Math1010

Final Exam Review Exercises (taken straight off of old final exams)

(1) Solve the linear equation.
$$4(x-2)=12+2(x-5)$$

(2) Find the solution of these simultaneous equations.

$$3x - 2y = 7$$

- 2x + 4y = 6
- (3) Two hundred tickets were sold for a Children's Theater performance. Adult tickets were \$10 each, and children tickets were \$6 each. The receipts totaled \$1520. How many tickets of each type were sold?

(4) Solve the equation.
$$x^2 + x - 3 = 0$$

(5) Solve the equation.
$$x(x-1)=x-2$$

- (6) The length of a rectangle is 3 inches more than its width. The area of the rectangle is 70 square inches. Find the length and the width of the rectangle.
- (7) Write the following polynomial in standard form. $(x^2+1)(2x+5)-2(x^2+1)$

(8) Simplify.
$$4^{-2} \cdot (2^2)^3 \cdot \left(\frac{1}{3}\right)^{-2}$$

(9) Simplify
$$2^{2/3} \cdot (4^2)^{1/3}$$

(10) Multiply and simplify.
$$\frac{x^2 - 5x + 6}{x + 1} \cdot \frac{x^2 + x}{x - 2}$$

(11) Rationalize the denominator.
$$\frac{2}{3-\sqrt{6}}$$

(12) Solve the inequality and graph the solutions on a real number line. $4x+3 \ge 2(x-1)+10$

(13) Factor the polynomial.
$$2x^3 + 10x^2 + 12x$$

(14) Compute and simplify.
$$\frac{25}{14} \cdot \frac{28}{15}$$

(15) Compute and simplify.
$$\frac{15}{4} \div \frac{45}{16}$$

(16) Compute and simplify.
$$\frac{2 + \frac{2}{3}}{\frac{1}{2} + \frac{3}{4}}$$

(17) Write the equation of the line that goes through the points (1,2) and (3, -2).

(18) Solve for x.
$$\frac{x}{2} = \frac{2 - \frac{3}{x}}{1 - \frac{1}{x}}$$

(19) Perform the indicated operations and simplify.

$$(2x+3)(x^2+3x-1)-(x^2+3)(2x-1)$$

(20) Let $f(x) = \frac{x^2}{x^2 - x - 2}$ (a) What is the domain of this function? (b) Evaluate f(-5) . (c) Evaluate f(2x-1)

(b) Evaluate
$$f(-5)$$
 . (c) Evaluate $f(2x-1)$

(21) Simplify.
$$\frac{\left(\frac{y}{x} - \frac{x}{y}\right)}{\left(\frac{x+y}{xy}\right)}$$

(22) Factor completely.
$$4x^3 + 4x^2 - 3x$$

(23) Factor completely.
$$2x^4-32$$

(24) Solve for x.
$$3x-2=4-2x$$

(25) Find the equation of the line perpendicular to the line 2y=4x-8 and going through the point (-2, 3).

(26) Solve the equation.
$$3x^2 + 5x - 2 = 0$$

(27) Divide these polynomials.
$$(2x^3-3x+1) \div (x^2+x+1)$$

(28) Simplify.
$$\frac{x-1}{x+1} + \frac{x+1}{x-1} - \frac{x^2 + x - 2}{x^2 - 1}$$

(29) Evaluate and write in standard form, i.e. a + bi. $(2+3i)^2$

(30) Evaluate and write in standard form, i.e.
$$a + bi$$
. $\frac{3+i}{4-i}$

(31) Solve
$$2x^2 - 6x + 5 = 0$$

(32) Solve.
$$\sqrt{x+7} + 5 = x$$

(33) Rationalize the denominator.
$$\frac{2-\sqrt{3}}{7-4\sqrt{3}}$$

(34) Rewrite using only positive exponents and simplify.
$$(2xy^{-1})^2(9x^3y^2)^{-1/2}$$

(35) Rewrite using only positive exponents and simplify.
$$\frac{(x^{-3}y^2w^{-1})^3}{(x^{-5}y^{-2}w^0)^{-2}}.$$

(36) Solve.
$$\frac{2}{x-1} + \frac{4}{2x+3} = \frac{3}{(x-1)(2x+3)}$$

(37) Solve.
$$\sqrt{2x-4}+4=10$$

(38) Solve the following inequality and graph the solution set on the real number line.
$$|2-5x| \ge 8$$

(39) Solve the following inequality and graph the solution set on the real number line.
$$|3x+1|-2 \le 11$$

(40) Simplify.
$$2\sqrt[3]{25 x^5 y^7} \sqrt[3]{10 x^2 y} + 3xy \sqrt[3]{16 x^4 y^5}$$

(41) Solve the system of equations.
$$2x-y-z=1$$
$$x+y+2z=4$$
$$3x+2y+z=3$$

$$\frac{(x^4y^{-3})^2}{(x^{-5}y^3)^{-3}} .$$

(44) Rewrite this expression as a complex number in standard form (i.e. Your answer should be in the form a+bi where a and b are real numbers).

$$\frac{2-5i}{1-3i}$$

(45) Simplify
$$\frac{\frac{3}{5} - \frac{1}{3}}{\frac{2}{9} + \frac{1}{2}}$$
.

