

Basic Terminology

Face-->Polygonal region (forms dihedral angle).

Edge-->Line segment that is common to a pair of faces.

<u>Dihedral Angle</u>-->The angle formed by the union of polygonal regions in space that share an edge.

<u>Vertex</u>-->A point of intersection between edges.

<u>Polyhedron</u>-->(plural is polyhedra) The union of faces, any two of which have at most one edge in common, such that a connected finite region in space is enclosed without holes (i.e. such that it will contain liquid without spilling).

<u>Convex</u>-->A polyhedron is convex if every line segment formed by connecting two points inside the polyhedron is wholly contained inside that polyhedron OR is on a face of the polyhedron.

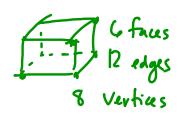
Types of Polyhedra

<u>Prism</u>-->Has two opposite, parallel faces (called *bases*) that are identical polygons.

<u>Right Prism</u>-->A prism whose *lateral faces* (those faces that are neither of the bases) are rectangles; the lateral faces meet up with the bases at a right angle.

<u>Pyramid</u>-->Has polygon for a base and a point NOT in the plane of the base (called the apex) that is connected with line segments to each vertex of the polygonal base.

<u>Right Pyramid</u>-->A pyramid whose apex lies perpendicularly over the center of the base.

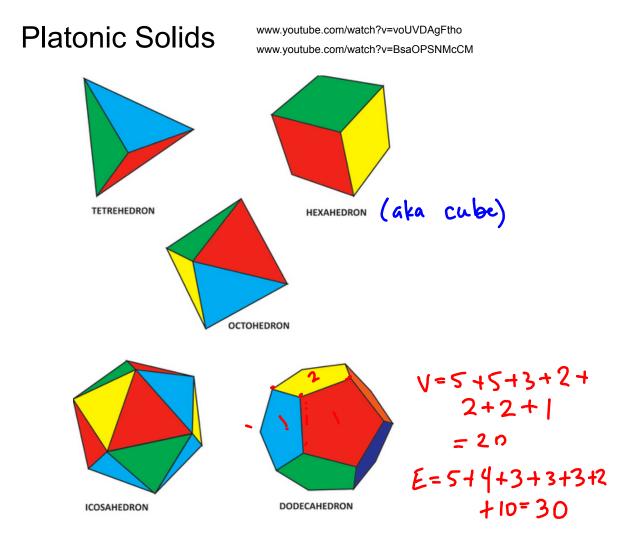

<u>Regular Polyhedron</u>-->All faces are identical regular polygons and all dihedral angles are the same.

<u>Platonic Solids</u>-->The ONLY five regular, convex polyhedra.

<u>Semiregular Polyhedron</u>-->Has several different regular polygonal faces, but it has the same arrangement of polygons at each vertex.

Other 3d Solids

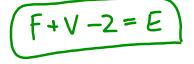
<u>Cylinder</u>-->Has two opposite, parallel, identical, simple, closed shapes as bases and line segments that connect corresponding points from base to base (it's like a prism, except that the bases are not polygons).

