ELOs:

- Know the 10 axioms that define a vector space V.
- Determine if a set is a vector space using the axioms of vector spaces.
- Identify both examples and non-examples of subspaces.
- Show that the span of vectors in a vector space V is a subspace of V.

Introduction: Much of the theory we learned in Chapters 1 and 2 based on properties of \mathbb{R}^n may be abstracted to generalized vector spaces.

Definition 1 A vector space is a nonempty set V of objects, called vectors, which are <u>defined by two</u> operations, called addition and <u>multiplication</u> by scalars, which satisfy the 10 axioms listed below. The axioms must hold for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, and scalars $c, d \in \mathbb{R}$.

- (1) $\mathbf{u} + \mathbf{v} \in V$
- (2) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (3) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- (4) $\exists \mathbf{0} \in V \text{ such that } \mathbf{u} + \mathbf{0} = \mathbf{u}$
- (5) $\forall \mathbf{u} \in V, \exists (-\mathbf{u}) \in V \text{ such that } \mathbf{u} + (-\mathbf{u}) = \mathbf{0}.$
- (6) $c\mathbf{u} \in V$
- (7) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- $(8) \ (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- (9) $c(d\mathbf{u}) = (cd)\mathbf{u}$
- (10) $1\mathbf{u} = \mathbf{u}$

By extension of the above axioms:

- (*i*) 0**u** = **0** (*ii*) c**0** = **0**
- (iii) $-\mathbf{u} = (-1)\mathbf{u}$

Example 1: R^n where $n \ge 1$ is a positive integer. Vector addition and scalar multiplication are defined component-wise, and **0** is defined as the vector which has every entry equal to 0. The 10 axioms defining a vector space V reduce to properties of real number algebra.

Note: In Section 1.3, we showed that the above axioms hold for \mathbb{R}^n .

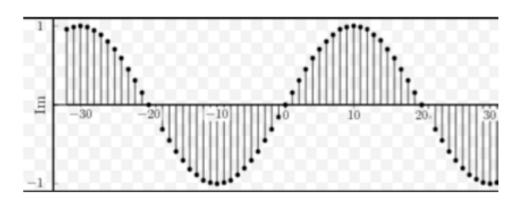
Example 2: The space of $m \times n$ matrices with m, n fixed. Matrix addition and scalar multiplication are defined component-wise and the zero matrix 0 is defined as the matrix with every entry equal to 0. The 10 axioms defining a vector space V reduce to properties of real number algebra.

Note: In Section 2.1, we showed that the above axioms hold for $m \times n$ matrices with m, n fixed.

Example 3: $S = \{ \text{doubly infinite sequences of numbers} \}$. An element of S can be written as

- $\{y_k\} = (\dots, y_{-2}, y_{-1}, y_0, y_1, y_2, \dots) \quad \{w_k\} = (\dots, w_{-1}, w_0, w_1, \dots)\}$ (a) Define addition. $t_k = \{y_k\} \quad a \neq v = \{w_k\}. \quad Then$ $t_k = \{\dots, w_{-2} + y_{-2}, w_{-1} + y_{-1}, w_0 + y_0, w_1 + y_{1}, \dots, \{w_{-1} + y_{-2}, \dots, (w_{-1} + y_{-2}, \dots, (w$
- (c) Checking the vector space axioms is equivalent to checking the axioms for \mathbb{R}^n because vector addition and scalar multiplication are done entry by entry just with infinitely many entries in this case.

Note: We may consider $\mathbb S$ as the space of discrete-time signals. A signal may be visualized by its graph over its integer "domain."



Example 4: $\mathbb{P}_n = \{ \text{polynomials of degree at most } n \text{ where } n \ge 0 \}$

$$p(t) = a_0 + a_1 t + \dots + a_n t^n, \quad a_0, \dots, a_n \in \mathbb{R}$$

(a) Define addition.

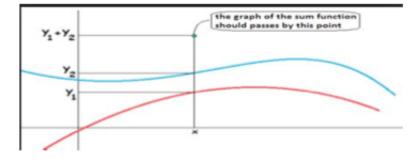
(b) Define scalar multiplication.

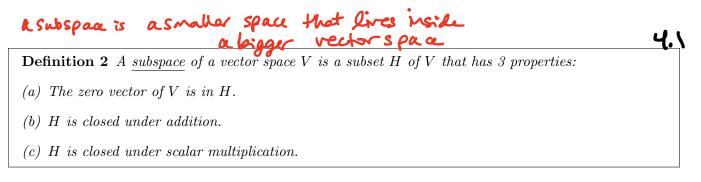
(c) Check all of the axioms to show that V is a vector space.

 $\frac{\text{Example 5: } V = \{\text{all real-valued functions defined on a domain } \mathbb{D}\} = \{f: \mathbb{D} \rightarrow \mathbb{R}\} \{4, 1\}$ (a) Define addition. $f, g \in V$ $f \in \mathbb{D}$. \mathbb{D} is some (f+g)(t) = f(4)+g(4) or f = sint $subset \circ f \mathbb{R} \sim$ $g = -st^2 + \frac{1}{t}$ $dl = \delta \mathbb{R}$ $b = \{t | t > 0\}$ sf = ssint c(fGJ) = cfGJ)

(c) Check all of the axioms to show that V is a vector space.

As we did for the discrete-time signals, we may visualize functions as graphs over their domains..





Exercise:

(a) Do all vector spaces have at least one subspace? If so, what is it?

(b) Is the set of all polynomials with real coefficients \mathbb{P} a subspace of the vector space of all functions from $\mathbb{R} \to \mathbb{R}$? Why or why not?

(c) Is \mathbb{R}^2 a subspace of \mathbb{R}^3 ? Why or why not?

