

Sums and Scalar Multiples of Matrices

• Two matrices, A and B, are said to be equal if they are the same size, $m \times n$, with the same corresponding entries in each column. That is, $a_{ij} = b_{ij}$ for i = 1, 2, ..., m and j = 1, 2, ..., n.

• Two matrices, A and B, of the same size may be added together entrywise. That is, $a_{ij} + b_{ij}$ for i = 1, 2, ..., m and j = 1, 2, ..., n.

• A matrix A may be multiplied by a scalar r entrywise. That is, $rA = r [a_{ij}]$.

 $\frac{\text{Example:}}{2 - 4 - 7}$ r=5 rA = 5A =

Theorem 1 Properties of Matrix Addition and Scalar Multiplication Let A, B, and C be matrices of the same size, $m \times n$, and let r and s be scalars. (a) $A + B = \mathbf{B} + \mathbf{A}$ (additive (commutativity)(d) $r(A + B) = \mathbf{r} \mathbf{A} + \mathbf{B}$ (distribution) (b) $(A + B) + C = \mathbf{A} + (\mathbf{B} + \mathbf{C})$ (additive (commutativity)(e) $(r + s)A = \mathbf{r} \mathbf{A} + \mathbf{S} \mathbf{A}$ (c) $A + 0 = \mathbf{A}$ (additive (f) $r(sA) = (\mathbf{r} + \mathbf{S}) \mathbf{A}$ associativity identity is O natrix) of right size

Matrix Multiplication as Function Composition

Key Idea: Multiplication of matrices corresponds to composition of linear transformations!

Definition 3 If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p$, then the product of AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1, A\mathbf{b}_2, \ldots, A\mathbf{b}_p$. That is,

 $AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$

Thus, $A(B\mathbf{x}) = (AB)\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^p$.

Note: Each column of AB is a linear combination of the columns of A where the weights are the entries of the corresponding column of B.

Row-Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B. That is,

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$
where A is an $m \times n$ matrix. Note: $row_i(AB) = row_i(A) \cdot B$

$$\underbrace{Example:} A = \begin{pmatrix} 0 & -4 \\ 9 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 3 & -4 \end{pmatrix}$$

$$resulting$$

$$r$$

Theorem 2 Properties of Matrix Multiplication Let A, B, and C be matrices and r be a scalar such that the sums and products below are defined. Then,

WARNINGS:

 \mathbf{D}

- Matrix multiplication is NOT commutative. That is, in general, $AB \neq BA$.
- Cancellation laws do NOT hold. That is, AB = AC does NOT imply B = C
- Matrices CAN have zero divisors. That is, AB = 0 does NOT imply A = 0 or B = 0.
- We CAN take powers of matrices as long as they are $n \times n$. That is, $A^k = \underbrace{A \cdots A}_{k \text{ times}}$ and $A^0 = I_n$.

$$AB = \begin{bmatrix} 2 & 3 \\ -1 & -\frac{3}{2} \end{bmatrix} \begin{bmatrix} 3 & -1 & 6 \\ -2 & \frac{3}{3} & -4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Notice neither A nor B =0

Example:
$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 316 & 50 \end{bmatrix}$$

Oni: $BA = \begin{bmatrix} 5 & 67 \begin{bmatrix} 12 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ 7 & 8 \end{bmatrix}$

Definition 4 Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted A^T , whose columns are formed from the corresponding rows of A.

Example: Give the transpose of each of the following matrices:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{pmatrix}$$

