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If we study Figure 7, we see that by rotating or reflecting the board, we can make any square we wish
nonwhite, with the exception of the squares with coordinates (3,3), (3,8), (6,3), and (6,6). Therefore the
same argument as was used in Example 22 shows that we cannot tile the board using straight triominoes if
any one of those other 60 squares is removed. The following drawing (rotated as necessary) shows that we can

sile the board using straight triominoes if one of those four squares is removed.

We will use a coloring of the 10 x 10 board with four colors as the basis for a proof by contradiction showing
that no sueh tiling exists. Assume that 25 straight tetrominoes can cover the board. Some will be placed
horizontally and some vertically. Because there is an odd nmumber of tiles, the number placed horizontally and
the number placed vertically cannct both be odd, so assume without loss of generality that an even number
of tiles are placed horizontally, Color the squares in order using the colors red, biue, green, vellow in that
order repeatedly, starting in the upper left corner and proceeding row by row, from left to right in cach row.
Then it is clear that every horizentally placed iile covers one square of each color and each vertically placed
tile covers either zero or two squares of each color. It follows that in this tiling an even mumber of squares of

each color are covered. Bnt this contradicts the fact that there are 25 squares of each color. Therefore no

such coloring exists.
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The truth table iz as follows.
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a) The converse is “If I drive to work today, then it will rain.” The contrapositive is “If I do not drive to work
today, then it will not rain.” The averse is “If it does not rain today, then T will not drive to work.”

b} The converse is “If o > 0 then x| = 07 The contrapositive is “If & < 0 then [o] # o.” The inverse i “If
izl o, then w <07

£} The converse is “If »7 is greater than 9, then n is greater than 3.7 The contrapositive is i n

is not
s GRS & . fee B : . - L
greater than 9, then n b not groater than 3.7 The loverse is "I » is not greater than 3. then »n~ is not

greater than 9.7
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Chapter | The Foundations: Logic aud Proofs

The inverse of p — ¢ & —p — =g Therefore the hverse of the inverse is —-p — g, which & equivalent to
p - g (the original proposition). The converse ol p - ¢ & ¢ — p. Therpfore the wnverse of the converse 18

g = sp, which is the contrapositive of the original proposition. The inverse of the cont rapositive s g - p,

which is the same as the converse of the original statement.

Lot t he “Sergel takes the job offer”™; tof b be “Sersel gets a signing bonns”™; and let B be "Sergel witl recelve a
b & ol twl o
higher salasy.” The given statements are £ bt — h, b — ok, and f0 By modus ponens we can conclide &
tar o = e
andd B from the first two conditional statements, and therefore we can conclude -k from the third conditional

statement. We now have the contradiction h £ =k, 8o these statements are inconsistent

Since both knights and knaves claim that they are knights (the forier trutl hfully and the latter deceivingly],
we know that A is a konave, Dut since A's statement must be False, and the first part of the conjunction is

. 50 we know that B must be a Lknave as well, IF {7 were a kanight, then

true. the second part must be false
B'e statement scould be true, and knaves must He. so (7 must alse be a knave. Thus all three are knaves
) k)

If S is a proposition, then it is either true or false. If S is false, then the statement “If § s true, then unicorns
five” is vacuously frae; but this statement is 5, s0 we would hzwe a contradiction, Therefore S is true, so the
statement “Hf § is frue, then unicorns live” is true and has a true hypothesis. Heoce it bas a trie cond lugion

(modus ponens), and so unicorns live. But we know that unicorns do not live. It follows that 5 cannot be a

proposition.

Sy{ Py Ply) A

a) The answer is JaP{z) i we do not read any significance into the use of the plural, and =
x £y ifwec

) -w‘v.t[’(:ic), or, eqz;ivaif%z'litiy, S Pz} o) Yy{y)

d) VrP(x) (the class has nothing to do with it) e} Ay-Q{y)

The given statement telis us that there are exactly two elements in the domain. Therefore the statement will

be true as long as we choose the domain to be any thing with size 2, such as the United States presidents

named Bush,

We want to say that for every y, there do not exist four different people each of whom is the grandmother of y.
Thes we have Yr—3a3hIcdda # bAa # cAa £ dAb#F enb# dhe s dAGla,y) ANGlb,y) AG{e,y) NGy}

a) Since there is no real number whose square is —1, it is true that there exist exactly 0 values of @ such
that 72 = —1.

b) This is true, becanse 0 is the one and only value of x such that |z} =0,

¢) This is true, because V3 and —v/2 are the only values of « such that % =2

d) This is false, because there are more than three values of z such that x = = |z}, namely all positive real

numbers.

Let us assume the hypothesis. This means that there is some 79 such that Plry,y) holds for all y. Then
it is certainly true that for all y there exists an « such that P{z,y) is true, since in each case we can take
x = zq. Note that the converse is not always a tautology, since the = in Vy3xP(z,y) can depend on y.