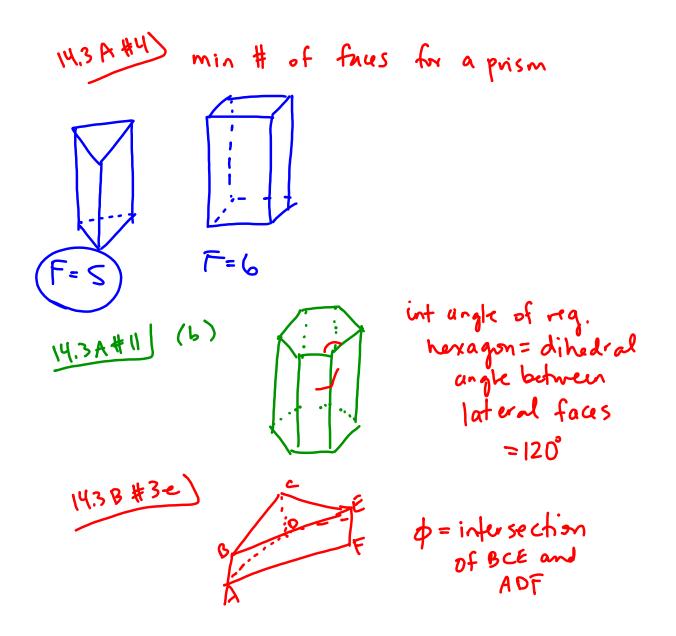

<u>Right Cylinder</u>-->A cylinder whose "lateral" surface meets the base at right angles.

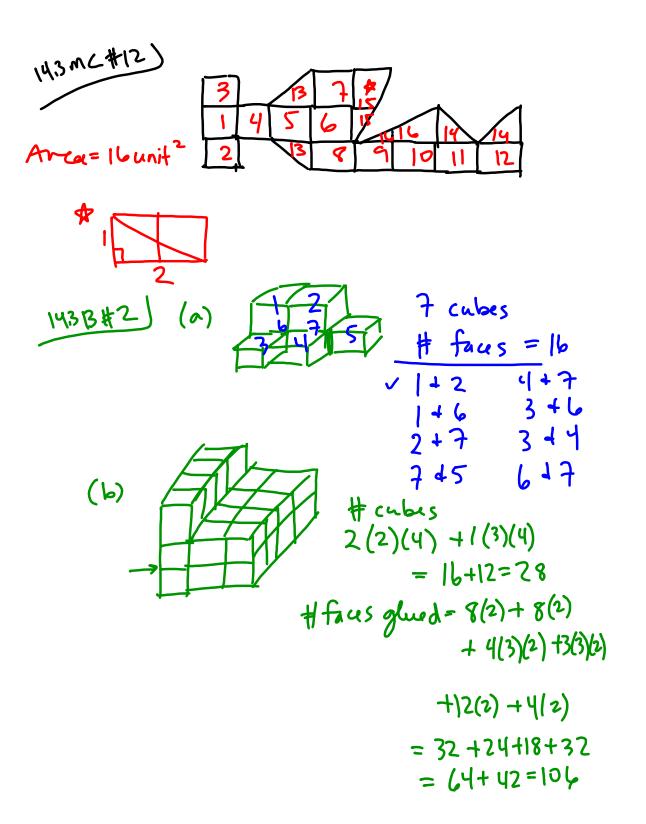
<u>Oblique Cylinder</u>-->A cylinder that is not a right cylinder, i.e. the "lateral" surface meets the bases at acute or obtuse angles.

<u>Cone</u>-->Has a simple, closed curve that creates the base and a point NOT in the plane of the base that is connected with line segments to each vertex of the base (it's like a pyramid, except that the base is not polygonal).

<u>Right Cone</u>-->A cone whose apex lies perpendicularly over the centroid of the base.


<u>Sphere</u>-->The set of all points in 3d space that are equidistant from a fixed point (called the *center*).




Solid Type	faus	vertus V	e a % S E	Face shape
tetrahedron	Ч	ч	ى	triangle
arbe	6	8	12	square .
octahedron	8	6	2	Mangle
dodeca hedron	12	20	35	pentagen
icosahedron	20	12	35	triangle
rect. pyramid	5	5	8	rect triangles
pentagonelpur	6	6	10	pentagon/triangles
pent. prism	7	10	15	pentagons/rectangles"
dodeca. prism	19	24	36	dodecagons/rect.
hexaz. pyr.	7	7	2	hexagon/triangles
ngon pyramio		N+1	2n	ngon/triangles
h-gon prism	n+2	2n	3n	rgon/rectangles

Euler's Formula

Is there some formulaic relationship between the number of faces, edges and vertices for any convex polyhedron?