(d) Is a plane in \mathbb{R}^3 not through the origin a subspace of \mathbb{R}^3 ? Why or why not?

Note: Consider $H = \{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x, y \in \mathbb{R} \} \subset \mathbb{R}^{3}$ subset of This set H IS a subspace of R³. (A) JEH / $(c) \quad C \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \\ cy \end{bmatrix} \in H \quad \checkmark$

This subspace It books and acts like IR² (we say it's isomorphic to IR²). As in Chapter 1, a *linear combination* of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is given by

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p, \quad c_i \in \mathbb{R}$$

and span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ } is all possible linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$.

Exercise: Suppose $\mathbf{v}_1, \mathbf{v}_2 \in V$. Let $H = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Show that H is a subspace. (of V). • Check that the zero vector of V is in H.

```
• Check that H is closed under addition.
```

• Check that *H* is closed under scalar multiplication.

Theorem 1 If V is a vector space, and $\mathbf{v_1}, \ldots, \mathbf{v_p} \in V$, then $span\{\mathbf{v_1}, \ldots, \mathbf{v_p}\}$ is a subspace of V.

Note: we call $span\{v_1, \ldots, v_p\}$ the subspace spanned by $\{v_1, \ldots, v_p\}$.

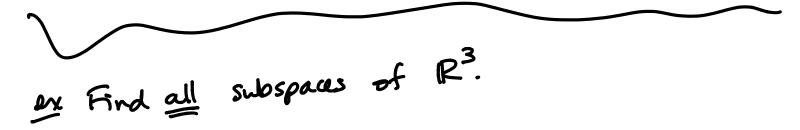
Example: Let

$$H = \left\{ \begin{bmatrix} a - 3b \\ b - a \\ a \\ b \end{bmatrix} : a, b, \in \mathbb{R} \right\} \subset \mathbb{R}^4.$$

Show that H is a subspace of \mathbb{R}^4 .

hotice:

$$\begin{bmatrix} a-3b\\ b-a\\ a\\ b \end{bmatrix} = \begin{bmatrix} 1\\ -1\\ 1\\ 0 \end{bmatrix} + \begin{bmatrix} -3\\ 1\\ 0\\ 1\\ 0 \end{bmatrix}$$



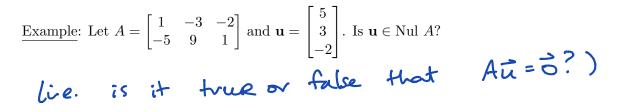
Section 4.2 Null Spaces, Column Spaces and Linear Transformations

ELOs:

- Define the null space Nul A and column space Col A of $m \times n$ matrix A and linear transformation T.
- Compare and contrast Nul A and Col A.

Introduction: In Section 4.2, we'll generalize some of the theory we learned in Sections 1.4 (The Matrix Equation $A\mathbf{x} = \mathbf{b}$) and 1.5 (Solution Sets of Linear Systems), recognizing the solution set of a homogeneous matrix equation $A\mathbf{x} = 0$ and the set of all linear combinations of specified vectors as subspaces of \mathbb{R}^{k} .

```
The Null Space of a MatrixSubspaces thatoccur naturally<br/>as solution Sets of homogeneous<br/>systems.Definition 1The null space of an m \times n matrix A is<br/>Nul A = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}That is, Nul A is the set of all solutions to the homogeneous matrix equation, A\mathbf{x} = \mathbf{0}.
```



Remember NulA = {x = R^ | Ax = 0}

Theorem 2 The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

That is, the set of all solutions to the linear system $A\mathbf{x} = \mathbf{0}$ of m homogeneous equations in n unknowns is a subspace of \mathbb{R}^n .

Question: Why is Nul A a subspace of \mathbb{R}^n ?

/	Subspace data: (HinV)	
ζ	(a) DEV =) DEH	
	(10) Y I, J EH, UHJ EH also	C H
	(c) V CER and uEH, then ch	50)

<u>Proof</u>: Need to verify properties (a), (b) and (c) of subspace definition from Section 4.1.

(a) Show that $\mathbf{0} \in \text{Nul } A$.

(b) Show that if $\mathbf{u}, \mathbf{v} \in \text{Nul } A$, then $\mathbf{u} + \mathbf{v} \in \text{Nul } A$ (closure under addition).

(c) Show that if $\mathbf{u} \in \text{Nul } A$ and $c \in \mathbb{R}$, then $c\mathbf{u} \in \text{Nul } A$ (closure under scalar multiplication).

Solving the homogeneous matrix equation, $A\mathbf{x} = \mathbf{0}$, gives us an *explicit description* of Nul A. That is, we can write Nul A as the span of a collection of vectors.

<u>Example</u>: Find an *explicit description* or *spanning set* for Nul A where $A = \begin{bmatrix} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{bmatrix}$.

Example. augmented matrix [366390] RREF [1207180] b 1213030] RREF [1207180] o 01-6-50] Virot columns

Observations:

• Spanning set of Nul A is automatically linearly independent.

because the free variables are the weights/coefficients of the linear combo. of vectors that span nulA.

