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Section 2.1 Matrix Operations 2. l

withsrotrtm 1 Lhoe.

e Be able to perform matrix operations (addition and multiplication).

e Be able to describe ways in which matrix properties are similar and different to those of real numbers.
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Matrix Notation: Wc op m-‘,w uS/ Ma.“V\CLS .

Recall that we denote an m X n matrix A where m represents the number of rows and n represents
the number of columns in the following ways:

e Be able to find the transpose of a matrix.
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The " scalar entry of the jth column is denoted a;;. The main diagonal entries are aiy, as,ass, ...

Definition 1 A diagonal matriz is a square n X n matrix whose nondiagonal entries are zero.

9
Note: An example of a diagonal matrixz is the identity matriz, I,,. (Ns'\— lee SW
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Definition 2 A zero matriz is an m X n matrixz whose entries are all zero.

Note: A zero matriz is denoted as 0. '* Coan bl. Mg q%&; ad_"a..QQ
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O © ©




2.\

Sums and Scalar Multiples of Matrices

e Two matrices, A and B, are said to be equal if they are the same size, m x n, with the same corre-
sponding entries in each column. That is, a;; = b;; for i =1,2,....mand j =1,2,....,n

e AR e A {qﬂj
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e Two matrices, A and B, of the same size may be added together entrywise. That is, a;; + b;; for
1=1,2,...,mand j=1,2,....,n

Example: 2 | 3 B: -I © (O
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e A matrix A may be multiplied by a scalar r entrywise. That is, rA = r [a;].

Example: A = ( S q > g
2 4 -1
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Theorem 1 Properties of Matrix Addition and Scalar Multiplication Let A, B, and C be
matrices of the same size, m X n, and let r and s be scalars.

(a) A+B =B+, (wmhhw‘z)(d) 1B = cAerD 7(415-‘4% *a)
(b) (A+B)+C = A"'(e'('c')(wooab‘\nﬁ)(e) r+s)A= rAESK
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2.6

Matrix Multiplication as Function Composition

Key Idea: Multiplication of matrices corresponds to composition of linear transformations!
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Definition 3 If A is an m x n matriz, and if B is an n x p matriz with columns by, by, ..., by, then
the product of AB is the m X p matrixz whose columns are Aby, Aba, ..., Ab,. That is,

AB=A[b; by ... b, |=[Ab; Aby ... Ab, ]

Thus, A(Bx) = (AB)x for all x € RP.

Note: Fach column of AB is a linear combination of the columns of A where the weights are
the entries of the corresponding column of B.
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Row-Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products
of corresponding entries from row ¢ of A and column j of B. That is,

(AB)ij = aitbij + aizbaj + -+ - + ainby;

where A is an m X n matrix. Note: row;(AB) = row;(A) -

’ (2x2)(2¢3)
Example: A - [0 "1} B o [ ‘ " 3} 21‘3“‘
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Theorem 2 Properties of Matrix Multiplication Let A, B, and C' be matrices and r be a scalar
such that the sums and products below are defined. Then,

(a) ABC) - (PB)C assc"o'fﬂv‘*"vz4 of Amuth.
o) AB+0)= AB+AC 7A&<4~:-\M iby
() (B+O)A= B AeCA Uy +ommnudadoty
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2.1
WARNINGS:

Matrix multiplication is NOT commutative. That is, in general, AB # BA.

Cancellation laws do NOT hold. That is, AB = AC does NOT imply B = C

Matrices CAN have zero divisors. That is, AB = 0 does NOT imply A =0 or B = 0.

We CAN take powers of matrices as long as they are n x n. That is, A* = A--- 4 and A° = I,,.

k times
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Transpose of a Matrix, A7

2.1

Definition 4 Given an m x n matriz A, the transpose of A is the n x m matriz, denoted AT, whose
columns are formed from the corresponding rows of A.

Example: Give the transpose of each of the following matrices:

a b

O a(m )

following sums and products.

