
Section 4.1 Vector Spaces and Subspaces

ELOs:

• Know the 10 axioms that define a vector space V .

• Determine if a set is a vector space using the axioms of vector spaces.

• Identify both examples and non-examples of subspaces.

• Show that the span of vectors in a vector space V is a subspace of V .

Introduction: Much of the theory we learned in Chapters 1 and 2 based on properties of Rn
may be

abstracted to generalized vector spaces.

Definition 1 A vector space is a nonempty set V of objects, called vectors, which are defined by two
operations, called addition and multiplication by scalars, which satisfy the 10 axioms listed below. The
axioms must hold for all vectors u,v,w 2 V , and scalars c, d 2 R.

(1) u+ v 2 V

(2) u+ v = v + u

(3) (u+ v) +w = u+ (v +w)

(4) 9 0 2 V such that u+ 0 = u

(5) 8 u 2 V, 9(�u) 2 V such that u+ (�u) = 0.

(6) cu 2 V

(7) c(u+ v) = cu+ cv

(8) (c+ d)u = cu+ du

(9) c(du) = (cd)u

(10) 1u = u

By extension of the above axioms:

(i) 0u = 0

(ii) c0 = 0

(iii) �u = (�1)u
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Example 1: R
n
where n � 1 is a positive integer. Vector addition and scalar multiplication are defined

component-wise, and 0 is defined as the vector which has every entry equal to 0. The 10 axioms defining

a vector space V reduce to properties of real number algebra.

Note: In Section 1.3, we showed that the above axioms hold for R
n
.

Example 2: The space of m ⇥ n matrices with m,n fixed. Matrix addition and scalar multiplication are

defined component-wise and the zero matrix 0 is defined as the matrix with every entry equal to 0. The

10 axioms defining a vector space V reduce to properties of real number algebra.

Note: In Section 2.1, we showed that the above axioms hold for m⇥ n matrices with m,n fixed.

Example 3: S = {doubly infinite sequences of numbers}. An element of S can be written as

{yk} = (. . . , y�2, y�1, y0, y1, y2, . . . )

(a) Define addition.

(b) Define scalar multiplication.

(c) Checking the vector space axioms is equivalent to checking the axioms for Rn
because vector addition

and scalar multiplication are done entry by entry just with infinitely many entries in this case.

Note: We may consider S as the space of discrete-time signals. A signal may be visualized by its graph

over its integer “domain.”
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Example 4: Pn = {polynomials of degree at most n where n � 0}

p(t) = a0 + a1t+ · · ·+ ant
n
, a0, . . . , an 2 R

(a) Define addition.

(b) Define scalar multiplication.

(c) Check all of the axioms to show that V is a vector space.
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Example 5: V = {all real-valued functions defined on a domain D}

(a) Define addition.

(b) Define scalar multiplication.

(c) Check all of the axioms to show that V is a vector space.

As we did for the discrete-time signals, we may visualize functions as graphs over their domains..
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Definition 2 A subspace of a vector space V is a subset H of V that has 3 properties:

(a) The zero vector of V is in H.

(b) H is closed under addition.

(c) H is closed under scalar multiplication.

Exercise:

(a) Do all vector spaces have at least one subspace? If so, what is it?

(b) Is the set of all polynomials with real coe�cients P a subspace of the vector space of all functions from

R ! R? Why or why not?

(c) Is R2
a subspace of R3

? Why or why not?

(d) Is a plane in R3
not through the origin a subspace of R3

? Why or why not?
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Subspace spanned by a set

As in Chapter 1, a linear combination of vectors v1, . . . ,vp is given by

c1v1 + c2v2 + · · ·+ cpvp, ci 2 R

and span{v1, . . . ,vp} is all possible linear combinations of v1, . . . ,vp.

Exercise: Suppose v1,v2 2 V. Let H = span{v1,v2}. Show that H is a subspace.

• Check that the zero vector of V is in H.

• Check that H is closed under addition.

• Check that H is closed under scalar multiplication.