No. Here is an example. Let P(z,y) be » > y, where we are talking about integers. Then for every y there
does exist an = such that @ > y; we could take v =y + 1, for example. However, there does not exist an =
such that for every vy, = > y; in other words, there is no superlarge integer (if for no other reason than that

no integer can be larger than itself}.
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a) 1t will snow today, bt 1 will not go skiing tomorrow.
b) Some person in this class does not understand mathermatical induction.
¢} All students in this class fike discrete mathematics.

d} There is some mathematics class in which all the students stay awake during lectures.

Let W(r) means that room 7 Is painted white. Let I{r.b) mean that room 7 is in building 5. Let L{b )
mean that building b is on the campus of United States university u. Then the statement is that there Is
some university w and some building on the campus of u such that every room in & is pairted white. In
symbols this is SuIb(E(b, u) AVr(I(r,b) — W{r)}).

To say that there are exactly two clomeonts that make the statement true is to say that two elements exist that
make the statement true, and that every element that makes the statement true is one of these two clements.
More compactly, we can phrase the last part by saying that an element makes the statement true if and only
i3t 15 pne of these two elements. In symbols this is Tpdylx £y AVAP(z) o (t=a Ve = ). In English
we might express the rule as foltows. The hypetheses are that Pz} and P(y) are both true, that = # ¥, and
that every z that satisfies P(z) must be either & or y. The conclusion is that there are exactly two elements

that make P true

We give a proof by contraposition. If 2 is rational, then o = p/g for some integers p and g with g # 6.

Loz

Then o
This by definition means that 23 is rational, and that completes the proof of the contrapositive of the original

= p3 /¢, and we have expressed 2% as the quotient of two integers, the second of which is not zero.

gtatement.

Let mm be the square root of n, rounded dawn if it is not a whole number. (In the notation to be introduced in
Section 2.3, we are letting m = [v/7].) We can see that this is the unique solution in a couple of ways, First,
clearly the different choices of m correspond to a partition of N, namely into {0}, {1,2,3}, {4,5,6.7,8},
{9,10,11,12,13, 14, 15}, .... So every n is in exactly one of these sets. Alternatively, take the square root
of the given inequalities to give m < V7 < w4 L. That m is then the floor of n (and that m is raigue)

follows from statement (1a) of Table 1 in Section 2.3

A constructive proof seems indicated. We can look for examples by hand or with a computer program. The

smallest ones to be found are 50 = 52 .52 = 12 4 72 and 65 = 42 4 7% 1% 87

We clain that the mumber 7 s not the sum of at most two squares and a cube. The first two positive squares
are 1 and 4. and the first positive cube is 1. and these are the only mumbers that could be used in forming

the sum. Clearly no sum of three or fewer of these is 7. This counterexample disproves the statement.

We give a proof by contradiction. I /9 + 3 were rational, then so would be ils square, which is b+ 2v6.
Subtracting 5 and dividing by 2 then shows that V6 is rational. but this contradicts the theorem we are told

1o assime.




52 Chapter 2 Fasic Structures: Sets, Fuuetions, Sequences, aud Suns
47, Fxercise 77 in Section 2.3 gave @ one-10-00¢ correspondence hetween BV« 21 and ZF 0 Sinee 7 is countable.

o is BT R AT

44, There are at most two real solutions of each auaviratic equation, so the snmber of solutions is countalde as long
ss the number of triples {0 b, 2}, with e, b, and ¢ integers, 1§ count able. But this follows from Bxercse 11
in the following way. There are a countable number of pairs b, ). since for each b {and there are countably
many #y) there are only a countable number of pairs with that b as its first coordinate. Now for each o {and
there are countably many a's) there are only a countable aumnber of triples with that a as its first coordinate
(since we just showed that there are onlv a countable number of pairs (b)), Thus again by Exercise 414 hers

are only countably many triples.

46. We know from Exampie 21 that the set of real numbers hetween 0 and 1 is uncountable. Lei us associate to
ench real mumber in this range (including G bus excluding 13 a function from the set of positive integers o
the set 10,1,2,3,4,3.6, 7,8,0} as follows: f o s a real number whose decimal representation s Oudidads
{with ambiguity resolved by forbidding the decimal to end with an infinite siring of 9's), then we associate
to 1+ the funetion whose rule is given by fln) = dn. Clearly this s a one-to-one function from the set of
el numbers between 0 and 1 and a subset of the set of all functions from the sot of positive integers to the
set {0,1,2,3, 4,5, $,7,8,8}. Two different real numbers must have different decimal representations, so the
corresponding functions are diflerent. (A few functions are left out, because of forbidding representations such
as £.239999 .. .) Since the set of real numbers between O and 1 18 uncountable, the subset of fuactions we
have associated with them must be uncountable. But the set of all such functions hasg at least this cardinality,

s0 it, too, must be uncountable (hy Exercise 37

48. We follow the hint. Suppose that f is a function from S to [ (SY. We must show that [ s not onto. Let
T={seS|s¢ fls)}. We will show that T is not in the range of f. If it were, then we would have

f( y =T for some £ € 5. Now suppose that ¢t € T. Then because ¢ € f(#), it follows from the definition of 7'

hat ¢t ¢ T'; this is a contradiction. Ou the other hand, suppose that t ¢ 7. Then because t ¢ f(£), it follows

from the definition of T that ¢ € T'; this is again a contradiction. This completes our proof by contradiction

that f is not onto.

