Section 6.1 Inner Product, Length, Orthogonality

ELOs:

- Compute inner products (dot products) in \mathbb{R}^n and describe their properties.
- Find the length of a vector in \mathbb{R}^n and the distance between two vectors.
- Use the inner product to check if two vectors are orthogonal.

Goal: Introduce geometric concepts of length, distance and orthogonality in vector spaces.

Motivation:

concepts of length, distance, perpendicular are all understood for IR² of IR³, need to extend these ideas R^{n} , n>3. for

<u>Warm-up</u>: Let **u** be a vector in \mathbb{R}^n . We may consider vectors in \mathbb{R}^n as $n \times 1$ matrices and define the transpose $\mathbf{u}^{\mathbf{T}}$ as a $1 \times n$ matrix. Then the matrix product $\mathbf{u}^{\mathbf{T}}\mathbf{u}$ is a 1×1 matrix, which we write as a scalar without brackets.

Definition 1 Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^n . The scalar, $\mathbf{u}^T \mathbf{v} = \mathbf{u} \cdot \mathbf{v}$, is called the inner product (or dot product) of \mathbf{u} and \mathbf{v}

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

vote: if had had hulus

Observe: For any scalar c, $|| c\mathbf{v} || = |c| || \mathbf{v} ||$

Definition 3 The <u>distance between \mathbf{u} and \mathbf{v} in \mathbb{R}^n </u> is $\underline{dist(\mathbf{u},\mathbf{v})} = \| \mathbf{u} - \mathbf{v} \| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$ $\underline{Example:} \quad \text{Find} \quad distance \quad \text{between} \quad u = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 2 \end{bmatrix} \text{ and } v = \begin{bmatrix} -2 \\ -4 \\ 1 \\ 0 \\ 2 \end{bmatrix}$ (--2) (-4) 1

Orthogonal Vectors

Two lines are geometrically perpendicular if and only if the distance from \mathbf{u} to \mathbf{v} is the same as the distance from \mathbf{u} to $-\mathbf{v}$. That is, the squares of the distances are the same.

Facts about
$$W^{\perp}$$
:

· W¹ is subspace of IR⁷. · XEW iff is orthogonal to every vector set of w.

OLACR

Nul AT CIR

Anx

4

Theorem 3 Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(Row A)^{\perp} = Nul A and (Col A)^{\perp} = Nul A^{T}$$

note: NulACIR ROWACIE

Section 6.2 Orthogonal Sets

ELOs:

- Define and give examples of orthogonal sets and orthogonal bases.
- Find an orthogonal projection in \mathbb{R}^n .

Definition 1 A set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ in \mathbb{R}^n is an orthogonal set if each pair of distinct vectors from the set is orthogonal. That is, $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ when $i \neq j$.

Example: Show that
$$\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
 is an orthogonal set.

<u>Exercise</u>: Construct an orthogonal set in \mathbb{R}^3 that contains three vectors.

Theorem 4 If $S = {\mathbf{u}_1, \ldots, \mathbf{u}_p}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Pf: Assume
$$\exists c_1, ..., c_p st.$$

 $c_1 \vec{u}_1 + c_2 \vec{u}_2 + ... + c_p \vec{u}_p = \vec{o}$, i.e. were exploring if S
is linearly independent set.
Then $(c_1 \vec{u}_1 + ... + c_p \vec{u}_p) \cdot \vec{u}_1 = \vec{o} \cdot \vec{u}_1$ would be true.
 $(c_1 \vec{u}_1 + ... + c_p \vec{u}_p) \cdot \vec{u}_1 = \vec{o} \cdot \vec{u}_1$ would be true.
 $(c_1 \vec{u}_1 \cdot \vec{u}_1) + c_2 (\vec{u}_2 \cdot \vec{u}_1) + ... + c_p (\vec{u}_p \cdot \vec{u}_1) = 0$
 $(=) c_1 (\vec{u}_1 \cdot \vec{u}_1) = 0$ since $\vec{u}_2 \cdot \vec{u}_1, ..., \vec{u}_p \cdot \vec{u}_1 = 0$ since
 $(=) c_1 (\vec{u}_1 \cdot \vec{u}_1) = 0$ since $\vec{u}_2 \cdot \vec{u}_1, ..., \vec{u}_p \cdot \vec{u}_1 = 0$ since
 S is orthogonal set.
But $\vec{u}_1 \neq \vec{o} = i \vec{u}_1 \cdot \vec{u}_1 \neq 0 \Rightarrow c_1 = 0$ must be true.
By same argument for $\vec{u}_2, ..., \vec{u}_p$, we get $c_2 = ... = c_p = 0$.
 $(=) S_{11}$ lin. indep set. H

Definition 2 An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is an orthogonal set.