• If Nul $A \neq \{0\}$, then the number of vectors in the spanning set of Nul A equals the number of free variables in $A\mathbf{x} = \mathbf{0}$

Definition 2 The column space of an $m \times n$ matrix $A = [\mathbf{a}_1 \dots \mathbf{a}_n]$ is I like this are best. Col $A = Span\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ $= \{ \mathbf{b} \in \mathbb{R}^m : A\mathbf{x} = \mathbf{b} \ where \ \mathbf{x} \in \mathbb{R}^n \}$ That is, Col A is the set of all linear combinations of the columns of A Question: Why is Col A a subspace of \mathbb{R}^m ? Subspace defn: (H inV) (a) DEV => DEH (b) V ti, J EH, Utjettalso (c) V CER and UCH, then chi EH (a) 0 ∈ span { a, 1 a, ..., an } √ (b) if ti, v e span {a, b, -, a, }, then u+v e span {a, ..., a, } (c) if u e colA, then cu e spansai, --, and **Theorem 3** The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

4.2

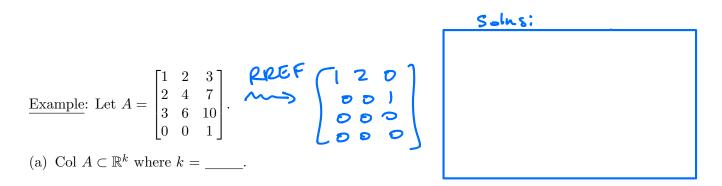
<u>Example</u> : Find a matrix A such that $W = Col A$ where $W = -$	($x_1 - 2x_2$	
Example: Find a matrix A such that $W = Col A$ where $W = -$	ł	$3x_2$	$: x_1, x_2 \in \mathbb{R} $
	ι	$\begin{bmatrix} x_1 + x_2 \end{bmatrix}$)

Observations:

- Col A is the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.
- The column space of an $m \times n$ matrix A is all of \mathbb{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^m$.

The Contrast Between Nul A and Col A

Question: How are Nul A and Col A related?

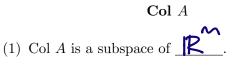


- (b) Nul $A \subset \mathbb{R}^k$ where k =____.
- (c) Find a nonzero vector in $\operatorname{Col} A$, if one exists.

(d) Find a nonzero vector in Nul A, if one exists.

 $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

- (1) Nul A is a subspace of $\underline{\mathbb{R}}^{2}$
- (2) Nul A is <u>implicitly</u> defined: that is, you are given only a condition, $\underline{A} = \underline{S}$, that vectors \mathbf{v}_i in Nul A must satisfy.
- (3) Row operations on **[A b]** are required to find vectors in Nul A.
- (4) No clear relation between Nul A and the entries in A.
- (5) A vector **y** in Nul A has property that $\underline{A} \overrightarrow{y} \overrightarrow{e} \overrightarrow{O}$.
- (6) Given a specific vector \mathbf{v} , we can determine if $\mathbf{v} \in \operatorname{Nul} A$ by computing $A \overline{\mathbf{v}} \cdot$.
- (7) Nul $A = \{0\}$ if and only if $A\mathbf{x} = \mathbf{0}$ has only the solution.
- (8) Nul $A = \{0\}$ if and only if $\mathbf{x} \mapsto A\mathbf{x}$ is _____.



- (2) Col A is $\underline{ixplicitly}$ defined: that is, you are given how to build vectors in Col A.
- (3) Vectors in Col A are <u>displayed</u> of the columns of A.
- (4) Each column of A is in Col A.
- (5) A vector in Col A has the property that $A\vec{x} = \vec{v}$ has $a\vec{t}$ feast one solution.
- (6) Given a specific vector \mathbf{v} , we can determine if $\mathbf{v} \in \operatorname{Col} A$ by doing row aps on $[A \ \overrightarrow{v}]$
- (7) Col $A = \mathbb{R}^m$ if and only if $A\mathbf{x} = \mathbf{b}$ has a solution for <u>every $\mathbf{b} \in \mathbb{R}^m$ </u>.
- (8) Col $A = \mathbb{R}^m$ if and only if $\mathbf{x} \mapsto A\mathbf{x}$ maps $\mathbf{R}^n \longrightarrow \mathbf{R}^n$.

Definition 3 A linear transformation $T: V \to W$ is a function such a	that
• $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) r(\mathbf{v})$	
• $T(c\mathbf{u}) = cT(\mathbf{t})$	
for all $\mathbf{u}, \mathbf{v} \in V$ and $c \in \mathbb{R}$.	deas as but
(a) The <u>kernel</u> (or null space) of T is $\{\mathbf{u} \in V : T(\mathbf{u}) = 0 \in W\} \subset V$.	Sand and cold
(b) The <u>range</u> of T is $\{\mathbf{w} \in W : T(\mathbf{v}) = \mathbf{w} \text{ for some } \mathbf{v} \in V\} \subset W.$	Some ideas as but NULA and cold but NULA and cold j. ops. New to fin. paces
	applicable veder space

Example: Let V be the vector space of real-valued functions f defined on an interval [a, b] with the property that the functions are differentiable and their derivatives are continuous functions on [a, b]. Let W be the vector space of all continuous functions on the interval [a, b]. Let $D: V \longrightarrow W$ be the derivative transformation: D(f) = f'.

(a) What differentiation rules from Calculus show that D is a linear transformation?

(b) What subspace is the kernel of D?

(c) What is the range of D?

Section 4.3 Linearly Independent Sets; Bases

ELOs:

- Determine whether a set of vectors in a vector space V is linearly dependent or independent.
- Check whether or not a set of vectors is a basis of a vector space V.
- Understand the similarities and differences between a spanning set and a basis.

Introduction: In Section 4.3, we'll generalize some of the theory we learned in Sections 1.3 (Vector Equations and Span) and Section 1.7 (Linear Independence), to define a basis, a linearly independent, spanning set of a vector space.

Definition 1 A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\} \subset V$ is said to be <u>finearly</u> independent if the vector equation

 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$

has only the <u>trivial</u> solution. If a <u>non-trivial</u> solution exists, then we say that $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is

<u>linearly dependent</u> and we can find a linear dependence relation among $\mathbf{v}_1, \ldots, \mathbf{v}_p$.