SUPPLEMENTARY EXERCISES FOR CHAPTER 2

%. We are given that A € B. We want to prove that the power set of A is a subset of the power set of B, which
means that if ¢ C A then € € B. Bus this follows directly from Exercise 15 in Section 2.1

6. If A C B, then every element in A is also in B, s0 clearly AN B = A. Conversely, if AN B = A, then every
element of A must also be in AN B, and hence in 5. Therefore A C B.

8. This idengity is true, so we must show that every element in the left-hand side is also an element in the
right-hand side and conversely. Let = € -{(A-B)~C. Then zxc A- DB but r ¢ . This means that z € A,
but z ¢ B and z ¢ C. Therefore x € A — ', and therefore z € (A — C) ~ B. The converse is proved in

exactly the same way.

10. The inequality follows from the obvious fact that AN B C Au B, Equality can hold only if there are no
clements in either A or B that are not in both A and B, and this can happen only if A =105,
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“undamentaiss Alporithms, the Integers, and Matrice

We nned to divide sugeessively Dy 2005, LD 8805850 34, 21, 130 505,30 2, and 1, 2 total of 12 divisions,

ay The first statement s clear. For the seo

greatest cormmmon divisor, and the complementary factor must be the groatest common divisor of the numborg

abtained by dividiog out this 2. For the third statemoent, if o s even and & s odd, then the lactor of 2 iy

guotientl,

B) All the steps lnvolved in huplementing part (a) as an algorithm require only comparisons, subtractions,
and divisions of even numbers by 2. Since division by 2 s a shift of one bit to the right, only the operations
mentioned here are used. {Note that the alzorithm aeeds two more reductions if o is odd and b is even, then
godia, by = ged{o, 3/2), and i @ < b, then Interchange o and b '

e} We show the operation of the algorithn as a string of equalities; each equation is one step.

ged (4RE8, 1202 ) == 2ged (2424, 6017 = 2aed (1212601 = 2 ged{606, 601)

god{ 1202, 4848) =

= 2 ped(303,601) = 2 ped (601, 303) = 2 ged(298, 303) = 2 ged(303, 208)

-2 ged(303, 149) = 2ged(154, 149) = 2 ged(77, 149) = 2 ged(149.77)

= 2ged(T377) = 2ged(T7,72) = 24ed{77,36) = 2 ged(77,18)
= 2ged{T7,9) = 2ocd(68,9) = 2ged{34,9) = 2ged{17.9)

= 2ged{R,0) = Zged(,8) = 2ged(®, 4) = Zged{, 2)

=Zoed{0, 1) = Zged(8. 1) = 2ged(4, 1) = 2 zed(2. 1)

We can give a nice proof by comtraposition bere, by showing that I i not prune, then the sum of its divisors
is not. 1+ 1. There are two cases. If n = 1, then the sumn of the divisors 18 1 # 1 + 1. Otherwise 11 i
composite, so can be written as n = b, where both a and b are divisors of n different from 1 and from n
{although it might happen that o = b). Then n has at least the three distinet divisors 1, @, and n, and their
sum is clearly not equal to n + 1. This completes the proof by contraposition. One should also observe that
the converse of this statement is also true: if n is prime, then the sum of its divisors is n 4+ 1 {since its only

divisors are 1 and itself).

a) Fach week consists of seven days. Therefore to find how many (whoie) weeks there are in n days, we need
to see how many 7's there are in n. That is exactly what n div 7 tells us.
b) Fach day consists of 24 hours. Therefore to find how many {whole} days there are in n hours, we need to

see how many 24’s there are in n. That is exactly what n div 24 tells us.

We need o arrange that every pair of the four numbers has a factor in common. There are six such pairs, s0
let us use the first six prime numbers as the common factors. Call the numbers a, b, ¢, and d. We will give
a and b & common factor of 2; a4 and ¢ a common factor of 3; a and 4 a common factor of 5; b and ¢ 2
common factor of 7; b and d a common factor of 11; and ¢ and 4 a common factor of 13. The simplest way
to accomplish thisistolet e =2-3-5=30; b=2-7- 11 =154; c= 3.7 13 =273 and d =5-11-13 = 715,
The numbers are mutually relatively prime, since no number is a factor of all of them {indeed, each prime is

a factor of only two of them). Many other examples are possible, of course.