Note: We can readily compute the weights/coefficients in a linear combination of orthogonal basis vectors.

Let
$$\vec{w} = C_1 \vec{u}_1 + \dots + C_n \vec{u}_n$$
 where $S = \{\vec{u}_1, \dots, \vec{u}_n\}$ is
orthogonal basis of Rⁿ.
Then $\vec{w} \cdot \vec{u}_1 = (C_1 \vec{u}_1 + \dots + C_n \vec{u}_n) \cdot \vec{u}_1$
 $(\Rightarrow) \vec{w} \cdot \vec{u}_1 = c(\vec{u}_1 \cdot \vec{u}_1)$
 $(\Rightarrow) C_1 = \vec{w} \cdot \vec{u}_1$ likewise, $C_1 = \frac{\vec{w} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1}$
Note: If you had calc 3, do you notice this is the
projection coefficient?

Theorem 5 Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for subspace $W \subset \mathbb{R}^n$. For each $\mathbf{y} \in W$, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$$

$$c_{j} = \frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} \quad (j = 1, \dots, p) \quad \text{i.e.} \quad \mathbf{c_{j}} = \frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\|\mathbf{u}_{j}\|^{2}}$$

$$\underline{\text{Example:}} \quad \mathbf{S} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\} \quad \text{is an orthogonal}$$

$$basss \quad \mathbf{R}^{2} \quad \text{find} \quad \begin{bmatrix} 9 \\ 6 \end{bmatrix} \quad \text{s.t.} \quad a \begin{bmatrix} 1 \\ -1 \end{bmatrix} + b \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}.$$

6

Orthogonal Projections

Problem: Suppose we have a preferred vector \mathbf{u} . How can we decompose any vector $\mathbf{y} \in \mathbb{R}^n$ into the sum of two vectors - one a multiple of \mathbf{u} , and the other orthogonal to \mathbf{u} ?

of two orthogonal vectors, one in span $\{\mathbf{u}\}$ and one orthogonal to \mathbf{u} .

Orthonormal Sets

Definition 3 A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is an <u>orthonormal set</u> if it is an orthogonal set of <u>unit vectors</u>. If $W = span\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$, then $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an <u>orthonormal basis</u> of W since the set of p vectors is automatically linearly independent by Theorem 4.

Example: Show that $V = \left\{ \begin{bmatrix} 0 \\ 1/2 \\ -1/5 \end{bmatrix}, \begin{bmatrix} -1/3 \\ 1/2 \\ 1/2 \\ 1/3 \end{bmatrix}, \begin{bmatrix} 2/2 \\ 1$

Theorem 6 An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$. notice lt kind of acts like an inverse even though ut doesn't exist if m≠n **Theorem 7** Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^n . Then (a) $\parallel U\mathbf{x} \parallel = \parallel \mathbf{x} \parallel$ $(b) (U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y} \stackrel{\text{s}}{\not{}} (U\mathbf{x}) \cdot (U\mathbf{y}) = (u\mathbf{x})^{\top} U\mathbf{y} = \mathbf{x}^{\top} U^{\top} U\mathbf{y} = \mathbf{x}^{\top} \mathbf{y} = \mathbf{x} \cdot \mathbf{y} .$ (c) $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$ because $(\mathbf{u}\mathbf{x}) \cdot (\mathbf{u}\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$. Example: Does U have orthonormal columns? $U = \begin{bmatrix} -2/3 & 1/15 \\ 1/3 & 2/15 \\ 2/4 & - \end{bmatrix}$ (Hint: compute UU.)

Definition 4 An orthogonal matrix is a square invertible matrix U such the $U^{-1} = U^T$. An orthogonal matrix has orthonormal columns and orthonormal rows.

So if U is square matrix and its columns troner are orthonormal, then $U^T U = I \implies U^T = U^{-1}$.