(@) @Ay = A

®) (4+B7= AT ¢8T

(d) (AB)T

Theorem 3 Transpose Properties Let A and B be matrices whose sizes are appropriate for the

(c) For any scalar r,
BTA"

Note: The transpose of a product of matrices equals the product of their transposes in reverse order.
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Section 2.2 The Inverse of a Matrix §6'/v_"— M“'NC&S
y 1)

ELOs: hove mmeverxes i..

e Be able to explain (at least) three ways to identify whether or not a matrix is invertible.
e Be able to use the inverse of a 2 x 2 matrix to solve a system of equations.

e Be able to use algorithm to find matrix inverses.

Key Idea: A matrix transformation A has an inverse, denoted A~!, when A is one-to-one and onto.

Suppose A is an m X n matrix, such that 4 : R™ — R™, A T™S MYA M&'\&)‘

me‘]‘W‘

") (a) Will the matrix A have an inverse if n > m? Why or why not?

.‘0..“"/} has ./\o:»\u-mvxs)""’«sf"‘m'

mén.

(b) Will the matrix A have an inverse if n < m? Why or why not?

bt W ove have N fin ondep, Lol HH
spa~ of RM =

(c) What about n = m?
(d) Based on the previous observations, what must be true about the size of A in order for A~! to exist?

(e) Based on the previous observations, what does RREF(A) look like?

Definition 1 A square, n X n, matriz is said to be invertible (or nonsingular) if there exists an n X n
matriz, denoted A~', such that

A'A=1, and I,=AA""

Note: A™1 is called the inverse of A. A matriz that is not invertible is said to be singular.
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Example: A S 2 'S (JAA(JL (‘G B = t - J
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Theorem 4 2 x 2 Inverses Let A = [ (z 2 ] . Ifad — bc # 0, then A is invertible, and

1 d —b
-1 _
4 _ad—bc[—c a]’

If ad — be = 0, then A is not invertible (is singular).

The quantity ad — bc is called the determinant of A.

Thus, a 2 X 2 matriz is invertible if and only if det A # 0.

e g AT W A=[2 S
@) \ 2

Q/J\.. - < -3 .
ley Fnd AT A [_" .



2.2

Theorem 5 Matrix Equation Solutions and Inverses If A is an invertible n X n matriz, then
for each b € R™, the equation Ax = b has the unique solution, x = A~ 'b.

Example Yoo ! Twis gares oneshor L%
USe ™S o solve . ‘8’_‘_0 colre A S\a,S‘k"’\"F Dunaer

% & 3% =T LS
Yy, S0 = T

Theorem 6 Properties of Inverses

(a) If A is an invertible matriz, then A=' is invertible and

(A—l)—l —

(b) If A and B are n x n invertible matrices, then AB is also invertible. The inverse of AB is the
product of the inverses of A and B in reverse order. That is,

(AB)! =

(c) If A is an invertible matriz, then AT is also invertible. The inverse of AT is the transpose of A1,
That is,

(AT)_l —

Extension: The product of n x n invertible matrices is invertible, and the inverse is the product of the
individual inverses in reverse order.
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A Theorem 7 An n xn matriz A is invertible if and only if A is row equivalent to I, and in this case,

any sequence of elementary row operations that reduces A to I,, also transforms I,, to A~L.

Twas morlthm fOI“Fk‘l':dlng Al 7\"3 No\-c.'

1) Row reduce the augmented matrix [ A I |. v x ‘: 7\“

2) If A is row equivalent to I, then [ AT ] is equivalent to [ I A1 ]
S slhorf"

Lo

Example z 2z 3 0\ zas !
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3) Otherwise, A does not have an inverse.
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Matrix Inversion as Simultaneously Solving n Linear Systems
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acterizations of Invertible Matrices
ELOs:

e Be able to relate the equivalent statements we learned in Chapter 1 to the Invertible Matrix Theorem.

e Be able to apply the Invertible Matrix Theorem to determine whether or not a matrix is invertible.

/w:M'a.d' P

Theorem 8 The Invertible Matrix Theorem Let A be a square n X n matriz. Then the following
statements are equivalent. That is, for a given A, the statements are either all true or all false.

(a) A is an invertible matriz.

(b) A is row equivalent to the n x n i&&‘,:‘i‘ matriz.
(c) A has W ino‘\’

postions.

(d) The equation Ax = 0 has only the %V‘“-Q solution.
(e) The columns of A form a linearly ]QM . set.

