ELOs:

- Be able to find the determinant of a matrix recursively.
- *•* Be able to find the determinant of a matrix using cofactor expansion.
- Be able to explain why the determinant of a triangular matrix is the product of the diagonal entries.

Introduction: This entire chapter is devoted to the study of determinants. First we'll compute determinants to give a unler associated w any square runner vier we'll see what that unber can tell us!!!

 m st be a square matrix

 3.1

Definition 1 For $n \geq 2$, the determinant of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of *n* terms of the *form* $\pm a_{1j}det(A_{1j})$ *with alternating signs and where the entires* $a_{11}, a_{12}, \ldots, a_{1n}$ *are from the first row of A. That is,*

$$
det(A) = a_{11} det(A_{11}) - a_{12} det(A_{12}) + \dots + (-1)^{1+n} a_{1n} det(A_{1n})
$$

=
$$
\sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(A_{1j}),
$$

where A_{ij} *is the submatrix of A obtained by deleting the i*th *row and j*th *column.*

The quantity $(-1)^{i+j} det(A_{ij}) = C_{ij}$ *is called the* (i, j) -cofactor *of A*.

Notation: $|A| = det(A)$

Example: Compute determinant of A. 3.1 $A = \begin{bmatrix} 5 & 1 & 2 \\ 4 & 0 & 1 \\ 7 & 0 & 7 \end{bmatrix}$ expand on 1 row 5 3

Theorem 1 Cofactor Expansion *The determinant of an* $n \times n$ *matrix A can be computed by a cofactor expansion across any row or down any column.*

Cofactor expansion across the i th row *is given by:*

$$
det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}
$$

Cofactor expansion across the jth column *is given by:*

$$
det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \cdots + a_{nj}C_{nj}
$$

Example: Find det(A) given
\n
$$
A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 3 & 0 & 5 & -4 \\ 9 & -2 & 0 & 1 \\ 10 & 1 & 0 & 2 \end{bmatrix}
$$
. Expand on any row by

Theorem 2 If A is a triangular matrix, then $det(A)$ is the product of the entries on the main diagonal of A .

$$
\frac{\text{Why?} \text{Let } A \text{ both like } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ 0 & a_{22} & a_{23} & a_{23} & a_{23} \\ 0 & a_{33} & a_{33} & a_{33} & a_{33} \\ 0 & a_{33} & a_{33} & a_{33}
$$

$$
\begin{bmatrix}\n\frac{ex}{b} & \frac{1}{b} & \frac{1}{c} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}\n\end{bmatrix}
$$

Ex Find det (A) for $A = \begin{bmatrix} 2 & 3 & -1 \\ 5 & 4 & 0 \end{bmatrix}$.

Section 3.2 Properties of Determinants

ELOs:

- *•* Be able to identify and use properties of determinants, including those related to row operations, transposes and products.
- Understand how the value of the determinant "determines" whether or not a matrix is invertible.

After Mont $\frac{1}{\sqrt{6}}$	Now $\frac{1}{\sqrt{6}}$	Now $\frac{1}{\sqrt{6}}$	Now $\frac{1}{\sqrt{6}}$	Noting $\frac{1}{\sqrt{6}}$
(a) If a multiple of one row of A is added to another row to produce a matrix B, then $\frac{det(B)}{B} = \frac{det(B)}{B}$	(use space below choose)			
(b) If two rows of A are interchanged to produce B, then $\frac{det(B)}{B} = \frac{det(A^T)}{B}$	(use space choose)			
(c) If one row of A is multiplied by k to produce B, then $\frac{det(B)}{B} = \frac{det(A^T)}{B}$				
(d) The determinant of the transpose of A is, $\frac{det(A^T)}{B} = \frac{det(A^T)}{B}$	for conver or or or or or not or for not not<!--</b-->			

(c)
$$
C = \begin{bmatrix} ka & kb \\ c & d \end{bmatrix}
$$
 $det(C) =$

Suppose a square matrix A has been reduced to an echelon form U by row replacements and row interchanges. That is, $REF(A)=U$ where U is an upper triangular matrix.

