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Section 4.1 Vector Spaces and Subspaces

ELOs:

Know the 10 axioms that define a vector space V.

Determine if a set is a vector space using the axioms of vector spaces.

Identify both examples and non-examples of subspaces.

Show that the span of vectors in a vector space V is a subspace of V.

Introduction: Much of the theory we learned in Chapters 1 and 2 based on properties of R may be
abstracted to generalized vector spaces.

Definition 1 A vector space is a nonempty set V' of objects, called vectors, which are defined by two
operations, called addition and multiplication by scalars, which satisfy the 10 azioms listed below. The
axioms must hold for all vectors u,v,w € V, and scalars c,d € R.

(1) u+veV
(2) u+v=v+u
(3) (u+v)+w=u+(v+w)
(4) 30 €V such thatu+0=u
(5) YVueV, 3(—u) € V such that u+ (—u) = 0.
(6) caeV
(7) c(u+v)=cu+cv
(8) (c+d)u=cu+du
(9) ¢(du) = (cd)u
(10) lu=u
By extension of the above azioms:
(i) Ou=0
(ii) 0 =0
(i1i)) —u = (—1)u

S—




Examp\s of Veder Spaces: Y.\

Example 1: R™ where n > 1 is a positive integer. Vector addition and scalar multiplication are defined
component-wise, and 0 is defined as the vector which has every entry equal to 0. The 10 axioms defining
a vector space V reduce to properties of real number algebra.

Note: In Section 1.3, we showed that the above axioms hold for R™.
Example 2: The space of m x n matrices with m,n fixed. Matrix addition and scalar multiplication are
defined component-wise and the zero matrix 0 is defined as the matrix with every entry equal to 0. The

10 axioms defining a vector space V reduce to properties of real number algebra.

Note: In Section 2.1, we showed that the above axioms hold for m x n matrices with m,n fixed.

Example 3: S = {doubly infinite sequences of numbers}. An element of S can be written as

W U
{y} = (- y—2.9-1,90, 91,92, ) sw'j: C"')w") o) Py J

(a) Define addition.
P PR AT A o Sl

BTz § ooy atifa, Watda, W Yo 03, €5 - - z

(b) Define scalar multiplication. ')

ew= (- ege, CY» 4 49"

(c) Checking the vector space axioms is equivalent to checking the axioms for R" because vector addition
and scalar multiplication are done entry by entry just with infinitely many entries in this case.

Note: We may consider S as the space of discrete-time signals. A signal may be visualized by its graph
over its integer “domain.”
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Example 4: P, = {polynomials of degree at most n where n > 0}
p(t) =ap+art+ -+ ant", ag,...,ap €R

(a) Define addition.

(b) Define scalar multiplication.

(c) Check all of the axioms to show that V is a vector space.



Example 5: V' = {all real-valued functions defined on a domain D} = f-; - D eg} q‘\
(a) Define addition. *F a’ € \, "t &‘D. D 1 S

R subsed oF F o
(Fxg)t> = Forged o 42”59 e ®

@ = {7°
(b) Define scalar multiplication. ‘b Z'e ‘ 3
c [Few)= ke ay: SE= Ssut

(c) Check all of the axioms to show that V' is a vector space.

As we did for the discrete-time signals, we may visualize functions as graphs over their domains..

the graph of the sum function
should passes by this point

] w— — - \\
| —




LSubspaa is  aSmalkar spac Mot Qaes Msihe
o h:”zf Vechor S i ce Y.\
Definition 2 A subspace of a vector space V is a subset H of V' that has 3 properties:

(a) The zero vector of V is in H.

(b) H is closed under addition.

(c) H is closed under scalar multiplication.

Exercise:

(a) Do all vector spaces have at least one subspace? If so, what is it?

(b) Is the set of all polynomials with real coefficients P a subspace of the vector space of all functions from
R — R? Why or why not?

(c) Is R? a subspace of R3? Why or why not?

(d) Is a plane in R? not through the origin a subspace of R3? Why or why not?
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Subspace spanned by a set

As in Chapter 1, a linear combination of vectors vi,...,v, is given by
civi+ceava+ -+ vy, ¢ ER

and span{vi,...,v,} is all possible linear combinations of vi,...,v).