Recall: From Section 1.7, we know that

- a set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ containing **0** is _____
- a set of two vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ is _______ if at least one vector is a scalar multiple of the other

Example: Let

$$\mathbf{p}_1(t) = 1, \ \mathbf{p}_2(t) = t, \ \mathbf{p}_3(t) = 4 - t.$$

Is $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ linearly independent in \mathbb{P} ? \mathbb{P} = set of all real-coefficient polynomials

Exercise: Let

$$\mathbf{p}_1(t) = 1, \ \mathbf{p}_2(t) = t, \ \mathbf{p}_3(t) = 4 - t^2.$$

Is $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ linearly independent in \mathbb{P} ?

Theorem 2 An indexed set $\{v_1, \ldots, v_p\}$ of two or more vectors with $v_1 \neq 0$ is linearly dependent if and only if some vector \mathbf{v}_j with j > 1 is a linear combination of the preceding $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.

How is this different than lin. If of colds of A? can't necessarily write augmented matrix because more general. ecause this **Definition 2** Let $H \subset V$ be a subspace. An indexed set of vectors $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_p} \subset V$ is a <u>basis</u> for H if

(*i*) \mathcal{B} is a linearly independent set. (*ii*) $H = Span\{\mathbf{b_1}, \dots, \mathbf{b_p}\}.$

Example: Let $\mathbf{e_1}, \ldots, \mathbf{e_n}$ be the columns of the $n \times n$ identity matrix. That is, $I_n = [\mathbf{e_1} \ldots \mathbf{e_n}]$. Recall: $\mathbf{e_i}$ is the $n \times 1$ vector with the i^{th} entry equal to 1 and all other entries 0.

- (a) Are the columns of I_n linearly independent or linearly dependent?
- (b) What is the span of the columns of I_n ?

(c) Does $\{\mathbf{e_1}, \dots, \mathbf{e_n}\}$ form a basis for \mathbb{R}^n ? Why or why not?

- <u>Exercise</u>: Let $A = [\mathbf{a_1} \dots \mathbf{a_n}]$ be an $n \times n$ invertible matrix.
- (a) Are the columns of A linearly independent or linearly dependent?
- (b) What is the span of the columns of A?
- (c) Does $\{\mathbf{a_1}, \ldots, \mathbf{a_n}\}$ form a basis for \mathbb{R}^n ? Why or why not?

<u>Exercise</u>: Consider $S = \{1, t, t^2, \ldots, t^n\}$ the *standard basis* for \mathbb{P}_n . To verify this set is a basis for \mathbb{P}_n , we need to check

- (a) Is the set of vectors linearly independent?
- (b) Does the set of vectors span \mathbb{P}_n ?

Key Idea: Bases are the most efficient or minimal spanning sets of a vector space.

Example: Let

Prove

$$\mathbf{v}_{1} = \begin{bmatrix} 0\\ 2\\ -1 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 2\\ 2\\ 0 \end{bmatrix}, \mathbf{v}_{3} = \begin{bmatrix} 6\\ 16\\ -5 \end{bmatrix}, \text{ and } H = \operatorname{span}\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}.$$

Show that span{ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ } = span{ $\mathbf{v}_1, \mathbf{v}_2$ }. Find a basis for H.

• Show span{
$$\mathbf{v}_1, \mathbf{v}_2$$
} \subset span{ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ }.

• Show span{ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ } \subset span{ $\mathbf{v}_1, \mathbf{v}_2$ }

• Find a basis for H.

basis of $H = \{\vec{v}_1, \vec{v}_2\}$

Theorem 3 (Spanning Set Theorem) Let $S = {\mathbf{v}_1, \ldots, \mathbf{v}_p} \subset V$ and $H = span {\mathbf{v}_1, \ldots, \mathbf{v}_p}$.

- If some $\mathbf{v}_k \in S$ is a linear combination of the remaining vectors in S, the set formed by removing \mathbf{v}_k still spans H.
- If $H \neq \{0\}$, some subset of S is a basis for H.

Ч,З

Bases for Nul A and Col A

Given
$$A = \begin{bmatrix} 1 & -1 & 0 & -1 & 5 \\ 2 & -3 & -1 & -4 & 8 \\ 2 & -2 & 0 & -2 & 2 \\ 1 & 2 & 3 & 5 & 1 \end{bmatrix}$$
 and $RREF(A) = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

Example: Find a basis for Nul A.

For
$$Aix = 0$$
, we get
 $\begin{cases} x_1 = -x_3 - x_4 \\ x_2 = -x_3 - 2x_4 \\ x_3 = x_3 \\ x_4 = x_4 \\ y_5 = 0 \end{cases}$

 $\Rightarrow NulA = span \left\{ \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \end{bmatrix} \right\} = basis for NulA = \left\{ \begin{bmatrix} -1 \\ -3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \end{bmatrix} \right\}$

Example: Find a basis for Col A.

Yay!

Theorem 4 The pivot columns of a matrix A form a basis for Col A.

Notice from last example: $A = \begin{bmatrix} 1 & -1 & 0 & -1 & S \\ 2 & -3 & -1 & -4 & 8 \\ 2 & -2 & 0 & -2 & 2 \\ 1 & 2 & 3 & 5 \end{bmatrix}$ 53= b, +b2 $\vec{b}_{1} = \vec{b}_{1} + 2\vec{b}_{2}$ and $\vec{a}_3 = \vec{a}_1 + \vec{a}_2$ Check: $\begin{bmatrix} 1\\ 2\\ z \end{bmatrix} + \begin{bmatrix} -1\\ -3\\ -2\\ 0 \end{bmatrix} = \begin{bmatrix} -1\\ 0\\ 3 \end{bmatrix}$ $\vec{a}_{u} = \vec{a}_{1} + 2\vec{a}_{2}$ i.l. same linear combination coefficients can be used to describe columns of A and columns of RREF(A).