If there are r interchanges, then

 $det A =$ where $B = REF(A)$. Assume Ep. E.E, A=B Case 2 A-1 DNE casel / B #I (but B is square)
=> B has a row of zeroes $B = I$ \Rightarrow dat (B) = 0 \Rightarrow det (6) = det (I) = 1 #0 \Rightarrow det $(E_{\rho} - E_{2}E_{1}A) = 0$ $\Rightarrow \text{d}\text{u}(A) \neq \emptyset$ $f(x)$ det $(g_0) - \det(g_1)$ det $(A) = 0$ \Rightarrow $AH(A)$ **Theorem 4** A square matrix A is invertible if and only if $det(A) \neq 0$. This is a really big deal! This gives us
gride way to check for pristence of A.

Section 3.3 Cramer's Rule, Volume and Linear Transformations

- Be able to use Cramer's Rule to solve a linear system.
- Understand the geometric interpretation of the determinant (scales area in \mathbb{R}^2 and volume in \mathbb{R}^3).

Introduction: We can solve matrix equations using the theory of determinants.

Theorem 7 Cramer's Rule Let A be an invertible $n \times n$ matrix. For any $\mathbf{b} \in \mathbb{R}^n$, the unique solution x of $Ax = b$ has entries given by

$$
x_i = \frac{det(A_i(\mathbf{b}))}{det(A)}, \quad i = 1, 2, \dots, n.
$$

 $A_i(\mathbf{b})$ is defined as the matrix where the ith column of A is replaced by \mathbf{b} . That is,

$$
A_i(\mathbf{b}) = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{b} & \dots & \mathbf{a}_n \end{bmatrix}.
$$

rolumn.

$$
\frac{\text{Proof:}}{\text{Let}} A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix} \text{ and } \mathcal{I} = \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \cdots & \vec{e}_n \end{bmatrix}
$$
\n
$$
\text{Assume } A \vec{x} = \vec{b}. \text{ Then}
$$

Example: Use Cramer's rule to solve the system

$$
3x_1 - 5x_2 = 47
$$

$$
-7x
$$
, $+ x_2 = -15$

Application to Engineering Example: i Laplace Transform tool for solving differential equi DES converts system of DES into linear system. use Cranie's Rule to solve system. t. is an unspecified parameter Find ^t values where this system $2t$ x, $+Sx_2 = 3$ has solutions $10x_1 + t_{x_2} = 3$

Theorem 8 An Inverse Formula Let A be an invertible $n \times n$ matrix. Then,

$$
A^{-1} = \frac{1}{det(A)} adj(A)
$$

where adj(*A*) *denotes the adjugate (or classical adjoint), the* $n \times n$ *matrix of cofactors* $C^T = [C_{ii}]$ *.*

Why does this tomals work? let A be invertible matrix. $\Rightarrow AA^{-1} = A [\vec{x}, \vec{x}, \cdots, \vec{x}] = [A\vec{x}, A\vec{x} - A\vec{x}] = I$ AP orders of A^{-1} $\overrightarrow{z_i}$

but
$$
\mathbf{I} = [\vec{e}_1 \vec{e}_2 \dots \vec{e}_n]
$$

\n $\Rightarrow A\vec{x}_1 = \vec{e}_1, A\vec{x}_1 = \vec{e}_2, \dots, A\vec{x}_n = \vec{e}_n$
\n $\Rightarrow A\vec{x}_1 = \vec{e}_1, A\vec{x}_1 = \vec{e}_2, \dots, A\vec{x}_n = \vec{e}_n$
\n \Rightarrow The j^{th} column of A^{-1} (namely \vec{x}_j) is a
\nvector $+$

