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Section 5.1 Eigenvectors and Eigenvalues

ELOs:

e Determine whether a vector is an eigenvector of a matrix; similarly, determine if a scalar is an
eigenvalue of a matrix.
————

e Identify the eigenspace of a matrix A and relate it to the null space of the matrix A — AI.

e Describe how eigenvalues are related to invertibility.

Motivating Example: The steady-state vectors for stochastic matrices described in Section 4.9 are a special
case of the concept of eigenvectors and eigenvalues for n X n matrices in general.

—  Eigenvectors of a matrix A are vectors on which the transformation described by A acts as a scalar.
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For example, consider the matrix transformation 7" : R?> — R? where
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Definition 1 An eigenvector of an n X n matriz A is a nonzero vector x such thaf A or some
scalar . A scalar X is called an eigenvalue of A if there exists a nontm’m’al solutton x of Ax = Ax;
h an x is called j t ding to \. 2 |
such an x is called an eigenvector corresponding to ><-
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Example: Show that 4 is an eigenvalue of A = [_ 4 9 } and find the corresponding eigenvectors.
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Example: S
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Is u an eigenvector of A? Is v an eigenvector of A? If so, find the associated eigenvalue
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(b) Draw u and v in R?. Then, draw Au and Av in R2. Describe the action of a linear transformation on
its eigenvector(s).
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Observation: A is an eigenvalue of an n x n matrix A if and only if the equation x=0
has a nontrivial solution.
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Definition 2 The set of all solutions to the equation (A — X )x = 0 is a subspace of R™ called the
eigenspace of A corresponding to A. Note: The eigenspace of A is the null space of the matrix A — M.
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Example: Let A = | —1 3 1 |. An eigenvalue of A is A = 2. Find a basis for the corresponding
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eigenspace.
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Exercise: Suppose A is an eigenvalue of A. Determine an eigenvalue of A%, A3 ... A™. HIomxa
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Warning: An echelon form of a matrix A does not, in general, display the eigenvalues of A. S. ‘

Theorem 1 The eigenvalues of a triangular matrix are the entries on the main diagonal.
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Example: Let A= [0 0 6 | . Find the eigenvalues of A. o -2 b
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(a) If a matrix A has A = 0 as an eigenvalue, what must be true about the solution set of the homogeneous
equation Ax = 07

(b) Based on your answer to part(a), is a matrix with a 0 eigenvalue invertible? Why or why not?

Theorem 2 Ifvy,...,v, are eigenvectors that correspond to distinct eigenvalues Ay, ..., A\, of annxn
matriz A, then the set {v1,..., vy} is linearly independent.
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Section 5.2 The Characteristic Equation

ELOs:
e Find the eigenvalues of a’\ﬁatrix using the characteristic equation.

e Define a similarity transform and explain how the eigenvalues of similar matrices are related.

Review: Eigenvectors and Eigenvalues
A ;: Adx X 15 called e 2M\n:c,4-°(
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Question: How do we find the eigenvectors x of A7
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Question: How do we find the eigenvalues \ of A?
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Definition 1 A scalar X is an eigenvalue of an n xn matriz A if and only if \ satisfies the charac-
teristic equation
det(A—X) =0

p(A) = det(A — M) is the n degree characteristic polynomial of Apxn.
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Example: Find the eigenvalues of A = [ i’ g ]
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Notation: So 2

e )\ can be an eigenvalue for some (nonzero) eigenvector x if and only if A; is a root of the characteristic
polynomial. That is, p();) = 0.

‘\,, e The subspace of eigenvectors for the eigenvalue A; is called the A; eigenspace and denoted Ej;.
Wh The basis of eigenvectors is called the eigenbasis for Ej,.
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Observation: By collecting the eigenbases from all of the eigenspaces for a matrix A,«n, and putting
them together, we may obtain a basis for R”. Under such conditions as those described in Theorem 2,
we are able to understand the geometry of the transformation 7'(x) = Ax almost as well as if A were a
diagonal matrix, and thus, we say that A is diagonalizable (to be continued in Section 5.3).
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Theorem 2 Ifvy,..., v, are eigenvectors that correspond to distinct eigenvalues A1, ..., \r of annxn
matriz A, then the set {v1,...,vy} is linearly independent.
3 2 3
Example: Given A= [0 6 10].
0 0 2

(a) Find the characteristic equation of A.