Theorem 1 If V is a vector space, and v1, . . . ,vp 2 V , then span{v1, . . . ,vp} is a subspace of V .

Note: we call span{v1, . . . ,vp} the subspace spanned by {v1, . . . ,vp}.
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Example: Let

H =

8
>><

>>:

2

664

a� 3b

b� a

a

b

3

775 : a, b,2 R

9
>>=

>>;
⇢ R4

.

Show that H is a subspace of R4
.

Example: For what value(s) of h will y be in the subspace of R3
spanned by v1,v2,v3 if

v1 =

2

4
1

�1

�2

3

5 ,v2 =

2

4
5

�4

�7

3

5 ,v3 =

2

4
�3

1

0

3

5 and y =

2

4
�4

3

h

3

5
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Section 4.2 Null Spaces, Column Spaces and Linear Transformations

ELOs:

• Define the null space Nul A and column space Col A of m⇥n matrix A and linear transformation T .

• Compare and contrast Nul A and Col A.

Introduction: In Section 4.2, we’ll generalize some of the theory we learned in Sections 1.4 (The Matrix

Equation Ax = b) and 1.5 (Solution Sets of Linear Systems), recognizing the solution set of a homogeneous

matrix equation Ax = 0 and the set of all linear combinations of specified vectors as subspaces of Rk
.

The Null Space of a Matrix

Definition 1 The null space of an m⇥ n matrix A is

Nul A = {x 2 Rn
: Ax = 0}

That is, Nul A is the set of all solutions to the homogeneous matrix equation, Ax = 0.

Example: Let A =


1 �3 �2

�5 9 1

�
and u =

2

4
5

3

�2

3

5. Is u 2 Nul A?

4.2
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as solution sets of homogeneous

systems

Li e is it true or false that AE 3



Theorem 2 The null space of an m⇥ n matrix A is a subspace of Rn.

That is, the set of all solutions to the linear system Ax = 0 of m homogeneous equations in n
unknowns is a subspace of Rn.

Question: Why is Nul A a subspace of Rn
?

Proof: Need to verify properties (a), (b) and (c) of subspace definition from Section 4.1.

(a) Show that 0 2 Nul A.

(b) Show that if u, v 2 Nul A, then u+ v 2 Nul A (closure under addition).

(c) Show that if u 2 Nul A and c 2 R, then cu 2 Nul A (closure under scalar multiplication).

Remember Nala x'c112 115 8 4.2



Solving the homogeneous matrix equation, Ax = 0, gives us an explicit description of Nul A. That is, we

can write Nul A as the span of a collection of vectors.

Example: Find an explicit description or spanning set for Nul A where A =


3 6 6 3 9

6 12 13 0 3

�
.

Observations:

• Spanning set of Nul A is automatically linearly independent.

Check:

• If Nul A 6= {0}, then the number of vectors in the spanning set of Nul A equals the number of free

variables in Ax = 0

4 2
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Definition 2 The column space of an m⇥ n matrix A = [a1 . . . an] is

Col A = Span{a1, . . . ,an}
= {b 2 Rm

: Ax = b where x 2 Rn}

That is, Col A is the set of all linear combinations of the columns of A

Question: Why is Col A a subspace of Rm
?

Theorem 3 The column space of an m⇥ n matrix A is a subspace of Rm.

Example: Find a matrix A such that W = Col A where W =

⇢2

4
x1 � 2x2

3x2
x1 + x2

3

5 : x1, x2 2 R
�

Observations:

• Col A is the range of the linear transformation x 7! Ax.

• The column space of an m⇥n matrix A is all of Rm
if and only if the equation Ax = b has a solution

for each b 2 Rm
.
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The Contrast Between Nul A and Col A

Question: How are Nul A and Col A related?

Example: Let A =

2

664

1 2 3

2 4 7

3 6 10

0 0 1

3

775.

(a) Col A ⇢ Rk
where k = .

(b) Nul A ⇢ Rk
where k = .

(c) Find a nonzero vector in Col A, if one exists.

(d) Find a nonzero vector in Nul A, if one exists.

