.

L. C. Evaxs, Partial Differential Equations, American Mathematical Society, Providence, RI, 2000.

F. IHLENBURG, Finite Element Analysis of Acoustic Scattering, Springer, New York, 1998.

A. IsumvARU, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.

J. KELLER AND F. KaRrAL, Elastic, electromagnetic, and other waves in random medium, J. Math. Phys., 5
(1964), pp. 537-547.

P. KucamenT, ED., Waves in Random and Periodic Media, AMS-IMS-STAM Proceedings, Contemp.
Math. 339, American Mathematical Society, Providence, RI, 2003.

G. W. MiLtoN, The Theory of Composites, Cambridge University Press, Cambridge, 2002.

P. Moxk, Finite Element Methods for Mazwell’s Equations, Oxford University Press, Oxford, 2003.

P. Morse anp H. FesuBach, Methods of Theoretical Physics, McGraw—Hill, New York, 1953.

G. C. Paranicoraou, Wave propagation in a one-dimensional random medium, STAM J. Appl. Math., 21
(1971), pp. 13-18.

H. L. RoypEeN, Real Analysis, 2nd ed., MacMillan Publishing Co., New York, 1963.

N. V. TkAcHENKO, Optical Spectroscopy: Methods and Instrumentations, Elsevier, Oxford, UK, 2006.

N. WELLANDER AND G. KRristenssoN, Homogenization of the Mazwell equations at fized frequency,

SIAM J. Appl. Math., 64 (2003), pp. 170-195.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