(b) Find the eigenvalues of A.

Definition 2 The degree n polynomial det(A — NI) is called the characteristic polynomial.
The (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.

Example: Given A =

_ o O O
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(a) Find the characteristic polynomial of A.

(b) Find the eigenvalues of A and the algebraic multiplicity of each eigenvalue.
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Definition 3 For n x n matrices A and B, we say A is similar to B if theg s an invertible matriz
P such that

P'AP=B < A=PBP!

Example: Show that if A and B are similar, then det(A)=det(B). Nok— T A s L.
lo 6) Men~ B s Sialer

o A.

Theorem 3 Ifnxn matrices A and B are similar, then they have the same characteristic polynomial

and hence, the same £ fonsraloso S (with the same multiplicities).
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Warning: Similar = same eigenvalues, but same eigenvalues # similar.
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The Invertible Matrix Theorem‘ (continued) S.2

Let A be a square n x n matrix. Then the following statements are equivalent. That is, for a given A, the
statements are either all true or all false.

A is an invertible matrix.

(b) A is row equivalent to the n x n matrix.

(¢) A has postions.

(d) The equation Ax = 0 has only the solution.

(e) The columns of A form a linearly set.

(f) The linear transformation x — Ax is

(g) The equation Ax = b has solution for each b in R".
(h) The columns of A R™.

(i) The linear transformation x — Ax maps R" R™.

There is an n x n matrix C such that CA =

(1) AT is an matrix.
(m) The of A form a basis of .
(n) Col A =

is not an eigenvalue of A.
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Section 5.3 Diagonalization

ELOs:
e Relate the similarity transform of a matrix to the eigenvectors of that matrix.
e Use eigenvalues and eigenvectors to diagonalize an n x n matrix A.

e Determine whether a matrix A is diagonalizable or not.

Goal: Develop a useful factorization A = PDP~! where P is the matrix of linearly independent eigenvec-
———
tors of A and D is the diagonal matrix of corresponding eigenvalues. S o So - oo M

20] wtC,&«oL:-l—l«\‘IS.
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Warm-Up: Given D = [

(a) Find the eigenvalues and eigenvectors (eigenspace bases) of D.

(b) Find D™,

(c) Find D* where k € Z+.
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Example: Consider A = | 2

1 -1 1
Let P=| 1 0 1 | be the matrix whose columns are the eigenvectors of A.
0 21
[2 0 0
Let D=| 0 2 0 | be the diagonal matrix whose diagonal entries are the eigenvalues of A.
0 0 3

Check: AP = PD = A= PDP-\

Example: Using this factorization of A, find A0,

4 _ 2~
A% A A =POFpp = PDTOPT= POP
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Definition 1 A square matrixz A is said to be diagonalizable if A is similar to a diagonal matriz. That
18,

4
.

A=prDp!

where P is invertible and D is a diagonal matriz.

Note: If there is a basis {vi,va,...,vn} of R™ (or C™) consisting of eigenvectors of A, then A
1s diagonalizable.

Warning: NOT all n x n matrices are diagonalizable!
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Theorem 5 An n x n matriz A is diagonalizable if and only if A has n linearly independent
etgenvectors.

In fact, A = PDP~!' with diagonal matriz D if and only if the columns of P are n linearly
independent eigenvectors of A. The diagonal entries of D are the eigenvalues of A that correspond,

respectively, to the eigenvectors in P.

A is diagonalizable if and only if there exists an eigenvector basis of R".

, if possible.
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Example: Diagonalize A =

— = D
o N o
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Step 1: Find the eigenvalues of A.
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Step 2: Find the linearly independent eigenvectors of A.