4 2
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Compare and Contrast Nul A and Col A

Nul (A)

(1) Nul A is a subspace of .

(2) Nul A is defined: that is, you

are given only a condition, , that vec-

tors vi in Nul A must satisfy.

(3) Row operations on are required

to find vectors in Nul A.

(4) No clear relation between Nul A and the entries

in A.

(5) A vector v in Nul A has property that

.

(6) Given a specific vector v, we can determine if

v 2 Nul A by .

(7) Nul A = 0 if and only if Ax = 0 has only the

solution.

(8) Nul A = 0 if and only if x 7! Ax is

.

Col A

(1) Col A is a subspace of .

(2) Col A is defined: that is, you

are given how to build vectors in Col A.

(3) Vectors in Col A are of

the columns of A.

(4) Each column of A is in Col A.

(5) A vector in Col A has the property that

.

(6) Given a specific vector v, we can determine if

v 2 Col A by .

(7) Col A = Rm
if and only if Ax = b has a solution

for .

(8) Col A = Rm
if and only if x 7! Ax maps

.
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Linear Transformations

Definition 3 A linear transformation T : V ! W is a function such that

• T (u+ v) =

• T (cu) =

for all u,v 2 V and c 2 R.

(a) The kernel (or null space) of T is {u 2 V : T (u) = 0 2 W} ⇢ V .

(b) The range of T is {w 2 W : T (v) = w for some v 2 V } ⇢ W .

Example: Let V be the vector space of real-valued functions f defined on an interval [a, b] with the

property that the functions are di↵erentiable and their derivatives are continuous functions on [a, b]. Let

W be the vector space of all continuous functions on the interval [a, b]. Let D : V �! W be the derivative

transformation: D(f) = f 0
.

(a) What di↵erentiation rules from Calculus show that D is a linear transformation?

(b) What subspace is the kernel of D?

(c) What is the range of D?
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Section 4.3 Linearly Independent Sets; Bases

ELOs:

• Determine whether a set of vectors in a vector space V is linearly dependent or independent.

• Check whether or not a set of vectors is a basis of a vector space V .

• Understand the similarities and di↵erences between a spanning set and a basis.

Introduction: In Section 4.3, we’ll generalize some of the theory we learned in Sections 1.3 (Vector
Equations and Span) and Section 1.7 (Linear Independence), to define a basis, a linearly independent,
spanning set of a vector space.

Definition 1 A set of vectors {v1, . . . ,vp} ⇢ V is said to be if the
vector equation

c1v1 + c2v2 + · · ·+ cpvp = 0

has only the trivial solution. If a non-trivial solution exists, then we say that {v1, . . . ,vp} is

and we can find a linear dependence relation among v1, . . . ,vp.

Recall: From Section 1.7, we know that

• a set of vectors {v1, . . . ,vp} containing 0 is

• a set of two vectors {v1,v2} is if at least one vector is a scalar multiple
of the other

Example: Let
p1(t) = 1, p2(t) = t, p3(t) = 4� t.

Is {p1,p2,p3} linearly independent in P?

Exercise: Let
p1(t) = 1, p2(t) = t, p3(t) = 4� t

2
.

Is {p1,p2,p3} linearly independent in P?

Theorem 2 An indexed set {v1, . . . ,vp} of two or more vectors with v1 6= 0 is linearly dependent if
and only if some vector vj with j > 1 is a linear combination of the preceding v1, . . . ,vj�1.
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Definition 2 Let H ⇢ V be a subspace. An indexed set of vectors B = {b1, . . . ,bp} ⇢ V is a basis
for H if

i B is a linearly independent set.

ii H = Span{b1, . . . ,bp}.

Example: Let e1, . . . , en be the columns of the n⇥ n identity matrix. That is, In = [e1 . . . en].

Recall: ei is the n⇥ 1 vector with the i
th entry equal to 1 and all other entries 0.

(a) Are the columns of In linearly independent or linearly dependent?

(b) What is the span of the columns of In?

(c) Does {e1, . . . , en} form a basis for Rn? Why or why not?

