ELOs:

- Uniquely write a vector in \mathbb{R}^n as a linear combination of vectors in W and W^{\perp} .
- Apply the Best Approximation Theorem to find the unique $\hat{\mathbf{y}} \in W \subset \mathbb{R}^n$ for the vector $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{y} \hat{\mathbf{y}}$ is orthogonal to W and $\| \mathbf{y} \hat{\mathbf{y}} \|$ is minimized.

Motivation: Find the closest vector $\hat{\mathbf{y}} \in W \subset \mathbb{R}^n$ to $\mathbf{y} \in \mathbb{R}^n$. $\mathbf{x} \in \mathcal{R}^n$. $\mathbf{x} \in \mathcal{R}^n$. $\mathbf{x} \in \mathcal{R}^n$.

 $\underline{\text{Example: Suppose } \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \text{ is an orthogonal basis for } \mathbb{R}^3. \text{ Let } W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2\}. \text{ Write } \mathbf{y} \in \mathbb{R}^3 \text{ as the sum of a vector } \mathbf{\hat{y}} \in W \text{ and a vector } \mathbf{z} \in W^{\perp}.$

Geometric Interpretation of the Orthogonal Projection

Note: The orthogonal projection of \mathbf{y} is the sum of its projections onto one-dimensional subspaces that are mutually orthogonal.

Properties of Orthogonal Projections

Theorem 9 (The Best Approximation Theorem) Let W be a subspace of \mathbb{R}^n . Let \mathbf{y} be any vector in \mathbb{R}^n . Let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then, $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} . That is

$$\parallel \mathbf{y} - \mathbf{\hat{y}} \parallel < \parallel \mathbf{y} - \mathbf{v} \parallel$$

for all $\mathbf{v} \neq \mathbf{\hat{y}} \in W$.

$$\|g-g\| < \|g-\partial\|$$

$$\forall \forall e \omega \quad (\forall \neq g)$$

<u>Example</u>: Find the closest point to \mathbf{y} in $W = \operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2\}$ where $\mathbf{y} = \begin{bmatrix} 2\\4\\0\\-2 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$, and $\mathbf{u}_2 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$.

Find the distance from \mathbf{y} to W.

Note: "The" distance from a pt
$$\hat{y} \in [R]$$
 to a subspace
WCIR" is the distance from \hat{y} to to the
nearest point in W, i.e. projuž.

$$\begin{split} \mathsf{U}\mathsf{U}^{\mathsf{T}} &= \begin{bmatrix} \mathsf{U}_{11} & \mathsf{u}_{21} & \mathsf{u}_{22} & \mathsf{u}_{22} & \mathsf{u}_{21} & \mathsf{u}_{22} & \mathsf{u}_{21} & \mathsf{u}_$$

How do we Find a orthogonal basis? Yay we find
Section 6.4 The Gram-Schmidt Process Yay we find
out!
ELOS:
• Construct an orthogonal (and orthonormal) basis for a subspace W using the Gram-Schmidt Process.
• Use the Gram-Schmidt process to find a QR factorization for a matrix A.
Grad:
Goal: Form an orthogonal basis for a subspace W.
Example: Suppose
$$W = \text{span}\{x_1, x_2\}$$
 where $x_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$.
Find an orthogonal basis $\{v_1, v_2\}$ for W.
O Let's start of \dot{x}_1 of then find a vector $1 + \ddot{x}_1$.
Let $V_1 = \ddot{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ by $y_1 = f_1 = f_2$.
 $(b_1 + w_1 = span fv_1)$ for W .
O Let's start of \dot{x}_1 of then find a vector $1 + \ddot{x}_2$.
 $(b_1 + w_1 = span fv_1)$ for W .
 $(b_2 + w_1 = span fv_1)$ for W .
 $(c_1 + w_2 = span fv_1)$ for W .
 $(c_2 + w_2 = v_2 = w g_{w_1} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} - \frac{x_2 \cdot v_1}{|V_1|^2} v_1$

3 check that
$$\vec{J}_1 \perp \vec{V}_2$$
.