Example:

$$A = \begin{bmatrix} 1 & z \\ D & -5 \\ 3 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} -6 & 1 & 2 \\ 4 & 3 & 0 \end{bmatrix}$$

$$AB = \begin{bmatrix} 2 & 7 & 2 \\ -9 & -15 & 0 \\ -22 & 0 & 6 \end{bmatrix} \qquad =) (AB)^{T} = \begin{bmatrix} 2 & -9 & -22 \\ 7 & -15 & 0 \\ 2 & 0 & 6 \end{bmatrix}$$

$$B^{T} A^{T} = \begin{bmatrix} -\frac{1}{5} & 4 \\ 1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 2 & -5 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -9 & -22 \\ 7 & -15 & 0 \\ 2 & 0 & 6 \end{bmatrix}$$

are tas Section 2.2 The Inverse of a Matrix ELOs: • Be able to explain (at least) three ways to identify whether or not a matrix is invertible. • Be able to use the inverse of a 2×2 matrix to solve a system of equations. • Be able to use algorithm to find matrix inverses. **Key Idea:** A matrix transformation A has an *inverse*, denoted A^{-1} , when A is one-to-one and onto. Suppose A is an $m \times n$ matrix, such that $A : \mathbb{R}^n \to \mathbb{R}^m$. ATS MXA IR, we must have (a) Will the matrix A have an inverse if n > m? Why or why not? 1 columns =) to span A **NAS** m En. (b) Will the matrix A have an inverse if n < m? Why or why not? n lin. indep. columns if we span of RM = IR A-1 to exist. (c) What about n = m? for must be tre

(d) Based on the previous observations, what must be true about the size of A in order for A^{-1} to exist?

(e) Based on the previous observations, what does RREF(A) look like?

n analog:

Definition 1 A square, $n \times n$, matrix is said to be <u>invertible</u> (or nonsingular) if there exists an $n \times n$ matrix, denoted A^{-1} , such that

$$A^{-1}A = I_n \quad and \quad I_n = AA^{-1}$$

f(f'(x)) = f'(f(x)) = x

Note: A^{-1} is called the inverse of A. A matrix that is not invertible is said to be singular.

Example:
$$A = \begin{bmatrix} 2 & 5 \\ -6 & 6 \end{bmatrix}$$
 check if $B = \begin{bmatrix} 6 & -5 \\ 6 & 2 \end{bmatrix}$
is A^{-1} .

Theorem 4
$$2 \times 2$$
 Inverses Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible, and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$
If $ad - bc = 0$, then A is not invertible (is singular).

The quantity ad - bc is called the **determinant** of A.

Thus, a 2×2 matrix is invertible if and only if det $A \neq 0$.

$$\frac{\text{Example:}}{\text{pink}} \text{ Find } A^{-1} \text{ if } A = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix}.$$

Theorem 5 Matrix Equation Solutions and Inverses If A is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution, $\mathbf{x} = A^{-1}\mathbf{b}$.

Example:
Use This
$$f$$
 solve.
 $x_1 + 3x_2 = -7$
 $-4x_1 - 5x_2 = 7$
Yey: This gives another way
for solve a system of linear
eqns.
Yey: This gives another way
for solve a system of linear
eqns.

Theorem 6 Properties of Inverses

(a) If A is an invertible matrix, then A^{-1} is invertible and

 $(A^{-1})^{-1} =$

(b) If A and B are $n \times n$ invertible matrices, then AB is also invertible. The inverse of AB is the product of the inverses of A and B in reverse order. That is,

 $(AB)^{-1} =$ _____

(c) If A is an invertible matrix, then A^T is also invertible. The inverse of A^T is the transpose of A^{-1} . That is, $(A^T)^{-1} =$

Extension: The product of $n \times n$ invertible matrices is invertible, and the inverse is the product of the individual inverses in reverse order.

Ut can define elementary matrix as a matrix we get from performing one ERO on In. $X = E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$, $E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $E_3^{=} \begin{bmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ we can 500 these are all "elementary matrices".

.Z **Theorem 7** An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n to A^{-1} . following the 24 ala Algorithm for Finding A^{-1} 1) Row reduce the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$. 2) If A is row equivalent to I, then $\begin{bmatrix} A & I \end{bmatrix}$ is equivalent to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$. 3) Otherwise, A does not have an inverse. Example: Find A⁻¹ for $A = \begin{bmatrix} 13 & 2 & 3' \\ 6 & -1 & 5 \\ -2 & 0 & -1 \end{bmatrix}$ Example:

Matrix Inversion as Simultaneously Solving n Linear Systems

 $\begin{array}{l}
 a_{i_1} \times_i + a_{i_2} \times_2 + \dots + a_{i_n} \times_n = b, \\
 a_{2_1} \times_1 + a_{2_2} \times_2 + \dots + a_{2_n} \times_n = b_2 \\
 \vdots \\
 \vdots \\
 \vdots
 \end{array}$ Ax=6 A-1 A 3 = 1 Qni X, +Qn2

ELOs:

• Be able to relate the equivalent statements we learned in Chapter 1 to the Invertible Matrix Theorem.