Exercise: Suppose vi,vg € V. Let H = span{vy, va}. Show that H is a subspace.é&@ V).
e Check that the zero vector of V is in H. ' e nl v.e_a‘.(: o~ “
\J
L)
lodk e AV + AN -

e Check that H is closed under addition.

e Check that H is closed under scalar multiplication.

Theorem 1 If V is a vector space, and v1,...,vp € V, then span{vi,...,vp} is a subspace of V.

Note: we call span{v1,...,vp} the subspace spanned by {v1,...,vp}.




Example: Let

Show that H is a subspace of R*. l ! - .

1.0




Section 4.2 Null Spaces, Column Spaces and Linear Transformations q.'L

ELOs:
e Define the null space Nul A and column space Col A of m x n matrix A and linear transformation 7.

e Compare and contrast Nul A and Col A.

Introduction: In Section 4.2, we’ll generalize some of the theory we learned in Sections 1.4 (The Matrix
Equation Ax = b) and 1.5 (Solution Sets of Linear Systems), recognizing the solution set of a homogeneous
matrix equation Ax = 0 and the set of all linear combinations of specified vectors as subspaces of R¥

Sulos P acs H=at oclur— I/\ou(—wra.ﬂaa,
The Null Space of a Matrix 05 SO(.M.‘\\.W Seiz O'( W <
50.&34'0"’\3 .

Definition 1 The null space of an m X n matriz A is

Nul A={xeR": Ax =0}

That is, Nul A is the set of all solutions to the homogeneous matrix equation, Ax = 0.

Example: Let A = [ =3

[oe. is ¥ ue



Cumeniber  Nulp=3ze R™| AX=7 Y,2

Theorem 2 The null space of an m X n matriz A is a subspace of R™.

That is, the set of all solutions to the linear system Ax = 0 of m homogeneous equations in n

unknowns is a subspace of R™. /“'_\/\h
Lernendoe
Subspace. doh - (v
. > >
(o DEV = D<Kk
to) ¥ Q7 €k, T ek alse

D el M4H>M«\£TZG“

lon from Section 4.1.

Question: Why is Nul A a subspace of R"?

Proof: Need to verify properties (a), (b) and (c) of subspace dé
(a) Show that 0 € Nul A.

(b) Show that if u, v € Nul A, then u+ v € Nul A (closure under addition).

(c) Show that if u € Nul A and ¢ € R, then cu € Nul A (closure under scalar multiplication).
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Solving the homogeneous matrix equation, Ax = 0, gives us an ezplicit description of Nul A. That is, we
can write Nul A as the span of a collection of vectors.

3 6 6 3 9
6 12 13 0 3|

Example: Find an explicit description or spanning set for Nul A where A = {

3&4’30‘0 PREF 1 2 o & \¥% ©

NA~—"> _

b 12 13 3 o o o\ “b 5 O
N s
P'wo’C o\

Observations:

e Spanning set of Nul A is automatically linearly independent.

o If Nul A # {0}, then the number of vectors in the spanning set of Nul A equals the number of free
variables in Ax =0
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Definition 2 The column space of an m X n matriv A =[a; ... a,] is

ke M ona best
Col A = Span{ay,...,a,} / T ﬂ‘k‘-
={b € R™: Ax = b where x € R"}

That is, Col A is the set of all linear combinations of the columns of A

Question: Why is Col A a subspace of R™?

AL S LA A g

(W) # T,V e span §T, ) - 2§ Hran
QY € span il o) O

() if ue colA, e i espaf\fi\r--f‘

L) ¥ @,7 ek UK chalse
a.. ) Ycel %deﬂ,uméﬁé*

~—_ alse

Theorem 3 The column space of an m X n matriz A is a subspace of R™.

xr1 — 21’2
Example: Find a matrix A such that W = Col A where W = { [ 3x9 1 x1,To € R}

T+ T2

Observations:
e Col A is the range of the linear transformation x — Ax.

e The column space of an m X n matrix A is all of R™ if and only if the equation Ax = b has a solution
for each b € R™.




The Contrast Between Nul 4 and Col A

Question: How are Nul A and Col A related?

€2

1 2 37 @REF M 2 o
Example: Let A = 247 N~ oo )
e 3 6 10 o5 o

0 0 1 oo ©O

(a) Col A C R* where k =

(b) Nul A C R* where k =

(¢) Find a nonzero vector in Col A, if one exists.