ELOs:

- Understand how vector spaces with bases \mathcal{B} containing *n* vectors behave like \mathbb{R}^n .
- Explain in words and pictures different coordinate systems.
- Utilize the Unique Representation Theorem and describe a coordinate mapping.

Key Idea: *n*-dimensional vector spaces behave like \mathbb{R}^n . In choosing a basis, we are choosing a coordinate system to make a vector space look like \mathbb{R}^n . we say *n*-dim vector space is isomorphic

Theorem 7 The Unique Representation Theorem

Let $\mathcal{B} = {\mathbf{b_1}, \dots, \mathbf{b_n}}$ be a basis for a vector space V. Then, for each $\mathbf{x} \in V$, there exist unique $c_1, \dots, c_n \in \mathbb{R}$ such that $\mathbf{x} = c_1 \mathbf{b_1} + \dots + c_n \mathbf{b_n}.$

Proof: B spans $V = \exists c_1, ..., c_n \in \mathbb{R}$ s.t. $\vec{x} = c_1 \vec{b}_1 + ... + c_n \vec{b}_n$. Assume $\exists d_{1,1}, ..., d_n$ s.t. \vec{x} can also be written as $\vec{x} = d_1 \vec{b}_1 + ... + d_n \vec{b}_n$. $\Rightarrow 0 - (2)$ gives $\vec{x} - \vec{x} = (c_1 - d_1)\vec{b}_1 + ... + (c_n - d_n)\vec{b}_n$ $(\Rightarrow) \vec{b} = (c_1 - d_1)\vec{b}_1 + ... + (c_n - d_n)\vec{b}_n$ but this is homogeneous vector Rgn_1 and $\vec{b}_1 \perp ... \perp \vec{b}_n$ $\Rightarrow c_1 - d_1 = 0, ..., c_n - d_n = 0$ must be true. $\Rightarrow c_1 = d_1 \forall i = l_1 - ... n$ $i.e. c_1, ..., c_n$ are unique weights.

Definition 1 Suppose $\mathcal{B} = {\mathbf{b_1}, \ldots, \mathbf{b_n}}$ is a basis for a vector space V and $\mathbf{x} \in V$. The coordinates of \mathbf{x} relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the weights $c_1, \ldots, c_n \in \mathbb{R}$ such that

$$\mathbf{x} = c_1 \mathbf{b_1} + \dots + c_n \mathbf{b_n}$$

The mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is called the coordinate mapping (determined by \mathcal{B}) where

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in R^n$$

is the coordinate vector of \mathbf{x} relative to \mathcal{B} or the \mathcal{B} -coordinate vector of \mathbf{x} .

$$\underline{\text{Example:}} \text{ Let } \mathcal{B} = \left\{ \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}, \mathcal{E} = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \text{ and } \mathbf{x} = \begin{bmatrix} 6\\5 \end{bmatrix}. \text{ Find } [\mathbf{x}]_{\mathcal{B}} \text{ and } [\mathbf{x}]_{\mathcal{E}}.$$

$$\begin{bmatrix} b\\5 \end{bmatrix} = b_1 \begin{bmatrix} 3\\1 \end{bmatrix} + b_2 \begin{bmatrix} 9\\1 \end{bmatrix} = 3 \begin{bmatrix} \mathbf{x}\\ \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\3 \end{bmatrix} \\ \begin{bmatrix} \mathbf{x}\\ \mathbf{x} \end{bmatrix}_{\mathcal{E}} = \mathbf{x} \\ \begin{bmatrix} \mathbf{x}\\ \mathbf{x} \end{bmatrix}_{\mathcal{E}} = \mathbf{x} \\ \begin{bmatrix} \mathbf{x}\\ \mathbf{x} \end{bmatrix} = \mathbf{x$$

A Graphical Interpretation of Coordinates

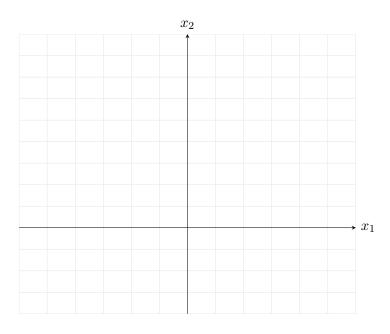
Key Idea: A coordinate system defines a one-to-one mapping of points in a set to \mathbb{R}^n .

<u>Example</u>: Let $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$ be a non-standard basis of \mathbb{R}^2 .

(a) Suppose $\mathbf{x} \in \mathbb{R}^2$ and $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$. Find the standard coordinates for \mathbf{x} . That is, find $[\mathbf{x}]_{\mathcal{E}}$ where $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$.

(b) Find the \mathcal{B} -coordinates for the vector $\mathbf{b} = \begin{bmatrix} -2\\ 8 \end{bmatrix}$.

(c) Interpret your work from parts (a) and (b) geometrically in terms of the coordinate system generated by \mathcal{B} .