Example: Suppose $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is a basis for a subspace W of \mathbb{R}^4 . Describe an orthogonal basis for W.

$$\begin{array}{c|c} \hline v_{1} = \vec{x} \\ w_{1} = span \left\{ \vec{v}_{1} \right\} \end{array} \end{array} \begin{array}{c|c} \hline v_{2} = \vec{x}_{2} - \rho v \vec{j}_{w_{1}} \vec{x}_{1} = \\ w_{2} = span \left\{ \vec{v}_{1} \right\} \end{array} \end{array}$$

$$\begin{array}{c|c} w_{2} = span \left\{ \vec{v}_{1} , \vec{v}_{2} \right\} \end{array} \end{array}$$

$$\begin{array}{c|c} w_{2} = span \left\{ \vec{v}_{1} , \vec{v}_{2} \right\} \end{array}$$

$$\begin{array}{c|c} w_{2} = span \left\{ \vec{v}_{1} , \vec{v}_{2} \right\} \end{array}$$

$$\begin{array}{c|c} w_{2} = span \left\{ \vec{v}_{1} , \vec{v}_{2} \right\} \end{array}$$

Theorem 11 The Gram-Schmidt Process
Given a basis {
$$\mathbf{x}_1, \dots, \mathbf{x}_p$$
} for a nonzero subspace W of \mathbb{R}^n . Define
 $\mathbf{v}_1 = \mathbf{x}_1$ but $\mathcal{W}_1 = \operatorname{Spn} \{\mathbf{v}_1, \mathbf{v}_2\}$
 $\mathbf{v}_2 = \mathbf{x}_2 - \operatorname{proj}_{\mathbf{W}_1} \mathbf{z}$ $\mathcal{W}_2 = \operatorname{Spn} \{\mathbf{v}_1, \mathbf{v}_2\}$
 $\mathbf{v}_3 = \mathbf{x}_3 - \operatorname{proj}_{\mathbf{W}_2} \mathbf{z}$
 \vdots
 $\mathbf{v}_p = \mathbf{x}_p - \operatorname{proj}_{\mathbf{W}_1} \mathbf{x}_p$ $\mathcal{W}_{p_1} = \operatorname{Spn} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$
Then { $\mathbf{v}_1, \dots, \mathbf{v}_p$ } is an orthogonal basis for W . Moreover,
 $\operatorname{span}{\{\mathbf{v}_1, \dots, \mathbf{v}_k\}} = \operatorname{span}{\{\mathbf{x}_1, \dots, \mathbf{x}_k\}}$ for $1 \le k \le p$

Note: We can always scale vectors to make them length 1 so, we can construct an **orthonormal basis** by adding one more step to the Gram-Schmidt process and normalizing each vector in our orthogonal basis. An **orthonormal basis** is an orthogonal basis of unit vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$.

Example: Suppose
$$\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$$
 where $\mathbf{x}_1 = \begin{bmatrix} 1\\2\\3\\0 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$ is a basis for $W \subset \mathbb{R}^4$.
Describe an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for W .

14

QR Factorizations

Sha2: normalize those vectors
$$\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{J}_1\|}$$
, $\vec{u}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$

 $\varphi = [\overline{u}, \overline{u}]$

 $Q^T A = R.$ itep4: Find R using

ELOs:

- Define the least-squares problem.
- Find the least-squares solutions of a matrix using the normal equations and using QR factorization.
- Identify when a least-squares solution is unique.
- Derive a formula for the least-squares error.

Goal: If $A\mathbf{x} = \mathbf{b}$ has no solution, we want to find $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}}$ is as close as possible to \mathbf{b} .

My to solve Az=6 (=) Az=6=0 but there's no solution because B& col(A) =) Solve Ax=6 where 6 is projection of B outo Col(A). =6 2-AX Geometric Intuition: Col A/ s.t. Ax=6. notia **Definition 1** If A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$, *below the second secon* $\mathbf{\hat{x}} \in \mathbb{R}^n$ such that $\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$ were minimizing dista for all $\mathbf{x} \in \mathbb{R}^n$.