Section 2.3 Characterizations of Invertible Matrices

• Be able to apply the Invertible Matrix Theorem to determine whether or not a matrix is invertible.

Theorem 8 The Invertible Matrix Theorem Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false. (a) A is an invertible matrix. (b) A is row equivalent to the $n \times n$ _ matrix. (c) A has <u>postions</u>. (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the **_____** solution. (e) The columns of A form a linearly ______ set.(f) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is **Seq.** (g) The equation $A\mathbf{x} = \mathbf{b}$ has $\mathbf{a}\mathbf{b}$ (as $\mathbf{b}\mathbf{x}$) solution for each \mathbf{b} in \mathbb{R}^n . (h) The columns of A _____ S pan \mathbb{R}^{n} . (i) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n _____ \mathbb{R}^{n} I (j) There is an $n \times n$ matrix C such that $CA = _$ I (k) There is an $n \times n$ matrix D such that $AD = _$ (1) A^T is an <u>unverfible</u> matrix.

invertible

Definition 1 A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is said to be <u>invertible</u> if there exists a function $S : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that $S(T(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$ $T(S(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$ where $S = T^{-1}$ is the inverse of T.

Theorem 9 Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then, T is invertible if and only if A is an invertible matrix, and the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function such that

$$A^{-1}(A\mathbf{x}) = S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n$$
$$A(A^{-1}\mathbf{x}) = T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n$$

where $S = T^{-1}$ is the inverse of T.

 $\underline{\text{Proof}}$:

$$(\Rightarrow) Assume T^{-1} exists. Then
T(T^{-1}(x)) = T(T^{-1}(x)) = x \quad \forall x \in \mathbb{R}^{n}, i.e.
T is onto \mathbb{R}^{n} (because if \vec{b} is in
 \mathbb{R}^{n} and $\vec{x} = T(\vec{b})$ then $T(\vec{x}) = T(T(\vec{b})) = \vec{b}$
So each \vec{b} is in range of T). Thus, A^{-1}
 $exists.$$$

(
$$\Leftarrow$$
) Assume A^{-1} exists. Let $S(\vec{z}) = A^{-1}\vec{x}$. Then
S is a line operator and $S(T(\vec{x})) = S(A\vec{x})$
 $= A^{-1}(A\vec{x}) = \vec{x} \Rightarrow T^{-1}$ exist.

Sometimes if useful to treat a matrix 724 "blocks". It might show up naturally in ELOS: • Be able to multiply partitioned (block) matrices. Example: We can express the matrix $A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$ for logge the for logge the state of the state

$$\left[\begin{array}{ccc}A_{11} & A_{12} & A_{13}\\A_{21} & A_{22} & A_{23}\end{array}\right]$$

whose entries are submatrices (or "blocks").

• We can multiply partitioned matrices the same way as non-partitioned matrices, provided the product *AB* makes sense for each block *A* and *B*. Find the product *AB* where

$$A = \begin{bmatrix} 2 & -1 & 1 & 0 & 4 \\ 1 & 5 & -2 & 3 & -1 \\ 0 & -4 & -2 & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}.$$

$$A_{11} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 5 & -2 \end{bmatrix} A_{12} = \begin{bmatrix} 0 & 4 \\ 3 & -1 \end{bmatrix}$$

$$A_{12} = \begin{bmatrix} 0 & 4 \\ -2 & 1 \\ -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}.$$

