
Section 6.3 Orthogonal Projections

ELOs:

• Uniquely write a vector in Rn
as a linear combination of vectors in W and W?

.

• Apply the Best Approximation Theorem to find the unique ŷ 2 W ⇢ Rn
for the vector y 2 Rn

such

that y � ŷ is orthogonal to W and k y � ŷ k is minimized.

Motivation: Find the closest vector ŷ 2 W ⇢ Rn
to y 2 Rn

.

Example: Suppose {u1,u2,u3} is an orthogonal basis for R3
. Let W = span{u1,u2}. Write y 2 R3

as the

sum of a vector ŷ 2 W and a vector z 2 W?
.

Theorem 8 (The Orthogonal Decomposition Theorem)

Let W be a subspace of Rn
. Then, each y 2 Rn

can be uniquely represented in the form

y = ŷ + z

where ŷ 2 W and z 2 W?
. That is, if {u1, . . . ,up} is any orthogonal basis of W then

projWy = ŷ = (
y · u1

u1 · u1
)u1 + · · ·+ (

y · up

up · up
)up

where z = y � ŷ.

projWy = ŷ is called the orthogonal projection of y onto W .
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Proof:

Example: Let u1 =

2

4
3

0

1

3

5, u2 =

2

4
0

1

0

3

5, and y =

2

4
0

3

10

3

5. Observe that {u1,u2} is an orthogonal basis for

W = span{u1,u2}. Write y as the sum of a vector in W and a vector orthogonal to W .
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Geometric Interpretation of the Orthogonal Projection

Note: The orthogonal projection of y is the sum of its projections onto one-dimensional subspaces that

are mutually orthogonal.

Properties of Orthogonal Projections

Theorem 9 (The Best Approximation Theorem) Let W be a subspace of Rn
. Let y be any vector in

Rn
. Let ŷ be the orthogonal projection of y onto W . Then, ŷ is the closest point in W to y. That is

k y � ŷ k<k y � v k

for all v 6= ŷ 2 W .

Proof:
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Example: Find the closest point to y in W=span{u1,u2} where y =

2

664

2

4

0

�2

3

775, u1 =

2

664

1

1

0

0

3

775, and u2 =

2

664

0

0

1

1

3

775.

Find the distance from y to W .

Theorem 10 If {u1, . . . ,up} is an orthonormal basis for a subspace W of Rn
, then

projWy = ŷ = (y · u1)u1 + · · ·+ (y · up)up

If U = [u1 u2 . . . up], then

projWy = UUT
y

for all y 2 Rn
.
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Section 6.4 The Gram-Schmidt Process

ELOs:

• Construct an orthogonal (and orthonormal) basis for a subspace W using the Gram-Schmidt Process.

• Use the Gram-Schmidt process to find a QR factorization for a matrix A.

Goal: Form an orthogonal basis for a subspace W .

Example: Suppose W = span{x1,x2} where x1 =

2

4
1
1
0

3

5 and x2 =

2

4
2
2
3

3

5.

Find an orthogonal basis {v1,v2} for W .

Example: Suppose {x1,x2,x3} is a basis for a subspace W of R4. Describe an orthogonal basis for W .
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Theorem 11 The Gram-Schmidt Process
Given a basis {x1, . . . ,xp} for a nonzero subspace W of Rn. Define

v1 =

v2 =

v3 =

...

vp =

Then {v1, . . . ,vp} is an orthogonal basis for W . Moreover,

span{v1, . . . ,vk} = span{x1, . . . ,xk} for 1  k  p

Note: We can always scale vectors to make them length 1 so, we can construct an orthonormal basis by
adding one more step to the Gram-Schmidt process and normalizing each vector in our orthogonal basis.
An orthonormal basis is an orthogonal basis of unit vectors {u1, . . . ,up}.

Example: Suppose {x1,x2,x3} where x1 =

2

664

1
2
3
0

3

775, x2 =

2

664

1
2
0
0

3

775, x3 =

2

664

1
0
0
1

3

775 is a basis for W ⇢ R4.

Describe an orthogonal basis {v1,v2,v3} for W .
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QR Factorizations

Theorem 12 (The QR Factorization)
If A is an m⇥ n matrix with linearly independent columns, then

A = QR

where Q is an m⇥ n matrix whose columns form an orthonormal basis for Col A and R is an n⇥ n
upper triangular invertible matrix with positive entries on the diagonal.

Note: Since Q has orthonormal columns, QTQ = I. Therefore, QTA = QT (QR) = (QTQ)R = IR = R.

Example: Find a QR factorization of A =

2

4
1 2
1 2
0 3

3

5.
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Section 6.5 Least-Squares Problems

ELOs:

• Define the least-squares problem.

• Find the least-squares solutions of a matrix using the normal equations and using QR factorization.

• Identify when a least-squares solution is unique.

• Derive a formula for the least-squares error.

Goal: If Ax = b has no solution, we want to find x̂ such that Ax̂ is as close as possible to b.

Geometric Intuition:

Definition 1 If A is an m ⇥ n matrix and b 2 Rm, a least-squares solution of Ax = b is a vector
x̂ 2 Rn such that

k b�Ax̂ k  k b�Ax k

for all x 2 Rn.

Note: For any x 2 Rn, Ax 2 Col A. We want to find x̂ such that Ax̂ is the closest point in Col A to b.

Question: What if b 2 Col A?
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Theorem 13 The set of least-squares solutions of Ax = b is the set of all solutions of the normal
equations ATAx̂ = AT

b.

Recall: What do we know about ATA?

Proof:

Example: Find a least-squares solution to the inconsistent system Ax = b where A =

2

4
2 0
0 1
2 2

3

5 and b =

2

4
1
2
3

3

5.
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Observe: When ATA is invertible,

Note: In some cases, there may be more than one possible least squares solution. For example, the least
squares solution is not unique when the normal equations have free variables.

Theorem 14 Let A be an m⇥ n matrix. The following statements are logically equivalent:

• Ax = b has a unique least-squares solution 8 b 2 Rm.

• The columns of A are linearly independent.

• ATA is invertible.

When these statements are true, the least-squares solution is

x̂ = (ATA)�1AT
b

Definition 2 The least-squares error is the distance between b and the vector Ax̂.

k b�Ax̂ k

Exercise: Determine the least-squares error for the least-squares solution of Ax = b from the Example.
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Theorem 15 Given an m ⇥ n matrix A with linearly independent columns. Let A = QR be the QR
factorization of A. Then, for each b 2 Rm, Ax = b has a unique least-squares solution given by

x̂ = R�1QT
b.

Proof:

Example: Find the unique least-squares solution of

2

664

1 3 5
1 1 0
1 1 2
1 3 3

3

775

2

4
x1
x2
x3

3

5 =

2

664

3
5
7
�3

3

775

where

A = QR =

2

664

1/2 1/2 1/2
1/2 �1/2 �1/2
1/2 �1/2 1/2
1/2 1/2 �1/2

3

775

2

4
2 4 5
0 2 3
0 0 2

3

5
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