(d) Find a nonzero vector in Nul A, if one exists.



Compare and Contrast Nul A and Col A
. N mM
AR 2K

Nul (A)
)
(1) Nul A is a subspace of fR .

(4

(2) Nul Ais ACA deﬁnec; that is, you
are given only a condition, ASe =& | that vec-
tors v; in Nul A must satisfy.

>
(3) Row operations on l A © I are required

to find vectors in Nul A.

(4) No clear relation between Nul A and the entries
in A.

(5) A vector ¥y in Nul A has property that
e
AU >0

(6) Given a specific vector v, we can defermine if
v € Nul A by WAQVJNa A’\I -
(7) Nul A =f0§if and only if Ax = 0 has only the
Mviad solution.
(8) Nul A = iOS if and only if x — Ax is
Gl .

Yy

Col A
N
(1) Col A is a subspace of Ig .

(2) Col Ais m,o';@ % defined: that is, you
are given how to build vectors in Col A.

(3) Vectors in Col A are 4&% of
the columns of A.

(4) Each column of A is in Col A.

(5) A vector in Col A has the property that

AZ:T lros oa¥ feosk oL sol.

(6) Given a specific vector v, we can determine if
v € Col A by d.p\')‘% o Tps S CA N

(7) Col A =R"™ if and only if Ax = b has a solution
for L\rovud f eR™

(8) Col A = R™ if and only if x — Ax maps

B onbo R™




Linear Transformations

Y.2-

Definition 3 A linear transformation 7' :V — W is a function such that
e T'(utv) = T(ﬁ) #TCJ)
e T(cu) = CT('&’ )

forallu,v eV and c e R.

(b) The range of T is {w € W : T(v) =w for somev € V} C W. ™

(a) The kernel (or null space) of T is{ueV :T(u)=0€ W} CV. QN 0-”‘}

Example: Let V be the vector space of real-valued functions f defined on an interval [a, b] with the
property that the functions are differentiable and their derivatives are continuous functions on [a, b]. Let
W be the vector space of all continuous functions on the interval [a,b]. Let D : V' — W be the derivative

transformation: D(f) = f’.

(a) What differentiation rules from Calculus show that D is a linear transformation?

(b) What subspace is the kernel of D?

(c) What is the range of D?
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Section 4.3 Linearly Independent Sets; Bases
ELOs:
e Determine whether a set of vectors in a vector space V is linearly dependent or independent.
e Check whether or not a set of vectors is a basis of a vector space V.

e Understand the similarities and differences between a spanning set and a basis.

Introduction: In Section 4.3, we’ll generalize some of the theory we learned in Sections 1.3 (Vector
Equations and Span) and Section 1.7 (Linear Independence), to define a basis, a linearly independent,
spanning set of a vector space.

T S————

Definition 1 A set of vectors {vi,...,vp} C V is said to be Lh%_@%ﬁ’if the
vector equation

vy + vy + -+ vy =0

has only the trivial solution. If a non-trivial solution exists, then we say that {vi,...,v,} is

M@M’ and we can find a linear dependence relation among vi,...,vp.

Recall: From Section 1.7, we know that

e a set of vectors {vi,...,v,} containing 0 is

e a set of two vectors {vy, va} is if at least one vector is a scalar multiple
of the other

Example: Let
pl(t) =1, pg(t) =1, p3(t) =4 —t.

Is {p1,p2, p3} linearly independent in P? [P-‘— Se# o-{'ﬁu M'WJ&M PAZMTB

Exercise: Let
pl(t) =1, PQ(t) =1, p3(t) =4- tz'
Is {p1,p2, p3} linearly independent in P?

Theorem 2 An indezed set {v1,...,v,} of two or more vectors with vi # 0 is linearly dependent if
and only if some vector v; with j > 1 is a linear combination of the preceding vi,...,v;_1.

Wow 1 tius dibled Hhan L XL oF s ok A7
hele: How s Hus oy e | uas

e

[ ywsvte
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Definition 2 Let H C V' be a subspace. An indexed set of vectors B = {by,...,bp} C V is a basis
for H if

(i)B is a linearly independent set.

(ii)H = Span{b1,...,bp}.