- (46) Find all the solutions of the equation $2x^2+5x-12=0$.
- (47) For $f(x) = \frac{2x+1}{x^2-2x}$, (a) Find the domain of f(x). (b) Find f(-3). (c) Find f(x+1).
- (48) Solve the linear system. (Make sure you show all your work!)

$$x+y+z=2$$

 $x+2y-2z=1$
 $-2x-y+3z=3$.

- (49) Find all the solutions of the equation $2x^2 x 7 = 0$.
- (50) A grocer wants to mix cashews worth \$8 per pound with peanuts worth \$3 per pound. She wants to obtain a mixture to sell for \$4 per pound. How many pounds of peanuts must be used with 5 pounds of cashews?
- (51) Find all solutions of $\frac{2x}{x-1} \frac{1}{x+4} = 2$.
- (52) Find the equation of the line that passes through the point (1, 2) and has slope -3. Graph the line.
- (53) Simplify the following polynomial expression. What is its degree and leading coefficient? $(2x^2-3x)(x+1)+2x-5$
- (54) Solve the system of equations. (Make sure you show all your work.) 5x+3y=9 2x-4y=14
- (55) Find the distance between the point (3, 2) and (-1, 4).
- (56) Find the solution to the equation $\sqrt{1-2x}-2=3$.
- (57) Perform the division. $(x^4 + x^3 + x^2 2x 5) \div (x^2 + x + 3)$.
- (58) Joe takes 3 hours to do a job and Fred takes 7 hours to do the same job. Working together, how long will it take them to complete the job?
- (59) Solve the equation 2(3x-6)-3(5-x)=9.
- (60) Simplify the expression $\frac{1}{x+5} + \frac{2}{x-3} \frac{3}{x-1}$.

Answer Key:

- (1) x = 5
- (3) 80 adult tickets, 120 children's tickets
- $x = \frac{-1 \pm \sqrt{13}}{2}$
- (5) $1\pm i$
- (6) width 7 inches, length 10 inches
- $2x^3 + 3x^2 + 2x + 3$
- (8) 36
- (9) 4
- (10) x(x-3)
- $\frac{2(3+\sqrt{6})}{3}$ (11)
- (12) $x \ge \frac{5}{2}$
- (13) 2x(x+3)(x+2)
- $\begin{array}{ccc}
 (14) & \frac{10}{3} \\
 (15) & \frac{4}{3}
 \end{array}$
- (16) $\frac{32}{15}$
- (17) y = -2x + 4
- (18) x = 2, 3
- (19) $10x^2 + x$
- (20) (a) $x \in \mathbb{R}, x \neq 2, -1$, (b) $\frac{25}{28}$, (c) $\frac{4x^2 4x + 1}{4x^2 6x}$ or $\frac{(2x 1)^2}{2x(2x 3)}$
- (21) y x
- (22) x(2x-1)(2x+3)
- (23) $2(x-2)(x+2)(x^2+4)$
- (24) $x = \frac{6}{5}$
- (25) $y = \frac{-1}{2}x + 2$
- (26) $x = \frac{1}{3}, -2$
- (27) $2x-2+\frac{-3x+3}{x^2+x+1}$
- $(28) \quad \frac{x}{x+1}$
- (29) -5 + 12i

(30)
$$\frac{11}{17} + \frac{7}{17}i$$

$$(31) \quad \frac{3\pm i}{2}$$

$$(32) x = 9$$

(33)
$$2+\sqrt{3}$$

(32)
$$x = 9$$

(33) $2 + \sqrt{3}$
(34) $\frac{4\sqrt{x}}{3y^3}$

$$(35) \quad \frac{y^2}{w^3 x^{19}}$$

(36)
$$x = \frac{1}{8}$$

$$(37) x = 20$$

(38)
$$x \ge 2$$
 OR $x \le \frac{-6}{5}$

(39)
$$\frac{-14}{3} \le x \le 4$$

$$(40) \quad 16 \, x^2 \, y^2 \sqrt[3]{2x \, y^2}$$

$$(41)(1, -1, 2)$$

(43)
$$\frac{y^3}{x^7}$$

$$(44) \quad \frac{17}{10} + \frac{1}{10}i$$

$$(45) \frac{24}{65}$$

(46)
$$x = \frac{3}{2}, -4$$

(47) (a)
$$x \in \mathbb{R}, x \neq 0, 2$$
, (b) $\frac{-1}{3}$, (c) $\frac{2x+3}{x^2-1}$

$$(48)(-1, 2, 1)$$

(49)
$$x = \frac{1 \pm \sqrt{57}}{4}$$

$$(51) x = -9$$

$$(52) y = -3x + 5$$

$$(53)$$
 $2x^3 - x^2 - x - 5$

$$(54)(3, -2)$$

$$(55) \quad 2\sqrt{5}$$

$$(56)$$
 $x = -12$

$$(57) \quad x^2 - 2 + \frac{1}{x^2 + x + 3}$$

(58)
$$x=2\frac{1}{10}$$
 hours

$$(59) x = 4$$

(60)
$$\frac{-2x+38}{(x+5)(x-3)(x-1)}$$