(f) The linear transformation x — Ax is __ Y\ =de “we
(9) The equation Ax = b has AA' wk OWL  solution for each b in R™.

(h) The columns of A S PM R™.

(i) The linear transformation x — Ax maps R" M“o R™.

(j) There is an n x n matriz C such that CA =

F F

(k) There is an n x n matriz D such that AD =
¢
(1) AT is an M-‘%‘o\l— matriz.
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2.3

Definition 1 A linear transformation T : R™ — R" is said to be invertible if there exists a function
S :R™ — R" such that

Invertible Linear Transformations

S(T(x)) =x for all x € R"
T(S(x)) =x for allx € R"

where S = T~ is the inverse of T.

Theorem 9 Let T: R™ — R" be a linear transformation and let A be the standard matriz for T . Then, T
is invertible if and only if A is an invertible matriz, and the linear transformation S given by S(x) = A7'x
18 the unique function such that

AN (Ax) = S(T (x)) = x for allx € R™

A(A7'%) = T(S(x)) = x for allx € R™

where S =T~V is the inverse of T .

Proof:
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“’b\vm" Section 2.4 Partitioned Matrices
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e Be able to multiply partitioned (block) matrices.
Example: Nas:‘ﬂha’ \}
We can express the matrix I
3 0 -1 5 9 —2 -Co(‘ V?/-
A=| -5 2 40 - ,\I\/\‘J’V\
31

7—4

as the 2 x 3 partitioned (or block) matrix

[An Ao Al%]
Agr Ay Ass

whose entries are submatrices (or “blocks”).

e We can multiply partitioned matrices the same way as non-partitioned matrices, provided the product
AB makes sense for each block A and B. Find the product AB where

4
2 -1 10 4 1
A=|1 5 -2 3 -1 [A“ Al?] B=1| 3 7 :[Bl].
\ ¢ ‘ 0 -4 -2 7 -1 53
(xl/' x\

\\v\«"‘
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9'\%’5 All= [2 ( —\] A;z_ 2 _(]




2.4

e A matrix of the form

| A Ap
=%

is called block upper triangular. Assuming A is invertible, A1; is a p X p matrix, and Ags is a g X ¢
matrix. Find a formula for A~!. That is, find a matrix B such that AB = I,,,.

P F %
AB: IM & P\ A A%‘:_ B 6)2—3 5[ 2 __o 1
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Section 2.5 Matrix Factorizations W%—hg\,\ .
ELOs: (2. whle Mmadviy A in Sonve
e Be able to identify why an LU factorization of a matrix is useful. W -rcf M)

e Be able to compute the LU factorization of a matrix A.

A=LU

LU Factorization

AX:bl

Ax = by a W 538"'0-\
Ax:bp: D'( %.

Suppose we want to solve the set of equations °
7y Ui of e

where A is the same matrix in each equation.

7

Q’\. @ If A is invertible, what is the (unique) solution to each equation?

e What if A is not invertible?

Idea: If we could rewrite A in a clever way such that A = LU where L is a lower triangular
matrix and U is an upper triangular matrix, this would reduce the number of steps needed to solve
the problem. If we assume that an m x n matrix A can be reduced to REF without row exchanges,
then we can perform this factorization A = LU. Here’s an example:

1 0 0 O * ox ok % ok
A_*lOO 0 % =x *x = \/\L *\‘l
Tk ox 1.0 0 0 % x x '1""
x % ok 1 0 0 0 el WM
wn

L(mxm) U(mxn) w
B \ | "

Example:

A-
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4 0 OD° Lv e v
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2.8

LU Factorization Algorithm ae [ owe
A D Haer  pradudt
1. Reduce A to row echelon form, REF(A)=U, using onlyfow/replacement operations.
Note: this is not always possible. Es=.. A =uU oS §2
r : lowéer A

2. Place entries in L such that the same sequence of row operations reduces L to I.

= A=(Ep-€,)y U= LY

= ~

= L= (Ge€)
2 4 -1 5 -2 o &

A[él -5 3 -8 1] te. A — U

Example: Find an LU factorization of

2 -5 -4 1 8
-6 0 7 -3 1
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