Example: Let e1, ..., e, be the columns of the n x n identity matrix. That is, I, = [e1 ... e,].
Recall: e; is the n x 1 vector with the i*" entry equal to 1 and all other entries 0.

(a) Are the columns of I, linearly independent or linearly dependent?

(b) What is the span of the columns of I,,?

(c) Does {e1,...,en} form a basis for R"? Why or why not?

Exercise: Let A = [ay ...an] be an n x n invertible matrix.

(a) Are the columns of A linearly independent or linearly dependent?

(b) What is the span of the columns of A?

(c) Does {ai1,...,an} form a basis for R"? Why or why not?

Exercise: Consider S = {1, t, t2,..., t"} the standard basis for P,,. To verify this set is a basis for P,
we need to check

(a) Is the set of vectors linearly independent?

(b) Does the set of vectors span P,,?



Key Idea: Bases are the most efficient or minimal spanning sets of a vector space.

e G
. 2 - 1
Example: Let nokices s f, +37,° (s} + N w
e T 1o s
0 2 6 =< o
vi=|2|,ve=|2]|,v3= |16, and H = span{vy,va,v3}.
-1 0 -5
Show that span{vy, ve,va} = span{vy,va}. Find a basis for H.
L.e 2 e Show span{vy,va} C span{vy,va, vs}.
Prose
e Show span{vy.vo.va} C span{vy.vo}. . N

e Find a basis for H.

hasis of H = E\—fuﬁ?«g

Theorem 3 (Spanning Set Theorem) Let S = {v1,...,v,} C Vand H = span{vy,...,vp}.

e If some vy € S is a linear combination of the remaining vectors in S, the set formed by removing
vy still spans H.

o If H # {0}, some subset of S is a basis for H.
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Bases for Nul A and Col A

1 -1 0 -1 5 101 10
. 2 -3 -1 —4 8 011 2 0
Given A = [ 5 _9 0 -9 9 ] and RREF(A) = [O 00 01 ]
1 2 3 51 00 00O
Example: Find a basis for Nul A.
- Yy (-1
3 =K T K e
For A\)C =D wt ) =) - -2
J gﬂk X _$3_2$‘1 f" | 0
~ \
% =Yg © 5
\“lc*"‘ o v
Yg = O
-\ -\
- - S =) basis fov Nl Az i a0\ -1 i
""'> Nl A =‘-$@ﬂv\§. - | -2 ) O
o| | © 0 |
o (l) ) ()

Example: Find a basis for Col A.

an \r;‘w A
cAhespil s 0| AP fs B
2
| |
O
D

o 00—

ol (RREF(AY)= Spn £ X

T T TR

Theorem 4 The pivot columns of a matriz A form a basis for Col A.
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Section 4.4 Coordinate Systems

ELOs:

e Understand how vector spaces with bases B containing n vectors behave like R™.
e Explain in words and pictures different coordinate systems.

e Utilize the Unique Representation Theorem and descril‘e a coordinate mapping.

giov>;

Key Idea: n-dimensional vector spaces behave like R™. In choosing a basis, we are choosing a coordinate

system to make a vector space look like R". (, ro ¢ 0'3 Ndin~ VeLOeC S‘P&_@_ ¢ 1somor P‘A(c.
A

Theorem 7 The Unique Representation Theorem B

Let B = {by,...,by} be a basis for a vector space V. Then, for each x € V, there exist unique
cl,...,cn € R such that

x =ciby + -+ + ¢, bn. - . N @
Proof: g SP V =) 3 G, --yCA e’R sk. ')f.: G L' ¥ “"‘—Cﬂc:v_\; . Vd-dm;
: ans ' % ™ .
X tsa b(- U-)f\'\'k/‘- csS X b,
A-SSIWL 3 d-l) --'/J-va 5'.%, X (on O~

&
= 02 gves *X-X= (e, BB, -t Eamda)bn
- & B=(a-ddbt -t (cn-da)b,, -

v e b UL T
D 64,20, .y Camd=O MATE bk dvisa, = 4 =di

Le. Gyl Br% WUgue wtights -

Definition 1 Suppose B = {bi,...,bn} is a basis for a vector space V and x € V. The

coordinates of x relative to the basis B (or the B-coordinates of x) are the weights c1, ..., ¢, € R such
that

_LL__.JLQ

X =c1b1+ -+ ¢,bn.
The mapping x — [x|z 4s called the coordinate mapping (determined by B) where
C1

x]5 = c | eR"

Cn

is the coordinate vector of x relative to B or the B-coordinate vector of x.