Exercise: Let A = [a1 . . . an] be an n⇥ n invertible matrix.

(a) Are the columns of A linearly independent or linearly dependent?

(b) What is the span of the columns of A?

(c) Does {a1, . . . ,an} form a basis for Rn? Why or why not?

Exercise: Consider S = {1, t, t
2
, . . . , t

n} the standard basis for Pn. To verify this set is a basis for Pn,
we need to check

(a) Is the set of vectors linearly independent?

(b) Does the set of vectors span Pn?

4.3
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Key Idea: Bases are the most e�cient or minimal spanning sets of a vector space.

Example: Let

v1 =

2

4
0
2
�1

3

5 ,v2 =

2

4
2
2
0

3

5 ,v3 =

2

4
6
16
�5

3

5 , and H = span{v1,v2,v3}.

Show that span{v1,v2,v3} = span{v1,v2}. Find a basis for H.

• Show span{v1,v2} ⇢ span{v1,v2,v3}.

• Show span{v1,v2,v3} ⇢ span{v1,v2}.

• Find a basis for H.

Theorem 3 (Spanning Set Theorem) Let S = {v1, . . . ,vp} ⇢ V and H = span{v1, . . . ,vp}.

• If some vk 2 S is a linear combination of the remaining vectors in S, the set formed by removing
vk still spans H.

• If H 6= {0}, some subset of S is a basis for H.
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Bases for Nul A and Col A

Given A =

2

664

1 �1 0 �1 5
2 �3 �1 �4 8
2 �2 0 �2 2
1 2 3 5 1

3

775 and RREF (A) =

2

664

1 0 1 1 0
0 1 1 2 0
0 0 0 0 1
0 0 0 0 0

3

775.

Example: Find a basis for Nul A.

Example: Find a basis for Col A.

Theorem 4 The pivot columns of a matrix A form a basis for Col A.
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Section 4.4 Coordinate Systems

ELOs:

• Understand how vector spaces with bases B containing n vectors behave like Rn
.

• Explain in words and pictures di↵erent coordinate systems.

• Utilize the Unique Representation Theorem and describe a coordinate mapping.

Key Idea: n-dimensional vector spaces behave like Rn
. In choosing a basis, we are choosing a coordinate

system to make a vector space look like Rn
.

Theorem 7 The Unique Representation Theorem

Let B = {b1, . . . ,bn} be a basis for a vector space V. Then, for each x 2 V , there exist unique
c1, . . . , cn 2 R such that

x = c1b1 + · · ·+ cnbn.

Proof :

Definition 1 Suppose B = {b1, . . . ,bn} is a basis for a vector space V and x 2 V . The
coordinates of x relative to the basis B (or the B-coordinates of x) are the weights c1, . . . , cn 2 R such
that

x = c1b1 + · · ·+ cnbn.

The mapping x 7! [x]B is called the coordinate mapping (determined by B) where

[x]B =

2

64
c1
...

cn

3

75 2 R
n

is the coordinate vector of x relative to B or the B-coordinate vector of x.

Example: Let B =

⇢
3

1

�
,


0

1

��
, E =

⇢
1

0

�
,


0

1

��
and x =


6

5

�
. Find [x]B and [x]E .

4.4
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A Graphical Interpretation of Coordinates

Key Idea: A coordinate system defines a one-to-one mapping of points in a set to Rn
.

Example: Let B =

⇢
1

�1

�
,


1

3

��
be a non-standard basis of R2

.

(a) Suppose x 2 R2
and [x]B =


2

1

�
. Find the standard coordinates for x. That is, find [x]E where

E = {e1, e2}.

(b) Find the B-coordinates for the vector b =


�2

8

�
.

(c) Interpret your work from parts (a) and (b) geometrically in terms of the coordinate system generated

by B.

x1

x2

4 4



Coordinates in Rn

Definition 2 Let B = {b1,b2, . . . ,bn} be a basis and PB = [b1 b2 . . .bn] be the
change-of-coordinates matrix from B to the standard basis in Rn. Then, the vector equation

x = c1b1 + · · ·+ cnbn.

is equivalent to
x = PB[x]B

Observation:

Example: Given B =

⇢
3

1

�
,


0

1

��
and x =


6

8

�
.

