Section 7.1 Diagonalization of Symmetric Matrices

ELOs: S‘é,mr-\e)n,(c_ matnces avise -G-C.%\MHZ N W@m_*-,wS
3 My Dave ds oxbn shalchie et we
OO e Ui~ S chepier.

e Determine when a matrix A is orthogonally diagonalizable.

e Define and give examples of symmetric matrices.

e Explain why symmetric matrices are orthogonally diagonalizable.

Definition 1 A symmetric matriz is a matriz such that AT = A.

Exercise: Construct an example of a symmetric matrix.

6 -2 -1
Example: Given A= [—-2 6 —1| and the following eigenspaces of A:
-1 -1 5
-1 -1 1
M =8 Ey =span | 1 |; A=6, E\, =span |—1|; A3=3,F),, =span |1
0 2 1

(a) Determine whether or not the corresponding eigenvectors of A form an orthogonal basis for R3.
If so, create an orthonormal basis of eigenvectors for R3.

6 -2 -1
Given A= |—-2 6 —1| and the following eigenspaces of A:
-1 -1 5
-1 -1 1
M =28 Ey =span |1 |; A=6, Ey,=span |—-1|; A3=23,F),, =span |1
0 2 1

(b) Diagonalize A using the orthonormal basis of eigenvectors found in part(a). What properties do we
observe about the matrix P and P~1?

Theorem 1 If A is a symmetric matriz, then any two eigenvectors from distinct eigenspaces are

oY MAS%&\J : ‘{a;{,‘
< d

Proof:
V,, T, @igun vecksss wzm o u,l::_s 2, £X
M, ¢ T = (AT = (AG)TE, = T,TATG, = VAD
-
= -G| ((;\2523"" szu'rd), = ?‘z.ob)o \/L

a4 AT, vﬁ,_.: NV, <, &) v, V- 2V, S
& (A‘—%,) T V=0 bud 7T A
v~

a:d; ¥
—) \'7‘0'\/7,9-0 U I
. o

Le. v, LV

-y

2memboer ordheagsad madhvix meens P-)‘PT

EN |

Definition 2 Ann xn matriCAA is orthogonally diagonalizable if there is an orthogonal matriz P

and a diagonal matriz D such that A= PDPT =

Observe:

_];Q A;PDPTIW AT:(PDPT)"—; PDTPT
ZeoPT=A

te i Ans wwg«wdﬂa, i tgonalitable, Hran

AT=A-

Theorem 2 An n x n matriz A is orthogonally diagonalizable if and only if A is a symmetric matriz!

Whwak W whad? TWis s ook -

Note: The set of eigenvalues of a matrix A is also known as the spectrum of A.

Theorem 3 (The Spectral Theorem for Symmetric Matrices)
An n x n symmetric matriz A has the following properties:

(a) A has _¥__ real eigenvalues, counting multiplicities.
(b) The dimension of the eigenspace for each eigenvalue \ Q%gé the multiplicity of
A as a root of the characteristic equation.

(c) The eigenspaces are WW’%M.Q , in the sense that the eigen-

vectors corresponding to different eigem}aQLes are orthogonal.

(d) A is orthogonally diagonalizable.

Example: Orthogonally diagonalize the matrix A = -2 6 2| given the characteristic equation of A

Skeo: Ts A sgrmrehwe? 3 -2 4] 4.1

4 2 3
0=—(A-720+2). =D A=F, A=-2

S!EE\ - Fod a{?/\.\ﬁ(/“*fs-

_Si;,é‘. Find or Mnensvead
v} Sl étngto’m’s.

Slep ¢ Fund /i 4 Pad b 55

.

pasis fw space P rad

A= PDPT.

3.0

Spectral Decomposition

Af’PDP—l «(‘Q/ P5 E(Tl" - i,\] w\/\L«-c. % S are U('-H/lof\arv\-a_Q
&‘.3(,/» vechors sk, Uy cowesponds P Ggent :
(V4 A S‘aﬂM Mbl'vic> we e

A-PPP =P DPT = (@ - — Q])\'OJ[D““*"')"ﬁ“] &
O A

YO)T_" \._’.)\’
e Az AWET 4 -+ ALK —é‘zbuyu

Hais s Sw

decorposon ofF A

Definition 3 The spectral decomposition of A Mu‘ UM P
A= Alulu{ + Agugug + -+)\nunuf M\j)(,
=
(Letas wTu; $UesS s)

Note: Each matrix ujuJT is a projection matrix. That is, for each x € R", the vector ju?)x is the
orthogonal projection of x onto the subspace spanned by u;.

Wew... So s s oov\MC‘{':J.I

Example: Construct a spectral decomposition of the matrix A that has the orthogonal diagonalization
e Nnokce: Az AT
[7 2] [2/\/3 —1/V5 [8 0] [2/V5 1//5
A=y 4| =

TV 2/V5 ~1/v5 2/V5
— W~
P b P =P

=) Mgmvdy_g =% lhas &gw-ww@w [""’?]

| &?go/\valm 7\24’3 has é-vec

0w A s >)ﬁ| Q‘l'r + 7‘2.6'1(]1)

Section 7.2 Quadratic Forms

Weire Spet o fong

ELOs: Ao \QD(AA\’} as
e Find a quadratic form given a symmetric matrix A. /Q(,;&W MWJS . Nd\p
)
e Find a matrix A associated with a given quadratic form. Uu{ﬂ M VD/
< oe(-;‘g
Definition 1 A quadratic form on R" is a function
Q:R" R c STAZ T
x—xT Ax M X’ Ax 'S ca‘ ”,
for some n x n symmetric matriz A. (b“")('\MXMD as A

N ~lU
w\/ug, UM wlld T guadrotc s=imd
Example: Let x = . Compute x* Ax for A = and B = . .