Example:Leth{[?:,[(1)]},8={[(1)],[(1)]}andx=[g].Find[x]Band[x]g.




uy

A Graphical Interpretation of Coordinates

Key Idea: A coordinate system defines a one-to-one mapping of points in a set to R™.

Example: Let B = { [ _i } , [ :1)) } } be a non-standard basis of R2.

(a) Suppose x € R? and [x]g = [ ? ] Find the standard coordinates for x. That is, find [x]¢ where
g = {el,eg}.

(b) Find the B-coordinates for the vector b = [ —2 ] .

(c) Interpret your work from parts (a) and (b) geometrically in terms of the coordinate system generated
by B.

Z2

I




Coordinates in R" b"q

Definition 2 Let B = {by,ba,...,b,} be a basis and Pg = [b1 by ...b,| be the
change-of-coordinates matriz from B to the standard basis in R™. Then, the vector equation

x=c1b1+ -+ c,bn.

s equivalent to

x = Pp[x|s

Observation:
- > =
[ b, by~ i«] Gy
&3

257, ©
|

%n Cn

k1% Y e, BUR2[F,
1
:

- 7
sy le LSt |

- =

. 3 0 6
Example: leenB—{[l],[l]}andx—[8].

(a) Find the change-of-coordinates matrix Pg from B to the standard basis in R?, and the change-of-
coordinates matrix Py ! from the standard basis in R? to B.

b) Use Pz! to find [x]g.
B
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The Coordinate Mapping

Theorem 8 Let B = {b1,...,bn} be a basis for a vector space V.. Then, the coordinate mapping
X — [x]|B is a one-to-one linear transformation from V onto R™.

boot Lo 6,0 €V, Twen %o GhE-taln Ond
ai, ¢ ek, ¥ i=t "'/'/\

S =
=g, bt ---Ta.b.

for seme
© o7 = (4 ¥, (an + Y

= ’c\’r] = (@ AMEN (715

D
)
A )

(3}

. .
[y g
,

. C.
Q,¢C., a _fPa) = (G “’PS:‘)‘]B’

L ’J I '
@Pﬁ=€cu‘;+'-* p Gt & [Pt PCa Ca

oy oy i 4 Buess Moppivy. .
s H ond AT -
we S’\:\M AM —\O P'/M_ M XME)‘J@ .

>_12 X =
Example: Consider the standard basis for P3 : B = {1,t,t2,t3}. P’\ =\ y ﬁf “C y P‘.\' k’) PV

Polynomials in P3 behave like vectors in R*. Since

X = co + et + eot? + et = p1+ p2 + p3 + P4,

we find
(x| = [co + c1t + cat® + est’]p =

and say that the vector space P3 is isomorphic to R?.

Note: We say that a vector space V is isomorphic to a vector space W if every vector space computation
in V is accurately reproduced in W and vice versa.
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Example: Use coordinate vectors to determine if {p1, p2, p3} is a linearly independent set where

p1=1-1, p2=2—1t+1t% p3 = 2t + 3t2

3 0 9
Exercise: Let B = {by,bs} = { |: 3 ] , [ 1 ] } Let H = span{bi,bs}. Find [x]g given x = |: 13 ]

1 ’ 15
’;: Cli."aib @ q = 3 ' C1 o
\% 3 (
\S \ 3
ol
q-’- _)’C, O ® ¢ * 3 c)ﬂ.@
= \3=3¢ ¢, @ e @ 3+ 33+, S=343(4)
(’- ) <
1S =¢ ¢3¢ ® ¢, <4

_ 13
= 3§|+’~i§z = {7‘33 iql

=) *



Section 4.5 Dimension of a Vector Space "(. g

. ° u
ELOs Wik 4 A 4 ensson /“Qaﬂld,m, va
e Find the dimension of a vector space.
limension M‘a, veckse space !
vots.

e Relate the dimension of Nul A and Col A to the number of pi

Key Idea: We showed in Section 4.4 that a vector space V with a basis B containing n vectors is isomorphic
to R™. n represents the dimension of V and does not depend on the choice of basis.