$$A_{12} = \begin{bmatrix} 0 & 4 \\ 3 & -1 \end{bmatrix}$$

$$A_{22} = \begin{bmatrix} 0 & -4 & -2 \end{bmatrix} A_{12} = \begin{bmatrix} 0 & 4 \\ 3 & -1 \end{bmatrix}$$

$$B_1 = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -1 & 3 \\ 5 & 2 \end{bmatrix}$$

$$B_1 = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -1 & 3 \\ -1 \end{bmatrix} B_2 = \begin{bmatrix} -1 & 3 \\ -2 & 1 \\ -2 & 1 \\ -2 & 1 \\ -2 & 1 \end{bmatrix} B_2 = \begin{bmatrix} -1 & 3 \\ -2 & 2 \\ -2 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -1 & 3 \\ -1 \end{bmatrix} B_2 = \begin{bmatrix} -1 & 3 \\ -2 & 2 \\ -2 & 2 \end{bmatrix}$$

• A matrix of the form

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right]$$

is called *block upper triangular*. Assuming A is invertible, A_{11} is a $p \times p$ matrix, and A_{22} is a $q \times q$ matrix. Find a formula for A^{-1} . That is, find a matrix B such that $AB = I_{p+q}$.

$$AB = I_{prq} \iff P \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} I_{p} & 0 \\ D & I_{q} \end{bmatrix}$$

=) $\begin{bmatrix} A_{11} & B_{11} & +A_{12} & B_{21} \end{bmatrix} = I_{p} \qquad (2) \quad A_{22} & B_{21} = 0$
=) $A_{22}^{-1} A_{22} & B_{21} = A_{22}^{-1} & D$
 $\begin{bmatrix} B_{24} = 0 \\ B_{24} = 0 \end{bmatrix}$
(3) $A_{11} & B_{12} + A_{12} & B_{22} = D$
(4) $A_{22} & B_{21} = I_{q}$
=) $A_{22}^{-1} A_{22} & B_{22} = I_{q}$
=) $A_{22}^{-1} A_{22} & B_{22} = A_{22}^{-1} & I_{q}$
 $B_{22} = A_{22}^{-1}$

Section 2.5 Matrix Factorizations

(i.e. wri

ELOs:

- Be able to identify why an *LU* factorization of a matrix is useful.
- Be able to compute the LU factorization of a matrix A.

A=LU

LU Factorization

Suppose we want to solve the set of equations

where A is the same matrix in each equation.

• If A is invertible, what is the (unique) solution to each equation?

• What if A is not invertible?

Idea: If we could rewrite A in a clever way such that A = LU where L is a *lower triangular* matrix and U is an *upper triangular* matrix, this would reduce the number of steps needed to solve the problem. If we assume that an $m \times n$ matrix A can be reduced to REF without row exchanges, then we can perform this factorization A = LU. Here's an example:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ \vdots & * & 1 & 0 \\ \vdots & * & * & 1 \end{bmatrix} \begin{bmatrix} * & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 1 & -3 & 8 & 0 & -7 \\ 0 & 5 & -8 & 0 & 13 \end{bmatrix}$$

$$Example: A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 5 & 7 & 2 & 6 & 9 \\ 1 & -3 & 8 & 0 & -7 \\ 0 & 5 & -8 & 0 & 13 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & -3 & 1 & 4 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 & 1 \end{bmatrix} = L U$$

each of these is a linear system of eqns. $A\mathbf{x} = \mathbf{b_1}$ $A\mathbf{x} = \mathbf{b_2}$ $A\mathbf{x} = \mathbf{b}_{\mathbf{p}}$

