Math1100 Final Review Problems

From all sections covered in class in chapters 9-14
Fall, 2019
Instructor: Kelly MacArthur

Overarching topics list:

Overarching topics list:		
Limits	Derivatives	Integrals
Different types of limits	Find derivatives using short-cut rules • power rule • log/exponential rule • product rule • quotient rule • chain rule Higher-order derivatives Find equation of tangent line to curve at a given x-value (or point) Implicit differentiation Analyzing/sketching a graph using first and second derivative information • asymptotes • 1st derivative sign line • min/max points • 2nd derivative sign line • inflection points and concavity • sketch graph Story problems • optimization (minimize or maximize something like profit/cost/revenue) • related rates Functions of more than one variable • domain • evaluate at a point Partial derivatives	Indefinite integrals

1. Compute the following limits.

(a)
$$\lim_{x \to \infty} \frac{3x^2 + 1}{5x^2 + x + 5}$$

(b)
$$\lim_{x \to \infty} \frac{3x+1}{5x^2+x+5}$$

(c)
$$\lim_{x \to \infty} \frac{3x^3 + 1}{5x^2 + x + 5}$$

(d)
$$\lim_{x \to 5} \frac{3x^2 - 6x - 45}{2x^2 - 9x - 5}$$

(e)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + 3x - 4}$$

(f)
$$\lim_{x \to 2} \frac{x+9}{x^2-4}$$

(g)
$$\lim_{x\to 2} \frac{x^2-4}{x+9}$$

(h)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + 4x - 5}$$

(i)
$$\lim_{x \to \infty} \frac{ex^2 - 2x^3}{14x - 3x^3}$$

2. Find the derivative, $\frac{dy}{dx}$ of the following functions.

(a)
$$y=x^4-5x^{-3}+7-3^x+\ln x$$

(b)
$$y = \frac{x^2 - 6x + 9}{\ln x + 5x}$$

(c)
$$y = (x - 7x^5)^9 (e^{x^2 + 3x})$$

(d)
$$\sqrt{x^2 - 9x} = e^y + \frac{1}{5}x^2$$

(e)
$$x^3 + 8 = \ln(xy)$$

(f)
$$y = \sqrt[3]{5x + \ln(x^2 + x^3)}$$

(g)
$$y=3^{x^4}+e^{x^4}+x^{4e}$$

(h)
$$y = \frac{(7x^4 + e^{x^3} + 2x)^7}{\sqrt[3]{2^x + x^5}}$$

3. Find the equation of the tangent line for the given curve at the indicated point.

(a)
$$x^3 + xy + 4 = 0$$
 at $(2, -6)$

(b)
$$(x+2y)e^{xy}=xy^2$$
 at $(0,0)$

(c)
$$3x^2 - 4xy + 2y^3 = 2x + 16$$
 at $(0, 2)$

(d)
$$f(x)=x^2-3x$$
 at $x=2$

(e)
$$f(x)=x^2-3x$$
 at x=1

4. Find
$$f^{(4)}(x)$$
 if $f(x) = \frac{1}{x^2} + 7x^3 - e^x + 5x$.

5. Find the area between the two given curves.

(a)
$$y = 6 - x^2$$
 and $y = x$

(b)
$$y = 4x + 3$$
 and $y = x^2 + 3$

(c)
$$y=3x+2$$
 and $y=x^2+2$

(d)
$$y = 8 - x^2$$
 and $y = x^2$

6. Given the function
$$f(x,y) = \frac{7x - 4y^2}{\sqrt{5x}}$$

- (a)State the domain of the function.
- (b) Evaluate the function at (2,1).

7. The cost of producing x microwave ovens is $C(x)=0.01 x^2+20 x+300$ dollars, and the revenue function for the product is R(x)=164 x.

- (a) What is the profit function?
- (b) How many microwave ovens should be sold to maximize profit?
- (c) What is the maximum profit?