Theorem 9 If a vector space V' has a basis B ={by,...,b,}, then any set in V containing more

than n vectors must be ‘ e_af d 4(- .
|74
Proof: (wer) Sketzin Ww e Jo g,\\naad,gv\ Hre

Tdaea) - Y
. s s.c.

Lsordaede veckss bve U 8 b~ henoganess gl
Hrad seF K p

D Twen  we Cnary) . b
AT I R4 L. dep 0

B Twerds a Lmesr Xy Froe Wﬁzﬂ:ﬁ
echors to preders o VP 3 redae” T
RWDWWQQWW\?MPV&
Qe NV = Meose pugdsrs e Lin. dep.

Note:  Hals M A wasma,(% ASes Issvv\orpw&m——
vehotnn \ a~d R,

Theorem 10 If a vector space V' has a basis on n vectors, then every basis of V. must consist of

ezactly vectors.

Ts gaes uS o waiard of e

vecksr  sppee Ve A Lflerent d=ice oF basss
Gidds e Sare wmoes”
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Definition 1 If V is spanned by a finite set, then V is finite-dimensional, and the dimension of V,
written dim(V'), is the number of vectors in a basis for V.

If V is NOT spanned by a finite set, then V is said to be infinite-dimensional.

Example:

(@) dim({0}) = D U;bL definidron)

(b) dim(R") =
(c) dim(P,) =
(d) dim(P) =

a—+b+2c
2a+2b+4c+d
b+c+d
3a+3c+d

Example: Find a basis and the dimension of the subspace W = { ta,b,c,d e R}.

Answer




Key Idea: The subspaces of R" can be classified by dimension.

0 D dwin. subspaa: 19

2
4) 3-din sWsSpace’ oW ®

Subspaces of a Finite-Dimensional Space

Theorem 11 Let H be a subspace of a finite-dimensional vector space V. Any linearly independent
set in H can be expanded to a basis for H. Also, H is finite-dimensional and dim H < dim V.

Ex Wt H=SP%E[?5K>£'|IZ,

o O

©

~ -2
&) Wi a suespac of BT Ao

(o) whad s dain (H)7



Unowmy  dimeasion oFY prabes & easses do ched i€ 4<
TheQ)rem 12 The Basis Theorem SoweHni s A bass.

Let V' be a p-dimensional vector space where p > 1. Any linearly independent set of exactly p elements
in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a

basis for V. > = N
v A\ N
™
Example: Show that {t,1 —¢,1+ ¢ — t?} is a basis for Ps. [UJ‘C W—«s\)

$),, ') & Sheade

-+*\ =0
K ekt 6 (1K) * 6 (k") vasss fov Po)

Key Idea: If V is a p-dimensional vector space where p > 1, then to determine whether a given a set of

p vectors is a basis for V, we need only verify either the set of vectors is linearly independent or the set
spans V.
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The Dimensions of Nul A and Col A

) dea(NuIA) = 4 oF Kren vaniales
2> M\(@\A) = &% pvor (o\MnAS A A

. 1 2 3 4
Example: Given A = { 9 4 7 8 ] .
(a) Find dim(Nul A).
(b) Find dim(Col A).
Key Idea: The dimension of Nul A is the number of ‘Q‘u— variables in the equation
= _ >
A ) i , and the dimension of Col A is the number of bas~c variables or

‘PQ 1ok eolwwnns in A.
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Section 4.6 Rank

ELOs:

Identify the rank and nullity of a matrix.

Use the rank-nullity theorem to determine properties of matrices, including number of pivot positions
and dimensions of the null space, row space and column space.

Represent geometrically the relationship between Row A and Nul A, and Col A and Nul A7

Extend the invertible matrix theorem.

Key Idea: An exploration of the “hidden” relationships between the rows and columns of a matrix through
the lens of vector space concepts.

Let A be an m X n matrix. \ﬂa,\k‘;gea(
o COUn o DE A Was A endies & can et

os  veckse ia 7.
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The Row Space

1 —1 0 -1 5 ! 2 21

2 -3 -1 -4 8 cLoms 22

Example: Given A = . Then, AT = 0 -1 0 3
—_— 2 =2 0 -2 2

1 2 3 51 Lo 2

5 8 21

Find Row A. Hint: Consider how Row A is related to Col AT,

Definition 1 Let A be an m X n matriz where each row can be identified with a vector in R™. Let
{r1,...,rm} be the rows of A. The row space of A is

Row A = span{ry,..., v} C R™.