(a) Find the change-of-coordinates matrix PB from B to the standard basis in R2
, and the change-of-

coordinates matrix P�1
B from the standard basis in R2

to B.

(b) Use P�1
B to find [x]B.
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The Coordinate Mapping

Theorem 8 Let B = {b1, . . . ,bn} be a basis for a vector space V . Then, the coordinate mapping
x 7! [x]B is a one-to-one linear transformation from V onto Rn

.

Proof:

Example: Consider the standard basis for P3 : B = {1, t, t2, t3}.

Polynomials in P3 behave like vectors in R4
. Since

x = c0 + c1t+ c2t
2
+ c3t

3
= p1 + p2 + p3 + p4,

we find

[x]B = [c0 + c1t+ c2t
2
+ c3t

3
]B =

and say that the vector space P3 is isomorphic to R4
.

Note: We say that a vector space V is isomorphic to a vector space W if every vector space computation

in V is accurately reproduced in W and vice versa.
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Example: Use coordinate vectors to determine if {p1,p2,p3} is a linearly independent set where

p1 = 1� t, p2 = 2� t+ t
2
, p3 = 2t+ 3t

2

Exercise: Let B = {b1,b2} =

⇢2

4
3

3

1

3

5 ,

2

4
0

1

3

3

5
�
. Let H = span{b1,b2}. Find [x]B given x =

2

4
9

13

15

3

5.
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Section 4.5 Dimension of a Vector Space

ELOs:

• Find the dimension of a vector space.

• Relate the dimension of Nul A and Col A to the number of pivots.

Key Idea: We showed in Section 4.4 that a vector space V with a basis B containing n vectors is isomorphic
to Rn

. n represents the dimension of V and does not depend on the choice of basis.

Theorem 9 If a vector space V has a basis B = {b1, . . . ,bn}, then any set in V containing more

than n vectors must be

Proof:

Theorem 10 If a vector space V has a basis on n vectors, then every basis of V must consist of

exactly vectors.

4 5
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Definition 1 If V is spanned by a finite set, then V is finite-dimensional, and the dimension of V ,
written dim(V ), is the number of vectors in a basis for V .

If V is NOT spanned by a finite set, then V is said to be infinite-dimensional.

Example:

(a) dim({0}) =

(b) dim(Rn
) =

(c) dim(Pn) =

(d) dim(P) =

Example: Find a basis and the dimension of the subspace W =

⇢
2

664

a+ b+ 2c

2a+ 2b+ 4c+ d

b+ c+ d

3a+ 3c+ d

3

775 : a, b, c, d 2 R
�
.
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Key Idea: The subspaces of Rn
can be classified by dimension.

Subspaces of a Finite-Dimensional Space

Theorem 11 Let H be a subspace of a finite-dimensional vector space V . Any linearly independent
set in H can be expanded to a basis for H. Also, H is finite-dimensional and dim H  dim V .

Proof:

Example: Let H = span

⇢2

4
1

0

0

3

5 ,

2

4
1

1

0

3

5
�
. H is a subspace of and dim H =

4.5

D a if
4 In.su paa any subspace spannedby

a

single vector a line thru origin
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b what is dim CHI

let G span91 Zz L
what

is dim G



Theorem 12 The Basis Theorem
Let V be a p-dimensional vector space where p � 1. Any linearly independent set of exactly p elements
in V is automatically a basis for V . Any set of exactly p elements that spans V is automatically a
basis for V .

Example: Show that {t, 1� t, 1 + t� t
2} is a basis for P2.

Key Idea: If V is a p-dimensional vector space where p � 1, then to determine whether a given a set of

p vectors is a basis for V , we need only verify either the set of vectors is linearly independent or the set

spans V .