If z =3 (mod 9), then z = 3 + 8 for sowe integer t. In particular this equation tells us that 3|2. On the
other hand the first congruence says that = = 2 + 6s = 2 + 3 - (2s} for some integer s, which implies that
the remainder when z is divided by 3 is 2. Obvicusly these two conclusions are inconsistent, so there is no

simultanecus selution to the two congruences.
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2. The proposition is true for m=1,sinee 1+ 3% =28 = 1{1 + 1} Hzo At 4414 1} Assume the inductive

hypethesis. Then
PP (2nt B nt 3)% = {n+ ;}2(2%‘2 FanF 1)+ (2n+ 3}3_
= 2n% 4 8n® 4+ 1107 4+ 6n + 1+ 8n® + 3607 + Bdn + 27

= ont + 16n° +4Tn” + 60n 4 28
= (n+2)H2n* +8n+T)
= (n+2%2n+ D+ 4n+ 1)+ 1.

4. Owr proof is by induction, it being trivial for n =1, since 1/3 = 1/3. Under the inductive hypothesis
1 i i 7 ) 1

1.3 + (2n — 1}2n + 1) + (2n + 1){2n+3) RS (2n + 3)(275 +3)

T i (72 Zn+ i}

mZP4+dn 1
Con+ 1 2n+ 3

{2n + 13{n - ) ol

L
T ol k 2n - & A3

as desired.

6. We prove this statement by induction. The base case is n = 5, and ind e(*d 52 45 =30 < 32 = 2%, Assuming
the inductive hypothesis, we have (n + 124 nt1)=n43n+2< n? 4 dn < n? 40t = < 20?4 n),

which is less than 227 by the inductive hypothesis, and th;s equals 2771 as desired.

8, We can let N = 16. We prove that n? <« 2% for all n > N. The base case '}Q n = 17, when 17% =
83521 < 131072 = 2°7. Xssummgj the inductive hy }()tiwsla we have (n+ 1) = ptrdnt 6l +dn+1 <
pt 4 dn® p6ndrdn® +on? =0t 4 16n% < n? 20t = 20!, which is less than 2-27 by the mdn(rt;ve hypothesis,

and this equals ol ag desired.

10. If n = 0 {base case), then the expression equals 0+ | 4+ & = @, which is divisible by 9. Assume that
2?4 (4103 4 (04 2)% s divisible by 9. We st show that {n+ 1) + (n+2) +{(n+ 32 is also divisible
by . The difference of these two expressions is (n 4 3)7 — 1 3 = 0n? 1270 + 27 = 0(n” + 3n-+ 3}, a multiple

of 9. Therefore since the first expression is divisible by 9. so is the second.

12. The twa parts are nearly identical, so we do only part (a). Part (b} is proved in the same way, substituting
I ; A . g

multiplication for addition thronghout.  The basis step is the tautology that %f a1 = by {mod m}, then
13
ay = by (mod m). Assume the inductive hypothesis. This tells us that ) a; = L by {mod m). Combining
j:t}
. n+1 41
this fact with the fact that ans1 = by (mod m), we obtain the desired congruence, Y a; = 3. by {mod m)
=1 =1
from Theorem 5 in Section 3.4
14, After snpe computation we conjecture that n 4 6 < ( — An)/16 for all n > 28, (We find that it is not irue
for simaller values of 1.} For the basis step we Iaa‘\-‘o 9K o= A and (287 - 8. 3}f 16 == 35, so the statement
s frue. Assume ihz‘;i the statement s frue for o= Then since k > 27 we have
4 - p 7 ‘ B
(k4 1) -8k 1) k-8 ko 2k~ T _
M s e w—fw w &+ 64+ by the inductive hypothesis
16 if i0 HE ;
L 22T _ , :
S O R S k464295 (h+1)+6,

16
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Since the new permutation @

has g in position f, whee

lexicographic order. Furthenpore the new permautation s the first one {u lexicographic order) with gy, 4,
C i1 ag in positions ©to j. and the old permutation was the last oue with ay, 4. - 45 1. a4y in
those positions. Since o, was picked to be the smallest number groater Phan g among oy, djzo, .., Ty

there can be no permutation between these two,

One algorithn would combine Algorithin 3 and Algorithm L Using Algorithm 3, we generate all the r
combinations of the set with n elements. AL each stage, after we have ound cacli r-combination, we yge
Algorithm 1, with n = {and a different collection to be permated than {1,200, 1} to generate all the
permutations of the elements in $his combination. Sce the solution to Exercise 1] for an example.

a) We find that ay = 1, ay =1, a3 = I, ay = 2, and ap = 3, Therefore the number i 1- 10412042314
Qo430 e b 2 12 0 48 4+ 360 = 123,

b} Each ap = U, s0 the number ig §.