Note: Row A= COI AT




Theorem 13 If two matrices A and B are row equivalent, then their row spaces are the same. If B
is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.
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Bases for Row A4, Col A and Nul A

1 -1 0 -1 5 10110
. 2 -3 -1 -4 8 011 20
Example: Given A = 5 9 0 -2 921~"~l0oo0 o0 01 = RREF(A).
1 2 3 51 000 O0O0
(a) Find a basis for Col A. Find dim(Col A).
(b) Find a basis for Nul A. Find dim(Nul A).
(c) Find a basis for Row A. Find dim(Row A).
(d) dim(Col A)+dim(Nul A)= . dim(Row A)+dim(Nul A)=
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Theorem 14 The Rank-Nullity Theorem
Y = hekmed o8

Let A be an m X n matrix. [-

e dim(Col A) = dim(Row A) := rank A = number of pivots

rank A + dim(Nul A) = ¥\
{number of basic variables} + {number of free variables} =

{number of pivot columns} + {number of non-pivot columns} =

rank AT + dim(Nul AT) =

Observation:
1 2 21 1.0 0 9/2
-1 -3 -2 2 010 -3
Example continued: AT = 0 -1 0 3|~--~|0 0 1 5/4|=RREF(AT).
-1 -4 -2 5 000 0
5 8 21 000 0
(a) Find a basis for Nul A”. Find dim(Nul AT). .
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(b) Find rank AT.

can(AT) = Y= dum(Nud AT)> 3 Lo (L AT) =

Geometric Interpretation:




o
Application: A scientist solves a homogeneous system of 50 equations in 54 variables and finds that exactly
4 of the unknowns are free variables. Can the scientist be certain that any associated nonhomogeneous
system (with the same coefficients) has a solution?

The Invertible Matrix Theorem | (continued) ¢ sndsnued Lo
pa

Let A be a square n x n matrix. Then the following statements are equivalent. That 1s, for a given A, the
statements are either all true or all false.

(a) A is an invertible matrix.

(b) A is row equivalent to the n x n matrix.

A has N “D°| \/9'\’ postions.

The equation Ax = 0 has only the solution.

The columns of A form a linearly set.

The linear transformation x — Ax is

The equation Ax = b has solution for each b in R™.

The columns of A R™.

The linear transformation x — Ax maps R" R™,

There is an n X n matrix D such that AD =

AT is an matrix.

The DO\VJV\ NS of A form a basis of IE n .
Col A = IZ“

dim(Col 4) = W\

rank A =__ N

Nul A = 2-6;

dim(Nul 4) = O
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) There is an n x n matrix C' such that CA =
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Section 4.7 Change of Basis q. ?

ELOs:
e Find a coordinate system for an n-dimensional vector space V' given a basis B = {by,...,b,}.

e Be able to change coordinate systems given a change of basis.

[ _i ] } be a basis for R2.

Warm-Up: Let B = { [ i } ,

1

(a) Given [x] = [3

] . Find x.

3

(b) Given x = [O

]. Find [x]5.
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Example: Consider two bases B = {b1,bs} and C = {c1, ca} for a vector space V' such that

b1 =4cy + ¢y and by = —6¢1 + co.

Suppose [x]z ] Find [x]c. -
Q&b _ . ,}) = éz_,‘ + qc-z
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Theorem 15 Change of Basis Let B = {by,..., b,} and C = {cy,..., cn} be bases of a vector
space V. Then, there is a unique n X n matriz Pe. g such that

x|c = Pe—8lX|8
where the columns Pe. g are the C-coordinate vectors of the vectors in the basis B. That is,
Fe 5 =[[bi]c [b2lc ... [bn]c]

Pe_p is called the change-of-coordinates matrix from B to C and is invertible.
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Example: Let by = [ _? ], by = [ -9 ], c| = [ _1 }, Ccy = [ _g ], and consider the bases for R? given

by B = {bi,bs} and C = {c1, c2}. .
p (oL (ol |

(a) Find the change-of-coordinates matrix from B to C.

(b) Find the change-of-coordinates matrix from C to B. Pﬁé— c - ( PC*’B>