Note: For any $\mathbf{x} \in \mathbb{R}^n$, $A\mathbf{x} \in \text{Col } A$. We want to find $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}}$ is the closest point in Col A to b.

get best approx solution \hat{x} by solving $A\hat{x} = proj \overline{b}$

Kennember; maxim matrix \mathcal{U} has orthonormal columns iff $\mathcal{U}^{T}\mathcal{U}=\mathbb{I}$. and $\widehat{\mathcal{U}}\|\|\mathcal{U}_{x}^{T}\|\|=\||\vec{x}||$ $\widehat{\mathcal{U}}(\mathcal{U}_{x}^{T})\cdot |\mathcal{U}_{y}^{T}|=\tilde{x}\cdot \tilde{y}$ $\widehat{\mathcal{U}}(\mathcal{U}_{x}^{T})\cdot |\mathcal{U}_{y}^{T}|=\tilde{x}\cdot \tilde{y} = 0.$ $\widehat{\mathcal{U}}(\mathcal{U}_{x}^{T})\cdot (\mathcal{U}_{y}^{T})=\tilde{v}$ iff $\tilde{x}\cdot \tilde{y}=0.$

Question: What if $\mathbf{b} \in \text{Col } A$?

Theorem 13 The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the set of all solutions of the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

Proof
Suppose
$$\hat{X}$$
 satisfies $A\hat{X}=\hat{B}$. Then $\hat{B}-\hat{B}$ is
brithogonal to ColA (since $\hat{B}\in ColA$).
 \Rightarrow $\hat{B}-\hat{B}$ orthog to each column of A .
 \Rightarrow $\hat{B}-\hat{B}$ orthog to each row of A^{T} .
 \Rightarrow $\hat{A}^{T}(\hat{B}-\hat{B})=\hat{O}$ (\Rightarrow) $A^{T}(\hat{B}-A\hat{X})=\hat{O}$
 (\Rightarrow) $A^{T}(\hat{B}-\hat{B})=\hat{O}$ (\Rightarrow) $A^{T}(\hat{B}-A\hat{X})=\hat{O}$
 (\Rightarrow) $A^{T}\hat{B}=A^{T}A\hat{X}$. i.e. a bast squares
solution \hat{X} satisfies this
 Cqn .

<u>Example</u>: Find a least-squares solution to the inconsistent system $A\mathbf{x} = \mathbf{b}$ where $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

$$A^{T} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix} \implies A^{T} \overrightarrow{b} =$$

Observe: When
$$A^{T}A$$
 is invertible, we still have $A^{T}\vec{b} = A^{T}A\hat{x}$
as least squares solution.
If $(A^{T}A)^{T}$ exists, then
 $A^{T}\vec{b} = (A^{T}A)\hat{x}$
 $\Rightarrow) (A^{T}A)^{T}A^{T}\vec{b}^{=} (A^{T}A)^{-1}(A^{T}A)\hat{x}$
 $\Rightarrow) (x = (A^{T}A)^{-1}(A^{T}A)\hat{x}$
 $\Rightarrow) (x = (A^{T}A)^{-1}(A^{T}A)\hat{x}$
 $\Rightarrow) (x = (A^{T}A)^{-1}A^{T}\vec{b}$
 $A^{T}A\hat{x} = A^{T}\hat{x}$
 $A^{T}\hat{x} = A^{T}\hat{x}$

Note: In some cases, there may be more than one possible least squares solution. For example, the least squares solution is not unique when the normal equations have free variables.

Theorem 14 Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution $\forall \mathbf{b} \in \mathbb{R}^m$.
- The columns of A are linearly independent.
- $A^T A$ is invertible.

When these statements are true, the least-squares solution is

$$\mathbf{\hat{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

Definition 2 The least-squares error is the distance between **b** and the vector $A\hat{\mathbf{x}}$.

 $\parallel \mathbf{b} - A\mathbf{\hat{x}} \parallel$

<u>Exercise</u>: Determine the least-squares error for the least-squares solution of $A\mathbf{x} = \mathbf{b}$ from the Example. (\sim (Ast page)

Theorem 15 Given as
$$m \ge n$$
 matrix A with linearly independent columns. Let $A = QR$ be the QR
factorization of A . Then, for each $b \in \mathbb{R}^{m}$, $Ax = b$ has a unique least-squares solution given by
 $x = R^{-1}Q^{T}b$.
Proof: $A \pounds = A (R^{-1}Q^{T}b) = QR(R^{-1}Q^{T})b^{T} = QQ^{T}b = Prijcologies = 6$
 $\Rightarrow proposed \pounds$ is indeed since Q has onthogonal
solution to least columns
Example: Find the unique least-squares solution of

$$\begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{3} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ -3 \end{bmatrix}$$
where
step 1: Find QR factorization
 $A = QR = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$
step 2: $QTL =$
 $Meg 3:$ Solve $R\pounds = QTL$ $(i.e. \pounds = R^{-1}QTL)$