Definition 2 Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ be a basis and $\mathcal{P}_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \mathbf{b}_n]$ be the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n . Then, the vector equation

$$\mathbf{x} = c_1 \mathbf{b_1} + \dots + c_n \mathbf{b_n}.$$

 $is \ equivalent \ to$

$$\mathbf{x} = \mathcal{P}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

 $\underline{Observation}$:

$$\vec{\mathbf{x}} = \mathcal{F}_{\mathbf{B}}\left[\vec{\mathbf{x}}\right]_{\mathbf{B}} \qquad (\Longrightarrow) \qquad \begin{pmatrix} \mathbf{x}_{1} \\ \vdots \\ \vdots \\ \mathbf{x}_{n} \end{pmatrix} = \left[\vec{\mathbf{b}}_{1} \quad \vec{\mathbf{b}}_{2} \cdots \quad \vec{\mathbf{b}}_{n} \right] \begin{pmatrix} \mathbf{c}_{1} \\ \mathbf{c}_{2} \\ \vdots \\ \mathbf{x}_{n} \end{pmatrix} \qquad (\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$$

<u>Example</u>: Given $\mathcal{B} = \left\{ \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ and $\mathbf{x} = \begin{bmatrix} 6\\8 \end{bmatrix}$.

(a) Find the change-of-coordinates matrix $\mathcal{P}_{\mathcal{B}}$ from \mathcal{B} to the standard basis in \mathbb{R}^2 , and the change-of-coordinates matrix $\mathcal{P}_{\mathcal{B}}^{-1}$ from the standard basis in \mathbb{R}^2 to \mathcal{B} .

(b) Use $\mathcal{P}_{\mathcal{B}}^{-1}$ to find $[\mathbf{x}]_{\mathcal{B}}$.

Theorem 8 Let $\mathcal{B} = {\mathbf{b_1}, \dots, \mathbf{b_n}}$ be a basis for a vector space V. Then, the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a **one-to-one** linear transformation from V **onto** \mathbb{R}^n .

Proof: Let
$$\bar{u}, \bar{v} \in V$$
. Then $\bar{u} = c_1 \bar{b}_1 + \dots + c_n \bar{b}_n$ and $\bar{v} = a_1 \bar{b}_1 + \dots + a_n \bar{b}_n$
for some $a_1, c_1 \in \mathbb{R}$, $\forall i = 1, \dots, n$.
(a) $=)\bar{u} + \bar{v} = (a_1 + c_1)\bar{b}_1 + \dots + (a_n + c_n)\bar{b}_n$
(a) $[\bar{u} + \bar{v}]_{\mathcal{B}} = \begin{bmatrix} a_1 + c_1 \\ \vdots \\ a_n + c_n \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \rho \begin{bmatrix} c_1 \\ \vdots \\ \rho \\ c_n \end{bmatrix} = \rho \begin{bmatrix} c_1 \\ \vdots \\ \rho \\ c_n \end{bmatrix} = \rho \begin{bmatrix} c_1 \\ \vdots \\ \rho \\ c_n \end{bmatrix} = \rho \begin{bmatrix} \bar{v} \\ p \\ c_n \end{bmatrix} = \rho \begin{bmatrix} \bar{v}$

we find

$$[\mathbf{x}]_{\mathcal{B}} = [c_0 + c_1 t + c_2 t^2 + c_3 t^3]_{\mathcal{B}} =$$

and say that the vector space \mathbb{P}_3 is *isomorphic* to \mathbb{R}^4 .

Note: We say that a vector space V is *isomorphic* to a vector space W if every vector space computation in V is accurately reproduced in W and vice versa.

Exercise: Let
$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} = \left\{ \begin{bmatrix} 3\\3\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\3\\1 \end{bmatrix} \right\}$$
. Let $H = span\{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ given $\mathbf{x} = \begin{bmatrix} 9\\13\\15 \end{bmatrix}$.
 $\vec{\mathbf{x}} = C_1 \begin{bmatrix} 3\\1\\2\\1 \end{bmatrix} + C_2 \begin{bmatrix} 0\\1\\3\\1 \end{bmatrix}$
 $\begin{pmatrix} q = 3c_1 & 0\\13 = 3c_1 + c_2 & 0\\13 = 3c_1 + c_2 & 0\\15 = c_1 + 3c_2 & 3 \end{bmatrix}$ $\bigcirc C_1 = 3$ (12) (12) (12) (12) (12) (12) (13) (12) (13)

Section 4.5 Dimension of a Vector Space

what does "dimension" really near, for mension of a vector space. Alimension of Nul 4 and Col 4 to the number of right of the vector space ELOs: • Find the dimension of a vector space. • Relate the dimension of Nul A and Col A to the number of pivots

4.5

Key Idea: We showed in Section 4.4 that a vector space V with a basis \mathcal{B} containing n vectors is *isomorphic* to \mathbb{R}^n . n represents the *dimension* of V and does not depend on the choice of basis.

Theorem 9 If a vector space V has a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$, then any set in V containing more than n vectors must be linearly dependent. roof: (we'll sketch the proof here to give you the Proof: idea) 1) Form set of p coordinate vectors s.t. all coordinate vectors live in Rⁿ =) I nontrival soln 3 Then we know that set of p coordinate vectors in Rⁿ is lin. dependent. 3 There's a linear xform from coordinate vectors to prectors in V=> > > nontrivial solu to homogeneous equ of our original prectors from V => those prectors are len. dep. Note: this proof idea basically uses isomorphism and Rn

Theorem 10 If a vector space V has a basis on n vectors, then every basis of V must consist of exactly _____ vectors.

This gives us an invariant of the vector space V. A different choice of basis yields the same number.

Definition 1 If V is spanned by a finite set, then V is <u>finite-dimensional</u>, and the <u>dimension of V</u>, written dim(V), is the number of vectors in a basis for V.

If V is NOT spanned by a finite set, then V is said to be infinite-dimensional.