Knowing dimension of it makes it easier to check if 4.5
something is a basis

I
we know

att G l t t Itt t2 O I t t is standard

basis for Pz

convert each vector in our set to its coordinate

vector wrt standard basis

II
it ft

htt f
a f GG Gf fog

A E 8

III EET IIF AE has only
trivial Sdn

it is lis I set

t l t ite t is lin indep set
t l t it t t forms basis for Pz



The Dimensions of Nul A and Col A

Example: Given A =


1 2 3 4

2 4 7 8

�
.

(a) Find dim(Nul A).

(b) Find dim(Col A).

Key Idea: The dimension of Nul A is the number of variables in the equation

, and the dimension of Col A is the number of variables or

in A.

4.5

din's NWA of free variables in A E 8

Z din colt pivotcolumns in A

free
AT 3 basic

pivot columns



Section 4.6 Rank

ELOs:

• Identify the rank and nullity of a matrix.

• Use the rank-nullity theorem to determine properties of matrices, including number of pivot positions
and dimensions of the null space, row space and column space.

• Represent geometrically the relationship between Row A and Nul A, and Col A and Nul AT .

• Extend the invertible matrix theorem.

Key Idea: An exploration of the “hidden” relationships between the rows and columns of a matrix through
the lens of vector space concepts.

Four Fundamental Subspaces

Let A be an m⇥ n matrix.

•

•

•

•

The Row Space

Example: Given A =

2

664

1 �1 0 �1 5
2 �3 �1 �4 8
2 �2 0 �2 2
1 2 3 5 1

3

775. Then, A
T =

2

66664

1 2 2 1
�1 �3 �2 2
0 �1 0 3

�1 �4 �2 5
5 8 2 1

3

77775
.

(a) Find Row A. Hint: Consider how Row A is related to Col AT .

Definition 1 Let A be an m ⇥ n matrix where each row can be identified with a vector in Rn. Let
{r1, . . . , rm} be the rows of A. The row space of A is

Row A = span{r1, . . . , rm} ⇢ Rn.

Note: Row A= .

4.6

cmT
each row of A has nenties can be identified

as vector in IR
set of all linear combinations of vow

vectors

is called Row fAd which is subspaceof112

ColAT



Theorem 13 If two matrices A and B are row equivalent, then their row spaces are the same. If B
is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Bases for Row A, Col A and Nul A

Example: Given A =

2

664

1 �1 0 �1 5
2 �3 �1 �4 8
2 �2 0 �2 2
1 2 3 5 1

3

775 ⇠ · · · ⇠

2

664

1 0 1 1 0
0 1 1 2 0
0 0 0 0 1
0 0 0 0 0

3

775 = RREF (A).

(a) Find a basis for Col A. Find dim(Col A).

(b) Find a basis for Nul A. Find dim(Nul A).

(c) Find a basis for Row A. Find dim(Row A).

(d) dim(Col A)+dim(Nul A)= . dim(Row A)+dim(Nul A)= .

4 6

This is distinctly different from column space
Its a bit surprising

It if dioicaA 3

IXz free
Xyfree

o

f ftp Hba5asndforduiYYnieAI 2

Yo Eg
is basis for RowA
and dein RowA 3

WARNING Rewops do not change dependencerelations
between

columns but they dechange dependence relations between
rows If 1st 3rowsof RREFCA are lui I
that'snot necessarilytrue of first 3rowsof A



Theorem 14 The Rank-Nullity Theorem
Let A be an m⇥ n matrix.

• dim(Col A) = dim(Row A) := rank A = number of pivots

•
rank A+ dim(Nul A) =

{number of basic variables}+ {number of free variables} =

{number of pivot columns}+ {number of non-pivot columns} =

•
rank AT + dim(Nul AT ) =

Observation:

Example continued: AT =

2

66664

1 2 2 1
�1 �3 �2 2
0 �1 0 3

�1 �4 �2 5
5 8 2 1

3

77775
⇠ · · · ⇠

2

66664

1 0 0 9/2
0 1 0 �3
0 0 1 5/4
0 0 0 0
0 0 0 0

3

77775
= RREF (AT ).