¢} We find that oy = 1. az =2, ag = 3, ag =4, and as = 0. Therefore the number is 1 1149204330 4

A4 55 = U d 18 4 96 4 600 = 719 = 6 — 1. as expected, since this Is the last permutation.

a) We find the Cantor expansion of 3 1o be ©1- 114120 Therefore we know that aq = U, ay -

and a; = 1. Following the algorithm given in the solution to Ixercise 13, we put 5 In position !
4 in position 40 =4, pul 3 in position 3 -1 =2, and put 2 in the position that 18 1 from the rightmost
available position, namely position 1. Therefore the answer is 23145,

b) We find that 89 = L. 11422142304+ 341 Therefore we iosert 5,4, 3, and 2, in order, skipping 3,
2. 2, and 1 positions from the right among the available positions, obtaining 354721

¢) We find that 1311 = 1- 114 1-20+2- A4 4. 41, Therefore we insert 5, 4, 3, and 2, in order, skipping 4,

2 1. and 1 positions from the right among the available positions, obtaining 52431 .

&y
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a) There are no ways to do this, since there are not enough items. b} 61 = 60,466,176
¢) There are no ways to do this, since there are not enough items.
d) €6+ 10 — 1,10) = C{15,10) = £(15,5) = 3003

There are 27 hit strings of length 10 that start 000, since each of the last 7 bits can be chosen in either of
two ways. Similarly, there are 29 bit strings of length 10 that end 1111, and there are 2% bit strings of length
10 that both start 000 and end 1111 {since only the 3 middle bits can be freely chosen). Therefore by the

inclusion-exclusion principle, the answer is 27 + 90 93 = 184,
.10 10 10 10 == 90,000

a) All the integers from 100 to 999 have three decimal digits, and there are 899 — 100 4+ 1 = 800 of these.
b) In addition to the 900 three-digit numbers, there are § one-digit positive integers, for a total of 909,

¢) There is 1 one-digit number with a 9. Among the two-digit numbers, there are the 10 numbers from 90
to 99, together with the 8 numbers 19, 29, ..., 89, for a total of 18, Among the three-digit numbers, there
are the 100 from 900 to 999 and there are, for each century from the 100’s to the 800’s, again 1 + 18 =19
numbers with at least one 9; this gives a total of 100+8.19 = 25Z. Thus our final answer is 1+18-+252 = 271.
Alternately, we can compute this as 10°% — 63 = 271, since we want to subtract from the number of three-digit
nonnegative numbers (with leading (Vs allowed) the number of those that use only the nine digits 0 through 8.
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d) Since we can use only even digits, there are 53 = 125 ways to specify a three-digit number, allowing leading
0's. Since, however, the number 0 = 000 is not in our set, we need to subtract 1, obtaining the answer 124,
e) The numbers in question are either of the form d55 or 55d, with d # 5, or 555, Since d can be any of
nine digits, there are 94 9 + 1 = 1% such numbers,

f} All 9 one-digit numbers are palindromes. The 9 two-digit numbers 11, 22, ..., 99 are palindromes. For
three-digit numbers, the first digit {which must equal the third digit) can be any of the 9 nonzero digits,
and she second digit can be any of the 10 digits, giving 9 - 10 = 90 possibilities. Therefore the answer is

G4+ 84 80 = 163,

Using the generalized pigeonhole principle, we see that we need 5 x 12 4+ 1 = 61 people.

were born on the same day of the week and in the same month.

We need at least 551 cards to ensure that at least two are identical. Bince the cards come in packages of 20,

we need [551/20] = 28 packages.

Partition the set of numbers from 1 to 2n into the n pigeonholes {1,2}, {3,4}, ..., {2n — 1, 2n}. If we
have 7 -+ 1 numbers from this set (the pigeons), then two of them must be in the same hole. This means that
among our collection are two consecutive numbers. Clearly consecutive numbers are relatively prime (since

every common divisor must divide their difference, 1),

Divide the interior of the square, with lines joining the midpoints of opposite sides, into four 1 x 1 squares.
By the pigeonhole principle, at least two of the five points must be in the same small square. The furthest

apart two points in a square could be is the length of the diagonal, which is v/2 for a square 1 unit on a side.

If the worm never gets sent to the same computer twice, then it will infect 100 computers on the first round
of forwarding, 1007 = 10,000 other computers on the second round of forwarding, and so on. Therefore the
maximum number of different computers this one computer can infect is 100+ 1007 + 1007 + 1007 4 100° =
H0LH01.010,100. This figure of ten billion is probably comparable to the total nnmber of computers in the

world,
a) We want to solve nf{n — 1) = 110, or n® « n - 110 = 0. Simple alpebra gives n = 11 {we ignore n = ~10,

since we need a positive integer for our answer).
b} We recall that 71 = 50, so the answer 8 7

e} We need to solve the equation n{n -~ 135~ 2¥(n - 3) = 12n{n -~ 1}, Since we have n > 4 in order for
Plnd) to be defined, this equation reduces to (0 — 2}{n — 3) = 12, or n% ~ S~ § = 0. Simple algebra gives

7= 6 {we ignore the solution 1= 1 since 5 needs to be a positive integer).