Step 3: Construct P from the linearly independent eigenvectors found in Step 2. N"’c‘: Hs

Sl rips oo
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Step 4: Construct D from the corresponding eigenvalues found in Step 1. (Hrem oW

A aoh
DL;,W'%{"L“).

Step 5: Check by verifying AP = PD.
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210
0 2 0| is not diagonalizable.
0 0 3

(ot I oy méeawMS e )

Exercise: Is C =

W NN
N OO

0
0] diagonalizable? Justify your answer.
1

Theorem 6 An n x n matriz with n distinct eigenvalues is diagonalizable.
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Exercise: Diagonalize A = 94 —12 2 0 |’ if possible. A O 2\ o ©
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Theorem 7‘iet A be an n X n matriz whose distinct eigenvalues are Ay, ..., \p.

(a) For 1 < k < p, the dimension of the eigenspace for A\ is less than or equal to the multiplicity of
the eigenvalue \g.

(b) The matriz A is diagonalizable if and only if the sum of the dimensions of the distinct eigenspaces

equals n, which happens if and only if the dimension of the eigenspace for each A\ equals the
multiplicity of \.

(c) If A is diagonalizable and By is a basis for the eigenspace corresponding to A\ for each k, then the
total collection of vectors in the sets By, ..., B, forms an eigenvector basis for R™.
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Section 5.4 Eigenvectors and Linear Transformations

ELOs:
e Recognize non-square matrices as transformations between dimensions.

e Construct a basis for a linear transformation 7" using eigenvectors.

Goal: Understand the matrix factorization A = PDP~! in terms of linear transformations.

Warm-up: Let B = { [ﬂ , [_11] } be basis for R2.

(a) Given [x], = B] Find x.

3

(b) Given x = [O

] . Find [x] .
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5.

Example: Suppose B = {by,bs} is a basis for V and C = {c1,co,c3} is a basis for W. Let T: V. — W be
a linear transformation defined by its action on B:

. A~ (V) =2
T(b1) = 3c1 — 2¢co + beg - =
T(bQ) =4cq + 7cy — c3. M(w\ 3
Find the matrix M for T relative to B and C. 3 ‘{
[T @, © 4 [T (&)]L = .i = M= _é 7
S = -\
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Moye ret Squet.

Example: Let V = P3 = span{1,¢,t2,t3}, W = Py = span{1,t,t?} and T : V. — W be the differential
operator. Find the matrix of T' with respect to the bases B = {1,¢,2,¢t3} in V and C = {1,¢,#?} in W.
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Definition 1 Two matrices A and B are similar if there is an invertible matriz P such that
B =P 1AP.

r
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Note: Similar matrices arise when describing the same linear transformation with respect to C'szQ‘
different bases.

Example: What if A is diagonalizable?
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Theorem 8 Diagonal Matrix Representation
Suppose A = PDP~1, where D is a diagonal n x n matriz. If B is the basis for R™ formed from the
columns of P, then D is the B-matriz for the transformation of x — Ax.

3 2

Example: Consider A = [1

] . In Section 5.2, we found Fy—4 = span{ [ﬂ } and Fy—1 = span{ [_11] }

2
Find M = [T]3. y '/
_ = (- 47 3 3
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Example: Let T : R? — R? have the standard transformation matrix A = [ 7 4 ﬂ . Find a basis B for R?
. . =3 B
such that the B-matrix for T is diagonal. & / 7‘/,5 = N
- N = bhoss —C-/
Jt(A-aT)= (FD L\:A) Y| eveent S e s RE sk .
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Example: Let A = [4 3

e
(a) Check that A is not diagonalizable using the eigenspace dimension theorem. C“"e' ﬁ“’(‘ at

dd (A-2T)=0 pnd dse X=-L dim (Nl (ADT)))
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(b) Let P = B ﬂ = [bl bg]. Find the B-matrix , P~'AP, aﬁ‘ﬁfﬁl‘gﬂar matrix. VS/ @If/\\&lu@,s
Soa P bDNE

This matrix is called the Jordan form of A.
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Note: Every square matrix A is similar to a matrix in Jordan form.
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