Example:

- (a) $\dim(\{0\}) = 0$ (by definition)
- (b) $\dim(\mathbb{R}^n) =$
- (c) $\dim(\mathbb{P}_n) =$

(d) $\dim(\mathbb{P}) =$

<u>Example</u>: Find a basis and the dimension of the subspace $W = \left\{ \begin{bmatrix} a+b+2c\\ 2a+2b+4c+d\\ b+c+d\\ 3a+3c+d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}.$

Answer:

Key Idea: The subspaces of \mathbb{R}^n can be classified by dimension.

301 O-duin, subspace.

1-dim. subspace: any subspace spanned by a Single vector (a line thru origin) 2-dim subspace: any subspace spanned by two lin. It vectors (a plane thru origin) 2 IR³ itself. only subspace: Subspaces of a Finite-Dimensional Space

Theorem 11 Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded to a basis for H. Also, H is finite-dimensional and dim $H \leq \dim V$.

~

_

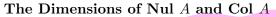
() Ex let
$$H = span \left\{ \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \end{bmatrix}$$

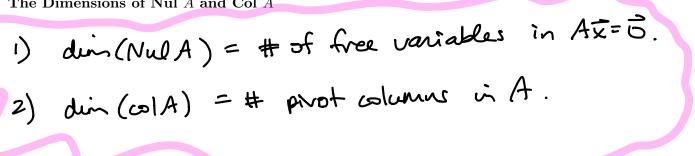
(a) H is a subspace of \mathbb{R}^{m} for $m = ?$
(b) what is $dim(CH)$?

(2) Let
$$G = \text{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right\}$$
. what
is dim(G)?

makes it easier to check if n something is a bas dimension of V Knowma 4.5 Theorem 12 The Basis Theorem Let V be a p-dimensional vector space where $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V. $\overline{\nabla_1}$ $\overline{\nabla_2}$ $\overline{\nabla_3}$ (we know Example: Show that $\{t, 1-t, 1+t-t^2\}$ is a basis for \mathbb{P}_2 . El, t, t2] is standard $Gt+G(1-t)+G(1+t-t^2)=0$ basis for P2) ×

Key Idea: If V is a p-dimensional vector space where $p \ge 1$, then to determine whether a given a set of p vectors is a basis for V, we need only verify either the set of vectors is linearly independent or the set spans V.





<u>Example</u>: Given $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{bmatrix}$.

(a) Find $\dim(\operatorname{Nul} A)$.

(b) Find $\dim(\operatorname{Col} A)$.

A, and the dimension of Col A is the number of b variables or prot columns in A.

ELOs:

- Identify the rank and nullity of a matrix.
- Use the rank-nullity theorem to determine properties of matrices, including number of pivot positions and dimensions of the null space, row space and column space.
- Represent geometrically the relationship between Row A and Nul A, and Col A and Nul A^{T} .
- Extend the invertible matrix theorem.

Key Idea: An exploration of the "hidden" relationships between the rows and columns of a matrix through the lens of vector space concepts.

Let A be an $m \times n$ matrix.

each row of A has mentiles at can be identified as vector in IR".
set of all linear combinations of now vectors Row space of A (which is subspace of IR") is called

The Row Space

Example: Given
$$A = \begin{bmatrix} 1 & -1 & 0 & -1 & 5 \\ 2 & -3 & -1 & -4 & 8 \\ 2 & -2 & 0 & -2 & 2 \\ 1 & 2 & 3 & 5 & 1 \end{bmatrix}$$
. Then, $A^T = \begin{bmatrix} 1 & 2 & 2 & 1 \\ -1 & -3 & -2 & 2 \\ 0 & -1 & 0 & 3 \\ -1 & -4 & -2 & 5 \\ 5 & 8 & 2 & 1 \end{bmatrix}$.

Find Row A. Hint: Consider how Row A is related to Col A^T .

Definition 1 Let A be an $m \times n$ matrix where each row can be identified with a vector in \mathbb{R}^n . Let $\{\mathbf{r}_1,\ldots,\mathbf{r}_m\}$ be the rows of A. The row space of A is

Row
$$A = span\{\mathbf{r}_1, \ldots, \mathbf{r}_m\} \subset \mathbb{R}^n$$
.

Note: Row A= Col AT

Theorem 13 If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

u.L

This is distinctly different from column space! It's a bit surprising.

Bases for Row A, Col A and Nul A

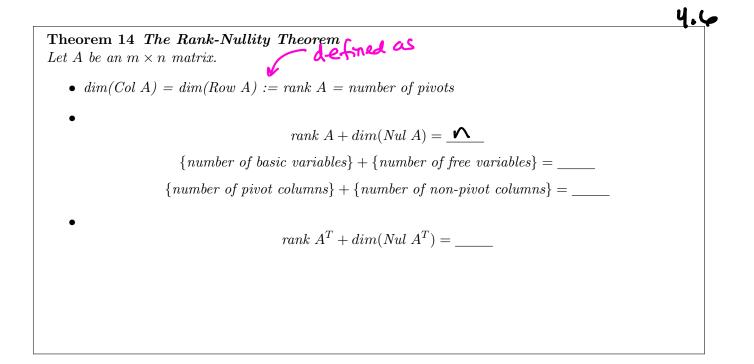
Example: Given
$$A = \begin{bmatrix} 1 & -1 & 0 & -1 & 5 \\ 2 & -3 & -1 & -4 & 8 \\ 2 & -2 & 0 & -2 & 2 \\ 1 & 2 & 3 & 5 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = RREF(A).$$

(a) Find a basis for Col A. Find $\dim(\text{Col } A)$.

(b) Find a basis for Nul A. Find $\dim(\text{Nul } A)$.

(c) Find a basis for Row A. Find dim(Row A).

(d) dim(Col A)+dim(Nul A)=____. dim(Row A)+dim(Nul A)=___. WARNING: Row ops do not change dependence relations between columns but they do change dependence relations between Nows. =) IF 15t 3 nows of RikEF(A) are lin. IL, that's not recessarily true of first 3 rows of A.