8. Compute the following integrals.

(a)
$$\int (2x^2 - x^4 - 5x^3 + 9) dx$$

(b)
$$\int \left(\frac{5}{x^2} + e^x - \frac{2}{x} \right) dx$$

(c)
$$\int 3x e^{x^2+5} dx$$

(d)
$$\int \frac{x^3 + 4x - x^{-1}}{x} dx$$

(e)
$$\int 100e^{-0.5x} dx$$

(f)
$$\int (3x^2 - 8x + 2)^9 (3x - 4) dx$$

(g)
$$\int \frac{2x^2}{x^3 - 1} dx$$

(h)
$$\int \frac{-4}{2x-5} dx$$

(i)
$$\int_{1}^{3} (4x - 6x^2) dx$$

(j)
$$\int_{1}^{5} (3x^3 + 2x - \frac{5}{x^2}) dx$$

(k)
$$\int_{1}^{4} \left(6x^2 + x - \frac{5}{x^2}\right) dx$$

(1)
$$\int_{1}^{2} \left(4 x^{3} + 5x - \frac{6}{x^{3}}\right) dx$$

(m)
$$\int_{3}^{3} \ln x \, dx$$

(n)
$$\int_{0}^{3} x(8x^2+9)^{-1/2} dx$$

- 9. For the function $y=x^3-2x^2+x+1$, answer the following questions.
 - (a) Find the horizontal and vertical asymptotes, if there are any.
 - (b) Fill in the first derivative sign line and find the min/max points.
 - (c) Fill in the second derivative sign line and find the inflection points.
 - (d) Sketch the graph of this function, given all the answers for questions (a) through (c).
- 10. For the function $y=x^4-2x^3+x^2$, answer the following questions.
 - (a) Find the horizontal and vertical asymptotes, if there are any.
 - (b) Fill in the first derivative sign line and find the min/max points.
 - (c) Fill in the second derivative sign line and find the inflection points.
 - (d) Sketch the graph of this function, given all the answers for questions (a) through (c).
- 11. For the function $f(x) = \frac{x^2 2x + 5}{(x 3)^2}$ with $f'(x) = \frac{-4(x + 1)}{(x 3)^3}$ and $f''(x) = \frac{14x + 27}{(x 3)^4}$, answer the following questions.
 - (a) Find the horizontal and vertical asymptotes, if there are any.
 - (b) Fill in the first derivative sign line and find the min/max points.
 - (c) Fill in the second derivative sign line and find the inflection points.
 - (d) Sketch the graph of this function, given all the answers for questions (a) through (c).
- 12. Suppose the revenue of a company can be modeled by the function $R(x)=32x-0.05x^2$ where R(x) is the revenue in thousands of dollars from the sale of x thousand units of products.
 - (a) Find the marginal revenue function, $\overline{MR}(x)$.
 - (b) How many units should be sold to maximize revenue?
 - (c) What is the maximum revenue?
 - (d) If the production is limited to 250 units, how many units will maximize the total revenue?
 - (e) Write in words what $\overline{MR}(10)$ means.
- 13. A farmer has 200 feet of fencing and wishes to construct two pens for his animals by first building a fence around a rectangular region, and then subdividing that region into two smaller rectangles by placing a fence parallel to one of the sides. What dimensions of the region will maximize the total area?

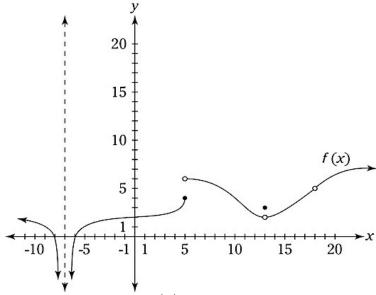
- 14. For the function $g(x, y, z) = x^2 y e^z$ find $\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial g}{\partial z}$.
- 15. If the consumption is \$8 billion when disposable income is 0, and if the marginal propensity to save is $\frac{dS}{dv} = 0.5 + e^{2.3y}$ (in billions of dollars), find the national consumption function.
- 16. Given $f(x, y) = \ln(x^2 + 2y) + x^4 2y^3 + xy$ find the following partial derivatives.
 - (a) f_x
 - (b) f_y
 - (c) f_{xy}
 - (d) f_{xx}
 - (e) f_{vv}
- 17. For the function given by $f(x, y, z) = 2xyz^2 + x^3y^2z y^4$ find the following partial derivatives.
 - (a) f_x
 - (b) f_{rr}
 - (c) f_{xyz}
 - (d) f_y when x=1, y=0 and z=2
- 18. Suppose that a product has marginal revenue given by \overline{MR} =75 and marginal cost given by \overline{MC} =40+ $\frac{5}{2}x$. If the fixed cost is \$105, how many units will give the maximum profit and what is the maximum profit?
- 19. Given the function $f(x, y, z) = \frac{2x^2 + \ln z}{\sqrt{2y + 6}}$ answer the following questions.
 - (a) Evaluate f(1,5,1)
 - (b) Find the domain of f(x, y, z).
- 20. A certain firm's marginal cost for a product is $\overline{MC} = 5x + 100$ and its marginal revenue is $\overline{MR} = 180 2x$. The total profit of the production of 100 items is \$15,000.
 - (a) Find the total profit function.
 - (b) Determine the level of production that yields the maximum profit.

21. If \$1000 is invested for X years at 8% compounded continuously, the future value of the investment is given by $S(x)=1000e^{0.08x}$.

- (a) Find the function that gives the rate of change of this investment.
- (b) Compare the rate at which the future value is growing after 1 year and after 10 years.

22. The marginal cost for a product is $\overline{MC} = 12x + 20$ dollars per unit, and the cost of producing 50 items is \$1,300. Find the total cost function.

23. If the graph below represents the graph of y = f(x), answer the following questions.



(a)
$$\lim_{x \to -6} f(x)$$

(e)
$$\lim_{x \to 13} f(x)$$

(i)
$$f(13)$$

(b)
$$\lim_{x \to 5^{+}} f(x)$$

(f)
$$\lim_{x \to 18} f(x)$$

(j)
$$f(18)$$

(c)
$$\lim_{x \to 5} f(x)$$

(g)
$$f(-6)$$

(k) For what x-values is
$$y = f(x)$$
 discontinuous?

(d)
$$\lim_{x\to 5} f(x)$$

(h)
$$f(5)$$

24. Suppose a continuous income stream has an annual rate of flow $f(t)=85e^{-0.01t}$, in thousands of dollars per year, and the current interest rate is 7% compounded continuously.

- (a) Find the total income over the next 12 years.
- (b) Find the present value over the next 12 years.
- (c) Find the future value 12 years from now.

- 25. Suppose the supply function for a product is $p=40+0.001\,x^2$ and the demand function is $p=120-0.2\,x$, where x is the number of units and p is the price in dollars. If the market equilibrium price is \$80, find the following.
 - (a) the consumer's surplus
 - (b) the producer's surplus
- 26. The cost of producing x cupcakes is given by $C(x)=100+20x+0.01x^2$ dollars. How many units should be produced to minimize average cost?
- 27. The demand function for a product under competition is $p=\sqrt{64-4x}$ and the supply function is p=x-1, where x is the number of units and p is in dollars. Find the following.
 - (a) the market equilibrium point
 - (b) the consumer's surplus at market equilibrium
 - (c) the producer's surplus at market equilibrium