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The dipole distribution is frequently represented as the derivative of the delta
distribution A, = —0d; since
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but since §, is not a function, it is certainly not differentiable in the usual sense.
We define the derivative of ¢, momentarily.

One often sees d, written as §(z —y) and also [~ _§(z—y)d(z)dz = ¢(y). It
should always be kept in mind that this is simply a notational convenience and
is not meant to represent an actual integral or that §(z—y) is an actual function.
The notation 6(z — y) is a symbolic function for the delta distribution 4,.

The correct way to view 4, is as an operator on the set of test functions.
One should never refer to pointwise values of J, since it is not a function, but
an operator on functions. The operation (d,,¢) = ¢(y) makes perfectly good
sense and we have violated no rules of integration or function theory to make
this definition.

The fact that some operators can be viewed as being generated by functions
through normal integration should not confuse the issue. d, is not such an
operator. Another operator that is operator valued but not pointwise valued is
the operator (not a linear functional) L = d/dx. We know that d/dz cannot be
evaluated at the point x = 3 for example, but d/dx can be evaluated pointwise
only after it has first acted on a differentiable function w(z). Thus, du/dx =
u’(z) can be evaluated at x = 3 only after the operand u(z) is known. Similarly,
(0y, ¢) can be evaluated only after ¢(x) is known.

Although distributions are not always representable as integrals, their prop-
erties are nonetheless always defined to be consistent with the corresponding
property of inner products. The following are some properties of distributions
that result from this association.

1. If ¢t is a distribution and f € C°° then ft is a distribution whose action
is defined by (ft,®) = (¢, f¢). For example, if f is continuous f(x)dy =
f(0)dp. If f is continuously differentiable at 0, fé; = —f'(0)dp + f(0)d}.
This follows since

(f00,9) = (60, f9) = = (f)'|.=0 = —"(0)$(0) — F(0)¢'(0).

2. Two distributions t; and ¢ are said to be equal on the interval a < x < b
if for all test functions ¢ with support in [a, ], (t1,¢) = (ta2, ¢). Therefore
it is often said (and this is unfortunately misleading) that §(z) = 0 for

x # 0.

3. The usual rules of integration are always assumed to hold. For example,
by change of scale t(ax) we mean

(o), ) = (0 (2))
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and the shift of axes t(z — y) is taken to mean

even though pointwise values of ¢ may not have meaning. It follows for
example that §(z —y) = d, and §(az) = 0(z)/|a| = ﬁéo

. The derivative ¢’ of a distribution ¢ is defined by (t’, ¢) = —(t, ¢’) for all
test functions ¢ € D. This definition is natural since, for differentiable

functions
-/ " P @)z = — | " @) @)z = —{f, ).

Since ¢(x) has compact support, the integration by parts has no boundary
contributions at x = Fo0.

If ¢ is a distribution, then ¢’ is also a distribution. If {¢,} is a zero sequence

in D, then {¢],} is also a zero sequence, so that

{t', pn) = —(t,#),) — Oas n — oco.

It follows that for any distribution ¢, the nth distributional derivative ¢(™ exists
and its action is

(t™, ¢) = (=1)"(t, ).

Thus, any L? function has distributional derivatives of all orders, provided the
function is identified with its corresponding distribution.

Examples:

1. The Heaviside distribution (4.4) has derivative

= [ ¢@ye =000

since ¢ has compact support, so that H' = §o.

2. The derivative of the g distribution is

(80, 9) = —(d0,¢) = —¢'(0) = (Ao, ¢),
which is the dipole distribution at 0.

3. Suppose f(z) is continuously differentiable except at the discrete points

Z1,%2,...,ZTn at which f(x) has jump discontinuities Af1, Afa, ..., Afn,
respectively, where Afy = f(z}) — f(z;). Its distribution has derivative

given by
(Ld) = () = / ()¢ (2)dz
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