$$
\Rightarrow \text{ by Convers} \quad \text{Rule} \quad \text{Value} \quad
$$

So we build up
$$
A^{-1}
$$
 blue flux,
\n
$$
A^{-1} = \left[\frac{\det(A_1(\vec{\epsilon}_1))}{\det A} - \frac{\det(A_1(\vec{\epsilon}_2))}{\det A} - \frac{\det(A_1(\vec{\epsilon}_3))}{\det A} \right]
$$
\n
$$
\frac{\det(A_n(\vec{\epsilon}_1))}{\det A} - \cdots - \frac{\det(A_n(\vec{\epsilon}_n))}{\det A} \right]
$$
\n
$$
A^{-1} = \frac{1}{\det A} \left[\frac{C_{11} - C_{21} - \cdots - C_{11}}{C_{12} - C_{21} - \cdots - C_{11}} \right] = \frac{C^{-1}}{\det A} \qquad \text{for any positive } C
$$
\n
$$
\frac{C_{11}}{\det A} = \frac{C_{12}}{\det A} \qquad \text{for all positive } C
$$
\n
$$
\frac{C_{12}}{\det A} = \frac{C_{11}}{\det A} \qquad \text{for all positive } C
$$
\n
$$
\frac{C_{12}}{\det A} = \frac{C_1}{\det A} \qquad \text{for all positive } C
$$
\n
$$
\frac{C_2}{\det A} = \frac{C_1}{\det A} \qquad \text{for all positive } C
$$

$$
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{det(A)} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}
$$

 $A^{-1} = \frac{C^T}{dt^T(A)}$

$$
C_{12} = (-1)^{161} (a_{22}) = a_{22}
$$

\n
$$
C_{12} = (-1)^{162} (a_{12}) = -a_{21}
$$

\n
$$
C_{21} = (-1)^{241} (a_{12}) = -a_{12}
$$

\n
$$
C_{22} = (-1)^{242} (a_{11}) = a_{11}
$$

\n
$$
C_{23} = (-1)^{242} (a_{11}) = a_{11}
$$

\n
$$
C_{24} = (-1)^{242} (a_{11}) = a_{11}
$$

\n
$$
C_{25} = (-1)^{242} (a_{11}) = a_{11}
$$

\n
$$
C_{36} = (-1)^{242} (a_{11}) = a_{11}
$$

Example: Let
$$
A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 2 & -2 & 1 \end{bmatrix}
$$
. Find A^{-1} if it exists.

\n $C_1 = (-1)^{14} \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix} =$

\n $C_n = (-1)^{142} \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} =$

\n $C_1 = (-1)^{142} \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} =$

\n $C_1 = (-1)^{142} \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} =$

\n $C_1 = (-1)^{142} \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} =$

\n $C_2 = (-1)^{142} \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} =$

\n $C_3 = (-1)^{143} \begin{bmatrix} 0 & 3 \\ 2 & -2 \end{bmatrix} =$

\n $C_4 = (-1)^{142} \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} =$

\n $C_5 = (-1)^{142} \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} =$

Determents as Avea (volume).

Let's first consider a 2×2 diagonal matrix $A = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$ det $(A) = ad$ notice geometrical interpretation $\left\{ \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{matrix} \right\}$ Area of the rectangue a) $\begin{bmatrix} a \\ c \end{bmatrix}$ are by $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and. $\Rightarrow |det(A)|=area$ of rectangle given by columns of A. uz know ¹⁰ row swaps do not charge Idet (A) adding multiple of one row to another does not change /detCA)(. $B | det(A) | = | det(A^T) |$ =) column swaps and adding nuclipple of one column to another column of ^A also doesn't change IdetCA)].

Theorem 10 Expansion Factors

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ *be the linear transformation determined by the* 2×2 *matrix A. If S is a parallelogram in* R2*, then*

 ${area of T(S)} = |det(A)| \cdot {area of S}$

 $Let T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ *be the linear transformation determined by the* 3×3 *matrix A. If S is a parallelepiped* $in \mathbb{R}^3$ *, then*

 ${volume \ of \ } T(S)$ } = $|det(A)| \cdot {volume \ of \ } S$ }

I.e. detCA) gives us scaling factor.