Observation:

$$\underline{\text{Example continued:}} A^{T} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ -1 & -3 & -2 & 2 \\ 0 & -1 & 0 & 3 \\ -1 & -4 & -2 & 5 \\ 5 & 8 & 2 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & 0 & 9/2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 5/4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = RREF(A^{T}).$$

(a) Find a basis for Nul A^T . Find dim(Nul A^T).

(b) Find rank A^T .

$$\operatorname{rank}(A^{T}) = 4 - \dim(\operatorname{Nul}(A^{T})) = 3$$

Geometric Interpretation:

FUN FACT RowA is orthogonal to NulA more about this Chapter 6) ñ (will see

Application: A scientist solves a homogeneous system of 50 equations in 54 variables and finds that exactly $\overline{4}$ of the unknowns are free variables. Can the scientist be certain that any associated nonhomogeneous system (with the same coefficients) has a solution?

The Invertible Matrix Theorem (continued) continued from

chp 2

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- (a) A is an <u>invertible</u> matrix.
- (b) A is row equivalent to the $n \times n$ _____ matrix.
- (c) A has pivet postions.
- (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the ______ solution.
- (e) The columns of A form a linearly ______ set.
- (f) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is _____.
- (g) The equation $A\mathbf{x} = \mathbf{b}$ has ______ solution for each \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A _____ \mathbb{R}^n .
- (i) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n _____ \mathbb{R}^n .
- (j) There is an $n \times n$ matrix C such that CA =
- (k) There is an $n \times n$ matrix D such that AD =
- (l) A^T is an _____ matrix.
- (m) The <u>columns</u> of A form a basis of \mathbb{R}^{n} .
- (n) Col A =
- (o) dim(Col A) = ____
- (p) rank A =
- (q) Nul A = ______
- (r) dim(Nul A) = \bigcirc

Ч.4

Ex Think about these gus + answer. 1) A 5×9 matrix has duri (Nul A) = 2. What is rank A?

2) Could a 5×8 matrix have dim(NulA)=2? Why or why not?

ELOs:

- Find a coordinate system for an *n*-dimensional vector space V given a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$.
- Be able to change coordinate systems given a change of basis.

Key Idea: Find the connection between different coordinate systems of a vector space V.

ferent $\underline{\text{Warm-Up}}: \text{ Let } \mathcal{B} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} \text{ be a basis for } \mathbb{R}^2.$ bases of (a) Given $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Find \mathbf{x} .

(b) Given
$$\mathbf{x} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
. Find $[\mathbf{x}]_{\mathcal{B}}$.

Example: Consider two bases $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ for a vector space V such that

$$b_1 = 4c_1 + c_2$$
 and $b_2 = -6c_1 + c_2$

Suppose
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
. Find $[\mathbf{x}]_{\mathcal{C}}$.
USE $[\mathbf{x}]_{\mathcal{B}} = \mathbf{3}\mathbf{b}_{1} + \mathbf{1}\mathbf{b}_{2} = \mathbf{3}(\mathbf{4}\mathbf{c}_{1} + \mathbf{c}_{2}) + (-\mathbf{b}\mathbf{c}_{1} + \mathbf{c}_{2}) = \mathbf{6}\mathbf{c}_{1} + \mathbf{4}\mathbf{c}_{2}$
 $\Rightarrow [\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} \mathbf{b} \\ \mathbf{a} \end{bmatrix}$
 $\Rightarrow [\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} \mathbf{b} \\ \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{a} \end{bmatrix}$

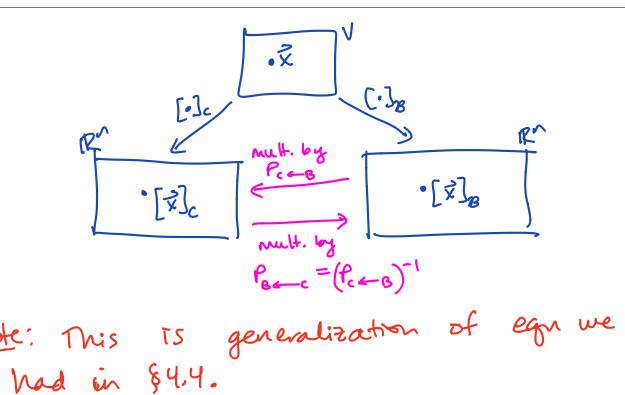
Theorem 15 Change of Basis Let $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ and $\mathcal{C} = {\mathbf{c}_1, \ldots, \mathbf{c}_n}$ be bases of a vector space V. Then, there is a unique $n \times n$ matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ such that

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

where the columns $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

 $P_{\mathcal{C} \leftarrow \mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \dots [\mathbf{b}_n]_{\mathcal{C}}]$

 $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and is invertible.



Change of Basis in \mathbb{R}^n let $V = \mathbb{R}^n$, $\mathcal{E} = \{\vec{e}_1, \dots, \vec{e}_n\}$ is $\mathbf{4.7}$ standard basis. $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a different =) formula in Thm 15 becomes $[\vec{x}]_{\varepsilon} = \vec{x} = P_{\varepsilon \to \varepsilon}[\vec{x}]_{B}$ basis. Then $[\dot{x}]_{\xi} = \ddot{x}$.

<u>Example</u>: Let $\mathbf{b}_1 = \begin{bmatrix} -9\\1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -5\\-1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1\\-4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3\\-5 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \ \mathbf{c}_2\}.$ Par = [(b,]e [b]e]

(a) Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

(b) Find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B} .

 $P_{BE-C} = (P_{CE-B})^{-1}$