<u>2.5</u>

$$\begin{bmatrix} L & b \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 12 \\ 3 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & -6 \\ -3 & 4 & -2 & 1 & 5 \end{bmatrix}$$

$$for D \qquad path \\ for D \qquad path \\ Lig = E \qquad 1 \qquad D \qquad 1 & 0 & 0 & 12 \\ Lig = E \qquad 1 \qquad D \qquad 1 & 0 & 0 & -36 \\ 0 & 1 & 0 & 0 & -36 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I & g \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & -2 & -3 & 12 \\ 0 & 3 & 6 & 0 & -36 \\ 0 & 0 & 0 & 1 & 197 \end{bmatrix}$$

$$\begin{bmatrix} U & g \end{bmatrix} = \begin{bmatrix} 1 & -2 & -2 & -3 & 12 \\ 0 & 3 & 6 & 0 & -36 \\ 0 & 0 & 0 & 1 & 197 \end{bmatrix}$$

$$U\vec{x} = \vec{g}$$

$$= \underbrace{I}_{1} = \begin{bmatrix} 1 & -2 & -2 & -3 & 12 \\ 0 & 3 & 6 & 0 & -36 \\ 0 & 0 & 0 & 1 & 197 \end{bmatrix}$$

$$U\vec{x} = \vec{g}$$

$$= \underbrace{I}_{1} = \begin{bmatrix} 1 & -2 & -2 & -3 & 12 \\ 0 & 3 & 6 & 0 & -36 \\ 0 & 0 & 0 & 1 & 197 \end{bmatrix}$$

$$U\vec{x} = \vec{g}$$

$$= \underbrace{I}_{1} = \begin{bmatrix} 1 & -2 & -2 & -3 & 12 \\ 0 & -3 & 6 & 0 & -36 \\ 0 & 0 & 0 & 1 & 197 \end{bmatrix}$$

$$= \begin{bmatrix} I & \vec{x} \end{bmatrix}$$

$$= \underbrace{I}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1719 \\ 0 & 0 & 0 & 1 & 197 \end{bmatrix}$$

$$= \begin{bmatrix} I & \vec{x} \end{bmatrix}$$

$$= \underbrace{I}_{1} = \begin{bmatrix} -1719 \\ -1719 \\ -341 \\ 197 \end{bmatrix}$$

$$= \underbrace{I}_{2} = \begin{bmatrix} -1719 \\ -1740 \\ -341 \\ 197 \end{bmatrix}$$

$$= \underbrace{I}_{2} = \begin{bmatrix} -1719 \\ -1740 \\ -341 \\ 197 \end{bmatrix}$$

$$= \underbrace{I}_{2} = \begin{bmatrix} -1719 \\ -1740 \\ -341 \\ 197 \end{bmatrix}$$

$$= \underbrace{I}_{2} = \begin{bmatrix} -1719 \\ -1740 \\ -341 \\ 197 \end{bmatrix}$$

$$= \underbrace{I}_{2} = \begin{bmatrix} -1719 \\ -1740 \\ -341 \\ 197 \end{bmatrix}$$

$$= \underbrace{I}_{2} = \begin{bmatrix} I & \vec{x} \end{bmatrix}$$

$$= \underbrace{I}_{1} = \begin{bmatrix} I & \vec{x} \end{bmatrix}$$

$$= \underbrace{I}_{2} = \underbrace{I}_{1} = \begin{bmatrix} I & \vec{x} \end{bmatrix}$$

LU Factorization Algorithm

- Reduce A to row echelon form, REF(A)=U, using only row replacement operations. Note: this is not always possible.
 Black to the state of the state of
- 2. Place entries in L such that the same sequence of row operations reduces L to I.

Example: Find an LU factorization of

$$A = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} A \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ -4 \end{bmatrix} \begin{bmatrix} -4 \\ -5 \end{bmatrix} \begin{bmatrix} 3 \\ -8 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\$$

$$= \begin{bmatrix} 2 & 4 & -1 & 5 & -2 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 2 & 3 & 2 & 1 & 0 & 0 \\ 0 & -9 & -3 & -4 & 10 & -1 & 0 & 0 \\ 0 & 12 & 4 & 12 & -5 & 3 & 0 & 0 \end{bmatrix}$$

Find L: (1000) = 1000 (2200) = 1000 (2200) = 1000 (2200) = 1000 (2200) = 1000 (200) = 10000 (200) = 10000 (200) = 10000 (200) = 10000(200) = 10

2.5

se ar

 $\Rightarrow A = (E_p \cdots E_i)^{-1} U = U U$

=) L= (Ep...E,)"

c.e. A to u