An algebraic proof is straiohtforward. We will give a combinatorial proof of the equivalent identity P{n -+
Lodn 41 7} = {n 4+ D1P0n ) {and s fact both of these equal (0 + Lr -+ 1)) Consider the problem of
writing down a permutation of r -+ | objects from a collection of n + 1 objects. Wo can brst write down a
penmutation of r of these objects (Pl - 1) ways to do so), and then write down one more object {and
there are n 4+ 1 — ¢ objects left to choose from), thereby obtaining the left-hand side; or we can first choose
an object to write down first {n 0 1 to choose from), and then write down a pormutation of length » using

the 3 remsaining objects ( FPln, ) wavs 1o do so), thereby obtaining the right-hand side.
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ertion that the sinn of the mnnbors k) for

Firet note that Corollary 2 of Section 5008 equivalent 1o Lhe as
pvon b s egual to the sum of the numbers O k) for odd Sinee (Tin, ko counts the sumber of subsets of
size b oof aset with nclements, we need 1o show that o set has as many even-sized subsets as i has oddsizg
cubmers, Define o function f from the set of all subsets of 4 to Hself (where AU s a s with n elewents, ope
of wineh is a ), by setting f{B) = B U {a} if a & B, and By =B~ {ay ifac 3 e clear that f takes
aven-sized subsets to orldesized subsots and vice versa, and that F s one-to-one aind onto (iadeed, f7 Ve 7y

Therofore [ restricted to the set of sulmets of odd size gives a one-to-one correspondence between thal ge

anct the set of subsets of even size.

The hase case 18 1= 2, i which case he identity sinply states that e 1. Aszsyme the inductive hypothesis,

shat 300, CUL2) = O+ 131 Then

j=i :
nil S
S oo = (}_:,(u)) L 4 1,2)
2 S
O AL Ol e 12 = Cle R 147,

as desired. The last equality made use ol Paseal’s identity.

a) For a fixed b, oa briple s totally derermined by picking 1 and J; since each can be picked in & ways {each
can be any aumber from 0 to & 1. inclusive), there are k? wavs to choose the triple. Adding over all possible
values of k gives the indicated sum.

b) A triple of this sort is totally determined by knowing the set of numbers {4, 4k}, since the order i3 fixed.
Therefore the number of triples of each kind is just the umber of sets of 3 elements chosen from the set
{0.1,2,... 1}, and that is clearly T+ 1,3},

¢) In order for ¢ to equal J (with both less than k), we need to pick two elements from {0,1,2,....n}, using
the larger one for & and the smaller one for both © and j. Therefore there are as many such choices as there
are 2-clerent subscts of this set, namely C{n 4+ 1.2}

d} This part is its own proof. The last equality follows from elementary algebra.

a) If we 2-color the 2d — 1 elements of S, then there must be at least ¢ elements of one coloy (if there were
d—1 or fewer elements of both colors, then only 2d - 2 elements would be colored); this is just an application
of the generalized pigeonhole principle. Thus there is a d-element subset that does not contain hoth colors,
in violation of the condition for being 2-colorable.

b) We must show that every collection of fewer than three sets each containing two elements is 2-colorable,
and that there is a collection of three sets each containing two elements that is not 2-colorable. The second
statement follows from part {a), with d = 2 {the three sets are {1.2}, {1,3}, and {2,3}). On the other hand,
if we have two (or fewer) sets each with two elements, then we can color the two elements of the first set with
different colors, and we cannot be prevented from properly coloring the second set, since it must contain ail
element not in the first set.

) First we show that the given collection is not 9.colorable. Without loss of generality, assume that 1 is red.
If 2 is red, then G must be blue { second set). Thus either 4 or 5 must be red (seventh set), which means that
3 must be biue (first or fourth set). This would foree 7 to be red {(sixth set}, which would force both 4 and 5
to be blue (third and fifth sets), a contradiction. Thus 2 is blue. If 3 is red, then we can conclude that 5 s
blue, 7 is red, 6 is blue, and 4 is blue, making the last set tmproperly colored. Thus 3 is biue. This unplies
that 4 is red, hence 7 is blue, hence 5 and 6 are red, another contradiction. So the given collection cannot be
9.colored. Next we must show that all collections of six sets with three elements each are 2-colorable. Since
having more elements in S at our disposable only makes it easier to 2-color the collection, we can assume that
S has only five elements; tet S = {a,b,c,d,e}. Since there are 18 occurrences of elements in the collection,
some element, say a, must oceur at least four times {since 3-5 < 18). If a occurs in six of the sets, then
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we can color a red and the rest of the elements blue. If o occurs in five of the sets, suppose without loss of
generality that & and ¢ ocour in the sixth set. Then we can color a and b red and the remaining elements’
hlue. Finally, if @ occurs in only four of the sets, then that leaves only four elements for the last two sets,
and therefore a pair of elements must be shared by them, say b and ¢. Again coloring a and & red and the

remaining elements blue gives the desired coloring.

