
Section 6.1 Inner Product, Length, Orthogonality

ELOs:

• Compute inner products (dot products) in Rn and describe their properties.

• Find the length of a vector in Rn and the distance between two vectors.

• Use the inner product to check if two vectors are orthogonal.

Goal: Introduce geometric concepts of length, distance and orthogonality in vector spaces.

Motivation:

Warm-up: Let u be a vector in Rn. We may consider vectors in Rn as n ⇥ 1 matrices and define the

transpose u
T as a 1 ⇥ n matrix. Then the matrix product u

T
u is a 1 ⇥ 1 matrix, which we write as a

scalar without brackets.

Definition 1 Let u and v be vectors in Rn. The scalar, uT
v = u · v, is called the inner product (or

dot product) of u and v

u · v = u
T
v =
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u1 u2 . . . un

⇤

2

6664

v1
v2
...
vn

3

7775
= u1v1 + u2v2 + · · ·+ unvn

1

 

note
if

you
had

calculus
already

on

inner
product

concepts of length distance perpendicular is a

Are all understood for 112241123 dotpoduct

but we need to extend these ideas

for Rn n 3

Ex if I z
then view Ttu I 2371

p122 32 14

Ex if I 1 then I.I I o 2 5 17fog1 11034
254



Theorem 1 Let u,v,w 2 Rn and c 2 R.

(a) u · v = v · u

(b) (u+ v) ·w = u ·w + v ·w

(c) (cu) · v = c(u · v) = u · (cv)

(d) u · u � 0 and u · u = 0 () u = 0

Repeated application of (b) and (c) yields

(c1u1 + · · ·+ cpup) ·w = c1(u1 ·w) + · · ·+ cp(up ·w)

Example:

Definition 2 The length (or norm) of v is the nonnegative scalar k v k defined by

k v k=
p
v · v =

q
v21 + v22 + · · ·+ v2n

k v k2= v · v

A unit vector, u, is a vector of length 1. To create a unit vector or to “normalize” a vector, divide
the vector by its length. That is,

u =
v

k v k
where u is in the same direction as v.

Example:

Observe: For any scalar c, k cv k= |c| k v k
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Distance in Rn

Definition 3 The distance between u and v in Rn is

dist(u,v) =k u� v k

Example:

Orthogonal Vectors

Two lines are geometrically perpendicular if and only if the distance from u to v is the same as the
distance from u to �v. That is, the squares of the distances are the same.
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Definition 4 Two vectors u,v 2 Rn are orthogonal (to each other) if u · v = 0.

Observe: The zero vector is orthogonal to every vector in Rn.

Theorem 2 Two vectors u and v are orthogonal if and only if k u+ v k2=k u k2 + k v k2.

Orthogonal Complements

Example:

Observation: The orthogonal complement of W is the collection of all vectors in Rn orthogonal to W :

W? = {v 2 Rn : v ·w = 0 for all w 2 W}.

Facts about W? :

•

•

Theorem 3 Let A be an m⇥ n matrix. The orthogonal complement of the row space of A is the null
space of A, and the orthogonal complement of the column space of A is the null space of AT :

(Row A)? = Nul A and (Col A)? = Nul AT

4

This expands idea from 1122 to 1124 th 2,3

Pythagorean theorem

A Itvin 1122

µ
In 1123 the z axis i.e any vector

of

the form where c constant

is orthogonal to the Xy plane i e the

subspace in
1123 spanned by too f 3

so we'd say we span 1913 when w spay 1113
called w perp

Wt is subspace of IR
IE wt iff orthogonalto every rector in a spanningset of W

A man

hole Nul AC IR f Colt C 112M

Row A Ck Nul AT CIRM



Section 6.2 Orthogonal Sets

ELOs:

• Define and give examples of orthogonal sets and orthogonal bases.

• Find an orthogonal projection in Rn
.

Definition 1 A set of vectors {u1, . . . ,up} in Rn
is an orthogonal set if each pair of distinct vectors

from the set is orthogonal. That is, ui · uj = 0 when i 6= j.

Example: Show that
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is an orthogonal set.

Exercise: Construct an orthogonal set in R3
that contains three vectors.

Theorem 4 If S = {u1, . . . ,up} is an orthogonal set of nonzero vectors in Rn
, then S is linearly

independent and hence is a basis for the subspace spanned by S.

Partial Proof:
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Definition 2 An orthogonal basis for a subspace W of Rn
is a basis for W that is an orthogonal set.

Note: We can readily compute the weights/coe�cients in a linear combination of orthogonal basis vectors.

Theorem 5 Let {u1, . . .up} be an orthogonal basis for subspace W ⇢ Rn
. For each y 2 W , the

weights in the linear combination

y = c1u1 + c2u2 + · · ·+ cpup

are given by

cj =
y · uj

uj · uj
(j = 1, . . . , p)

Example:
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Orthogonal Projections

Problem: Suppose we have a preferred vector u. How can we decompose any vector y 2 Rn
into the sum

of two vectors - one a multiple of u, and the other orthogonal to u?

y = (multiple of u) + (multiple of a vector ? u)

Example: Let y =


�8

4

�
,u =


3

1

�
. Find the orthogonal projection of y onto u. Then write y as the sum

of two orthogonal vectors, one in span{u} and one orthogonal to u.
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Orthonormal Sets

Definition 3 A set of vectors {u1,u2, . . . ,up} in Rn
is an orthonormal set if it is an orthogonal set

of unit vectors. If W = span{u1,u2, . . . ,up}, then {u1,u2, . . . ,up} is an orthonormal basis of W since

the set of p vectors is automatically linearly independent by Theorem 4.

Example:

Theorem 6 An m⇥ n matrix U has orthonormal columns if and only if UTU = I.

Proof:

Theorem 7 Let U be an m⇥ n matrix with orthonormal columns, and let x and y be in Rn
. Then

(a) k Ux k=k x k

(b) (Ux) · (Uy) = x · y

(c) (Ux) · (Uy) = 0 if and only if x · y = 0

Example:

Definition 4 An orthogonal matrix is a square invertible matrix U such the U�1
= UT

. An orthogonal

matrix has orthonormal columns and orthonormal rows.

Exercise: Show that for an n⇥ n invertible matrix U , UTU = I and UUT
= I. Thus, UT

= U�1
.

Hint : Consider using an approach similar to the proof of Theorem 6.
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