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Section 6.1 Inner Product, Length, Orthogonality %
ELOs:

e Compute inner products (dot products) in R™ and describe their properties. 2; (,M)‘M_S
e Find the length of a vector in R™ and the distance between two vectors. M

e Use the inner product to check if two vectors are orthogonal.

Goal: Introduce geometric concepts of length, distance and orthogonality in vector spaces
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for ﬁﬂ n=3.

Warm-up: Let u be a vector in R™. We may consider vectors in R™ as n x 1 matrices and define the

transpose ut as a 1 x n matrix. Then the matrix product uTu is a 1 x 1 matrix, which we write as a

scalar without brackets. ]
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Definition 1 Let u and v be vectors in R". The scalar, u”

dot product) of u and v

v=u-v, is called the inner product (or
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Theorem 1 Let u,v,w € R" and c € R.
(a) u-v=v-u W"“&,
(b)) (u+v)- w=u-w+v-w AJTS-L/;EUUIM
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(¢) (cu)-v=c(u-v)=u-(cv) CMAM"\M‘IZ d Asswoj\\absw

Repeated application of (b) and (c) yields

(crur + -+ cpup) - w=ci(ur - w) + - - + ¢p(up - w)
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Definition 2 The length (or norm) of v is the nonnegative scalar || v || defined by
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A unit vector, u, is a vector of length 1. To create a unit vector or to “normalize” a vector, divide
the vector by its length. That is,

v
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where u is in the same direction as v.
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J Observe: For any scalar ¢, || cv ||=|c| || v | )
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Distance in R"

Definition 3 The distance between u and v in R™ is
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Orthogonal Vectors

Two lines are geometrically perpendicular if and only if the distance from u to v is the same as the
distance from u to —v. That is, the squares of the distances are the same.
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Definition 4 Two vectors u,v € R™ are orthogonal (to each other) if u-v = 0.

Observe: The zero vector is orthogonal to every vector in R™.
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Theoremé Two vectors u and v are orthogonal if and only if | u+v ||?=[|u || + || v ||.
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Orthogonal Complements
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Observation: The orthogonal complement of W is the collection of all vectors in R™ orthogonal to W :
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Theorem 3 Let A be an m X n matriz. The orthogonal complement of the row space of A is the null
space of A, and the orthogonal complement of the column space of A is the null space of AT:
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Section 6.2 Orthogonal Sets
ELOs:

e Define and give examples of orthogonal sets and orthogonal bases.

e Find an orthogonal projection in R”.

from the set is orthogonal. That is, u; - u; = 0 when i # j.

Definition 1 A set of vectors {ui,...,u,} in R™ is an orthogonal set if each pair of distinct vectors

1 1 0
Example: Show that { {1] , [1] , {0] } is an orthogonal set.
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Exercise: Construct an orthogonal set in R? that contains three vectors.

independent and hence is a basis for the subspace spanned by S.

Theorem 4 If S = {uy,...,u,} is an orthogonal set of nonzero vectors in R™, then S is linearly
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Definition 2 An orthogonal basis for a subspace W of R™ is a basis for W that is an orthogonal set.

Note: We can readily compute the weights/coefficients in a linear combination of orthogonal basis vectors.
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Theorem 5 Let {ui,...u,} be an orthogonal basis for subspace W C R™. For each 'y € W, the
weights in the linear combination

Yy =ciup +coug + -+ cpuy

are given by you . - 'C(:'_
;= J =1,..., ¢, ’;L—_,
Example: g = { l ) 2 j 9 an W-M\?SV\?—!L

s o B [ZZ 5.&. a[”w[;]@]



Orthogonal Projections

Problem: Suppose we have a preferred vector u. How can we decompose any vector y € R” into the sum
of two vectors - one a multiple of u, and the other orthogonal to u?

y = (multiple of u) + (multiple of a vector L u)

i o be avecto Hods
L Wlos skewr).

_xXTU s s o-Haeg pw:at.dstm
E o= 5:‘3_. = HRu = _H’___-.(‘l _\A> Df? oo

" [l “

. Find the orthogonal projection of y onto u. Then write y as the sum

of two orthogonal vectors, one in span{u} and one orthogonal to u.




Orthonormal Sets

Definition 3 A set of vectors {ui,us,...,up} in R™ is an orthonormal set if it is an orthogonal set

of unit vectors. If W = span{ui,ug,...,uy}, then {uy,us,...,u,} is an orthonormal basis of W since
the set of p vectors is automatically linearly independent by Theorem 4.
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Theorem 6 An m x n matriz U has orthonormal columns if and only if UTU = 1.
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Theorem 7 Let U be an m x n matriz with orthonormal columns, and let x and y be in R"™. Then
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Definition 4 An orthogonal matriz is a square invertible matriz U such the U= = UT. An orthogonal
matriz has orthonormal columns and orthonormal rows.
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