Section 6.3 Orthogonal Projections

ELOs:
e Uniquely write a vector in R” as a linear combination of vectors in W and W+,

e Apply the Best Approximation Theorem to find the unique §y € W C R™ for the vector y € R™ such
that y — ¥ is orthogonal to W and || y — ¥ || is minimized.

@iﬁ\atio'n: Find the closest vector y € W C R" toy € R™. LI.S-F sechml 1P didAhus
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Example: Suppose {uy, us, us} is an orthogonal basis for R3. Let W = span{u, us}. Write y € R? as the
sum of a vector § € W and a vector z € W+. ™MD Migh4 ke I,\‘*\la N
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Theorem 8 (The Orthogonal Decomposition Theorem)
Let W be a subspace of R™. Then, each 'y € R" can be uniquely represented in the form

y=y+z

where § € W and z € WL, That is, if {uy,...,up} is any orthogonal basis of W then

- -
y 1)u1+...+(u)up

T0] =y =
projwy =¥ = ({—- -,

wherez =y — .

projywy =¥ is called the orthogonal projection of y onto W.
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3 |. Observe that {ul,u2} is an orthogonal basis for
10
W = span{uj,uz}. Write y as the sum of a vector in W and a vector orthogonal to W.
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Geometric Interpretation of the Orthogonal Projection
On: Wwhd %éijb«i—
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Note: The orthogonal projection of y is the sum of its projections onto one-dimensional subspaces that
are mutually orthogonal.

Properties of Orthogonal Projections

Theorem 9 (The Best Approzimation Theorem) Let W be a subspace of R"™. Let'y be any vector in
R™. Let y be the orthogonal projection of y onto W. Then, § is the closest point in W toy. That is

Iy =3 l<ly—-vl

forallv£yeW.
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Example: Find the closest point to y in W=span{u;,us} where y = [ 3 ] , up =
-2

Find the distance from y to W.
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Theorem 10 If {uy,..., u,} is an orthonormal basis for a subspace W of R", then

projyy =¥ = (y -u)ug + -+ (y - up)up
If U =[u up ... up), then
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Section 6.4 The Gram-Schmidt Process M‘.

ELOs:

e Construct an orthogonal (and orthonormal) basis for a subspace W using the Gram-Schmidt Process.

e Use the Gram-Schmidt process to find a QR factorization for a matrix A.

Goal: Form an orthogonal basis for a subspace W.

1 2
Example: Suppose W = span{x,xa} where x; = |:1] and xo = |:2] .
0 3

Find an orthogonal basis {vi, va} for W.
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Example: Suppose {x1, X2, X3} is a basis f}or a subspace W of R%. Describe an orthogonal basis for .
> _o 2> = i:— y N =
O v,>% ® % A
zﬁi _ 3; =
W= Vs Wy =Span 2V,
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Theorem 11 The Gram-Schmidt Process
Given a basis {x1,...,Xp} for a nonzero subspace W of R™. Define

v — f, e UD, ::5‘04,\?‘7’13
vo= Yo~ ?"C}fjf& W, #spe ?i)zj

vs= X~ Ww’%
. >
Vp = if —mu){_‘xf

Then {v1,...,vp} is an orthogonal basis for W. Moreover,

span{vi,...,vip} = span{xy,...,xx} for 1 <k <p
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Note: We can always scale vectors to make them length 1 so, we can construct an orthonormal basis by
adding one more step to the Gram-Schmidt process and normalizing each vector in our orthogonal basis.

An orthonormal basis is an orthogonal basis of unit vectors {ui, ..., u,}.

Example: Suppose {x1,X2,x3} where x; = , Xo = , X3 =

O O N =
— o O

1
2
3
0

Describe an orthogonal basis {vi, vo, vs} for W.

is a basis for W c R4,
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QR Factorizations \;"(
Theorem 12 (The QR Factorization) 0>

If A is an m X n matriz with linearly independent columns, then

eﬂu//

A=QR

S
yw”
os”

?\ where @) is an m X n matriz whose columns form an orthonormal basis for C’ol Aand R is ann xn
1\,3() upper triangular invertible matriz with positive entries on the diagonal.

J:I)‘/ Note: Since @ has orthonormal columns, QT Q = I. Therefore, QT A = QT(QR) = (QTQ)R = IR = R.
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5 Example: Find a QR factorization of A = [1 2]
0 3
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Section 6.5 Least-Squares Problems

ELOs:

e Define the least-squares problem.

Find the least-squares solutions of a matrix using the normal equations and using Q)R factorization.

Identify when a least-squares solution is unique.

Derive a formula for the least-squares error.

Goal: If Ax = b has no solution, we want to find X such that AX is as close as possible to b.
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Geometric Intuition: ,,Ai Ty.g o Solu.c Ay "AE {E‘l -
X

2
Jzkws No Solunton

bt
/Z——i o8/ DeLaus ﬁ¢wm) '

S Solve A%=B e b is
P\’?CC’L@" Q’F i O OONA)
e M Q S.k. AS/} a.. — nohe r-}.sw R rof he

Definition 1 If A is an m x n matriz and b € R™, a least-squares solution of Ax = b is a vector
X € R" such that

I'b— AR || <[ b—Ax|

for all x € R™. UJ{:'C MU\( N'(-‘L"W\q GQA S“"&-/IUL b@lw
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Note: For any x € R" Ax € Col A. We want to find X such that A% is the closest point in Col A to b.
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Question: What if b € Col A?
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Theorem 13 The set of least-squares solutions of Ax = b is the set of all solutions of the normal
equations AT A% = ATb.

AT= [2. o 7_] = ATL=>

o | 2
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Observe: When AT A is invertible, W€ SR howe A TLEATAG
as lamst Squaecs st
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Note: In some cases, there may be more than one possible least squares solution. For example, the least
squares solution is not unique when the normal equations have free variables.

Theorem 14 Let A be an m X n matriz. The following statements are logically equivalent:
e Ax = Db has a unique least-squares solution ¥V b € R™.
o The columns of A are linearly independent.
o AT A is invertible.

When these statements are true, the least-squares solution is

%= (ATA)14Tb

Definition 2 The least-squares error is the distance between b and the vector AX.

b — A% ||

Exercise: Determine the least-squares error for the least-squares solution of Ax = b from the Example.

(on W5t /‘?)
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Theorem 15 Given an m X n matriz A with linearly independent columns. Let A = QR be the QR
factorization of A. Then, for each b € R™, Ax = b has a unique least-squares solution given by

£ =R'Q"b.
ot e A(RQT)= OR(E OB e
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Example: Find the unique least-squares solution of

where
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