(a) Find a basis for Nul AT . Find dim(Nul AT ).

(b) Find rank AT .

Geometric Interpretation:

4.6
definedas

n

Xi Ex E
417

basis for NICA'T

EE
Xyfree

rankCAT 4 drincNulAT 3 drincNulAT L

attLowFattisorihogonaetonnett

we'll see more about this in chapter 6



Application: A scientist solves a homogeneous system of 50 equations in 54 variables and finds that exactly
4 of the unknowns are free variables. Can the scientist be certain that any associated nonhomogeneous
system (with the same coe�cients) has a solution?

The Invertible Matrix Theorem (continued)

Let A be a square n⇥ n matrix. Then the following statements are equivalent. That is, for a given A, the
statements are either all true or all false.

(a) A is an invertible matrix.

(b) A is row equivalent to the n⇥ n matrix.

(c) A has postions.

(d) The equation Ax = 0 has only the solution.

(e) The columns of A form a linearly set.

(f) The linear transformation x 7! Ax is .

(g) The equation Ax = b has solution for each b in Rn.

(h) The columns of A Rn.

(i) The linear transformation x 7! Ax maps Rn Rn.

(j) There is an n⇥ n matrix C such that CA = .

(k) There is an n⇥ n matrix D such that AD =

(l) AT is an matrix.

(m) The of A form a basis of .

(n) Col A =

(o) dim(Col A) =

(p) rank A =

(q) Nul A =

(r) dim(Nul A) =

4.6

A is 50 54
4 free variables duincnulA 4

chin colt 54 4 50

span of colt is all of 41250

AE 5 has a solution for any be
11250

continuedfrom
chp z

h pivot

columns 112
11,2

n

83
O



EI Think about these qus t answer

1 A 5 9 matrix has devilNul A 2

what is rankA

2 Could a 5 8 matrix have dericNIA 2

why or why not



Section 4.7 Change of Basis

ELOs:

• Find a coordinate system for an n-dimensional vector space V given a basis B = {b1, . . . ,bn}.

• Be able to change coordinate systems given a change of basis.

Key Idea: Find the connection between di↵erent coordinate systems of a vector space V .

Warm-Up: Let B =

⇢
2
1

�
,


1

�1

��
be a basis for R2.

(a) Given [x]B =


1
3

�
. Find x.

(b) Given x =


3
0

�
. Find [x]B.

4 7

Empire how

can we go back forth between 2 different
bases of v



Example: Consider two bases B = {b1,b2} and C = {c1, c2} for a vector space V such that

b1 = 4c1 + c2 and b2 = �6c1 + c2.

Suppose [x]B =


3
1

�
. Find [x]C .

Theorem 15 Change of Basis Let B = {b1, . . . ,bn} and C = {c1, . . . , cn} be bases of a vector
space V . Then, there is a unique n⇥ n matrix PC �B such that

[x]C = PC �B[x]B

where the columns PC �B are the C-coordinate vectors of the vectors in the basis B. That is,

PC �B = [[b1]C [b2]C . . . [bn]C ]

PC �B is called the change-of-coordinates matrix from B to C and is invertible.

4 7

847 35 15 3 45 15 65 5 65 45
algor IIE Y
OR
use f 35 52 3 53 1 I Efc 53 Cbtc f
wired

agent
q4 6,113,1 191 Eh 141

Cobs

IN my by
Rn

I THmutt by
PB c B

1

Note This is generalization of equ we

had in 4.4



Change of Basis in Rn

Example: Let b1 =


�9
1

�
, b2 =


�5
�1

�
, c1 =


1

�4

�
, c2 =


3

�5

�
, and consider the bases for R2 given

by B = {b1,b2} and C = {c1, c2}.

(a) Find the change-of-coordinates matrix from B to C.

(b) Find the change-of-coordinates matrix from C to B.

let V Ra E E E is 4.7

standard basis B 95 5 be a different
basis Then IIe I

formula in Tunis becomes IIe Peers JB

p Check

PB c
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