We might as well assume that the first person sits in the northernmost seat. Then there are P(7,7) ways to
seat the remaining people, since they form a permutation reading clockwise from the first person. Therefore

the answer is 71 == 5040,

We need to know the number of solutions to d + m + g = 12, where d, m, and g are integers greater than
or equal to 3. This is equivalent to the number of nonnegative integer solutions to & + m' + ¢ = 3, where
df = d—3, m' = m—3, and g’ = g—3. By Theorem 2 of Section 5.5, the answer is C(34+3-1,3) = C(5,3) = 10,

a) By Theorem 3 of Sevtion 5.5, the answer ig 101/(312121) = 151,200,
b) If we fix the start and the end, then the question concerns only 8 letters, and the answer is sij(ah =

10,080,
¢} If we think of the three P’s as one letter, then the answer is seen to be 81/{2121) = 10,080,

There are 26 choices for the third letter. If the digit part of the plate consists of the digits 1, 2, and d,
where d is different from 1 or 2, then there are 8 choices for d and 3! = 6 choices for a permmtation of these
digits. If d = 1 or 2. then there are 2 choices for d and 3 choices for a permutation, Therefore the answer

is 26(8 -6+ 2-3) = 1404,

Tet us look at the girls hrst, There are P(8,8) = 8 == 40320 ways to order them refative to each other. This
much work produces 9 gaps between girls (including the ends), i each of which at most one hoy may sit. We
need to choose, in order without repetition, 6 of these gaps, and this can be done in P9, 6) = 60480 ways.

Therefore the answer is, by the product rule, 40320 - 60480 = 2.438,553,600.

. We are given no restrictions, so any number of the boxes can be oceupied once we have distributed the objects.

a) This is a straightforward application of the product rule; there are §% = 7776 ways to do this, because
there are (6 choiees for cach of the b objects.

b) This is similar to Exercise 50 in Section 5.5, We compute this using the formulae:

Gr5 4 : /(47 25_} g ;;5 . ’i\(i 74\ }5 . 1 1624 072 4 199 4) = 10
S(5.4) = Ii ( o 4 i 4 _th 3) ) ,,,,, ,-ﬁ{ 4 T2 4 192 — 4) =

3125 — 5120 4 2430 - 320 4 5} =

€} This is asking for the number of solutions to xy -+ rp + 7y + 0y + T T Tg = 5 in ponnegative integers. By

Theorem 2 (see also Example 5) in Section 5.5, the answer is C{8 -+ 5 -~ 1.5 = (U110,5) = 252
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Hnadl tlls dnto the Best biooaud X

Tl W oe Wy B X b N where N ow L the
r e

Then Ve the number of balls that Fal inlo the tirst bine so we are being asked to compute
EiNY = plX, = 1) = L/n. By Lnearity of expectation CPheorem 31, the excpertod nwmber of bally 1

P14y possible hands, A hand with no paies st contaln exactly one card of vach kind
_ ; ind. T,

There are £
only chiotee tnvolved, thereflove, is the snit for each of the 13 vards Theve are 4 wavs to spealy the suit, 4

thors are 13 tasks to be performed. Therefore there are 159 hands with no pairs, The probability of deawin,
H . rawing

g
S OTLOMSGAL/GSRULIRNHG00 = JLHIB0L /30088347475 = 0.000106.

such a hand i thus 4997
The denominator of each probability is the number of T-card poker hands, namely C{02.7) « B33T8A50)

a} The munber of such hands s 13124, since theee are 13 wavs to choose the kind for che four, then 19
wavs Lo choose another kind for the three, then CHL3) = 4 wiys To choose which three cards of that secong
kipd to use. Therefore the probability s 6247130784560 = 1.7 x LR

b} The number of wuch hands s 13466 - 67, since there are 11 ways to choose the kind for the thyse,
(4,3 = 4 ways to chioose which thres cards of that kind to use, then (12, 7) = 66 ways to choose two more

kinds for the pairs, then C{4.2) = 6 ways 10 (h(mw which two (‘ﬁ,i‘dﬂ of each of those kinds to use. Therefore

the probability i3 123002/ 1337845060 = 0.2 107

e} The num‘m-*r of such h;-m(i-; i 28667 10 - 4. sinee there are {13, 3) = 280 ways to choose the kiadg
for the pairs. O 2) = 6 ways to choose which two cards of eacli of those kinds to use, 18 ways 1o choose
the kind for the 5121gh_:[_()t1, and 1 ways to choose which card of that kind to use. Therefore the probability is
FATI040/ 133781560 ~ (LU18.

d) The number of such hands is 78 - 67 165 - 43 since there are (C(13,2) = 78 ways to choose the kinds for
the pairs, C'(42) =0 ways to choose vxixif'h two eards of each of those kinds to use, €{11,3) = 145 ways to

ehoose the kinds for the singletons, and 4 ways to choose which card of each of those kinds to use. Therefore
the probability is 280652480/ ALIATRALGO0 ~ 0.3

e) The numnber of such hands is 1716 - 47 sipee there are C{13.7) = 1716 ways to choose the kinds and 4

wavs to choose which card of cach of kind to use. Thercfore the probability is 28114944/ 133784560 = 0.21.

£) The number of such hands is - 1716, since there are 4 ways to choose the suit Ior the flush and (*{ 3.7y =
1716 ways to choose the kinds in that suit. Therefore the probability is 68G4/13378456680 = 5.1 x 107

g} The number of such hauds 15 8- 47 since there are & ways to choose the kind for the straight to start
at {4, 2.3, 4,5, 6,7, or %) and 1 ways to choose the suit for each kind. Therefore the probability is
131072/133784560 = 4.5 x 14 -4

h) There are only 4- 8 straight fiushes, since the only choice is the suit and the starting kind (see part (g))
Therefore the probability is 327133784560 s 2.4 = 1077,

a) Each of the outcomes | through 12 eccurs with probability 1712, so the expectation is (1/12)(1 +2+3+
ok 12) =132

b) We compute V(X = B(X?) ~ B(X)? = (1/12)(1? + 2% 4+ 3% -+ 12%) -~ (13/2) = (325/6) — (169/4) =
143/12.

a) Since expected value is linear, the expected value of the sum is the sum of the expected values, eggh of
which is 13/2 by Exercise 6a. Therefore the answer is 13,

%) Since variance is linear for independent random variables, and clearly these variables are independent, the

variance of the sum is the sum of the variances, each of which is 143/12 by Exercise 6b. Therefore the answer

is 143/6.
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10, &) Since expected value is linear, the expected value of the sum is the sum of the e}(pe{’teé alues, which are
9/2 by Exercise ba and 13/2 by Exercise 6a. Therelore the answer is (9/2) + (13/2) =
b} Jince variance iz lnear for independent random variables, and clearly these variables are independent, the
variance of the sum is the sum of the variances, which are 21/4 hy Exercise 5b and 143/12 by Exercise tih.

Therefore the answer is (21/4) + {143/12}) = 103/6.

12, We need to determine how many positive integers less than n = pg are divisible by either p or ¢ . Certainly the
numbers p, 2p, 3p, ..., {g - 1)p are all divisible by p. This gives ¢ ~ 1 numbers. Similarly, p - I numbers

are divisible by g. None of these numbers is divisible by both p and ¢ since Iom(p, g) = py/ged{p.q) =

p/l = pg = 1. Therefore p + g — 2 numbers in this vange are divisible by p or g, so the remaining
pg L= (pt g2} = py- g4 L= (p - 1){g — 1) are not. Therefore the probability that a randomly
chosen integer in this range is not divisible by either p or ¢ is (p—1¥g - 1¥iipg — 1)

14, Technically 2 proof by mathematical induction Is required, but we will give a somewhat less formal version.
We just apply the definition of conditional probability to the right-hand side and observe that practically
evervthing cancels (each denominator with the numerator of the previous term):

cpl BBy Es oy M EL )

p{ﬂ Nk, E:;) TV Es (- 1V E)
m I} ﬂ}:‘g}) }}(f‘:l HEQH""HEHMI)

16, If n is odd, then it is impossible, so the probability is U, H s even, then there are ({n.n/2) ways that an
equal number of heads and tails can appear (choose the flips that will be heads), and 27 outcomes in sll, 5o

the prohability is C'(n, n/2)/27.

18. There are 2! hit strings. There are 2% palindromic bit strings. since once the first six bits are specified
arbitrarily, the remaining five bits are foreed, If a bit string is picked st random, then, the probability that it

is a palindrome is 2972 = 1/32.

20. a) Since there are b bing, each equally likely to receive the bail, the answer is 1/,
b} By linearity of expectation, the fact that 7 balls are tossed. and the answer to part {a), the answer is n/b.
¢) In arder for this part to make sense, we ignore n, and assume that the ball supply is unlimited and we keep
tossing unti] th(* bin contains a ball. The mumber of tosses then has a geometric distribution with p = 1/0
from part (a). The expectation s therefore b,
d} Again we have te assume that the ball supply s unlimited and we keep tossing unti] every bin conlains at
least eme Dall. The analvsis is ddentical to that of I“'*{vr('isw 2% in this set, with b here playing the role of »
there. By the solution given there. the answer is b3 _] /.

22, a) The intersection of two sets is 1 subset of each of them, so the largest p(A 0 B) could be would ocenr

when the smaller is a subset of the larger. In this case, that would mean that we want B ¢ AL i which case
ANB = B, so plA T BY = p(8) = 172, o construct an example. we find o commeon denominator of the
fractions involved, napelv 6, and let the sample space consist of 6 equally likely outvomes, sav numbered 1
through 6. We let B = {1.2.3} and A = {1.2.3.4} . The smallest hilersection would oveur when AU s as
By = pl Ay pl By - pl AN D). The largesi

8pace. whose probability is 1. and thai certainly can ocour bere. Soowe have 1o (273 + {1/2y — plA N By,

I3 eonld ever be is the entire sample

large as possible, since ol

which gives piATY = 160 To condtruet an expmple, again we find a conupon denominator of these fractions,

&