-2 7 pehc£

P and 5TRx

0 3

Example: Let Q(x) = 5a7 + 323 + 223 — 2132 + 8z for x = F; . Find A such that Q(x) = x” Ax.
Cantdswuscmpa;(-\emasww% x?’.}-a,,(wwp(’-'hwwsg
—l»{/\.e,djaﬁo/u.@ oies of A oe? o~d oFF el
L(‘&v\«w\pw Adso Hwed A o SWM@I’V‘Q\-B

1
Example: Let Q(x) = 527 + 322 + 222 — 2122 + 8z223. Compute the value of Q(x) forx = | 0 |.
(Sa as alove)

+2

Note: Sometimes quadratic forms are easier to use when the corresponding matrix A is diagonal. That is,
the quadratic form has no cross-product terms.

Change of Variable in a Quadratic Form:

‘W replae xe®@” W ZopPie®” Loy sene P daverhble
NKA AMOINX
T Hre guodrodi foran ecors

R L ‘PWW‘F“’L"LQ?
WSMQ"WW"‘ !F.Ql

Example: Suppose A = [_1 B 5} Let Q(x) = x” Ax. Make a change of variable such that the quadratic

' QA,W—[QNE]- N F/ 5

form @ has no cross-product term. Hint: Ay RNk =1y AR
Nokice' QE)=%X"A%X =[% %I[1 -«
_,,_f "6 xL
2 2 =
= [() C“‘*»‘s"ﬂ{“'l = Y U= Sk S X B TSk
'8
Pe b= > $AL=H(FAPG

S 2TNT
9 D
k_/—\r\/
sk. p=PDPT L Y -SKx-Sx =

P

=) PTA.',B‘PT
AP=D

Note: If A is NOT diagonal, we can apply a change of variable to eliminate cross-product terms by replacing
x with x = Py where P is the orthogonal matrix of eigenvectors of A.

Theorem 4 (The Principal Azes Theorem)
Let A be an n X n symmetric matriz. Then there is an orthogonal change of variable x = Py, that
transforms the quadratic form xATx into a quadratic form y* Dy with no cross-product term.

4.2

Definition 2 The columns of P are called the principal azes of the quadratic form xT Ax. The vector
y is the coordinate vector of x relative to the orthonormal basis of R™ given by these principal azes.

- < > 9
i =L .5.*‘. 6= ZPJ")PA
Question: In wha%.s%flse ag thel;e qjueadratic forms the same? Tlhat is, co}npare Q(x) and Q(y).
2 L o_ 2 =
fon sk axamply, we have ¥ -¥x¥%"S% —“33. ek OF
21
2. (2 I SO o (-l (1 ’; l = | A2
X e = 13 = P Y = . _
% (5] ¢ e iz e \UF) %

2 LV :),(—/1—1?' (
2 Q2) =285V and QUy)=2(d) T ICE

|

Definition 3 A gquadratic form Q is .
O&-A\V‘Q. ~\ >

(a) positive definite if Q&) >o Y ‘2#0 (PSQN\‘(u'c'i":‘k T’F Q(%) __O>

(b) negative definite if QC;) o ¥ 5:‘ fo (nw\i’i{}‘m'ﬂk W Q&) éO)

(c) indefinite if Q(Z) 7O fov Seve X ard QR0 L some K.

Theorem 5 (Quadratic Forms and Eigenvalues) Let A be a symmetric nxn matriz. Then a quadratic
form xT Ax is:

(a) positive definite if and only if the eigenvalues of A are a.o-Q pes;-\\ve,

(b) negative definite if and only if the eigenvalues of A are 2 Aua-ﬁ‘/‘c_.
(c) indefinite if and only if the eigenvalues of A are _STr& Peﬁ';“\\fc» o~d_ Q'Hrﬂfs

V\,eg,a_é\vt

A Geometric View of Principal Axes

A s 2¥2 Sa/r\vv\er\vx)(VT V3% c Fit avalet ¢l

?«:ﬁ;&i “Psle)ansurer te g
ik %€k So.L's—Qa,
FAz=C” o
(e, ue baz @ gguadratic eqr |
, vantuoles)

A—«\jw'ft w/
. O

- a pola D (‘
° Ao w&m\'ﬁ Lones X
o o Svyle pb\'\'\-‘\’ ‘
! y\,o‘v?s(,;&v\ W of >><TA§=-C,
g éso\ S—)—p-l\)oLA/'o(pas:Aw«Lt;e.HALm ore. o
ey, w axes).

22 flpse

) éﬁw,m,;u,d,) ora oF Hea folleg
‘ e

|]O

GQropns of Cuodratc oS

Tk we akow C ¥+ \fa!g,wtmgfa.(dh-\/"‘-‘-

Wa—\'{(_ L~ R_> ‘mal_ p\»\-h\/\g p'\'s (x,))c:jc)
Sk.C= @C)CU)C),> -

Y
=

ok haviesnd) <lies (Devel cres) gve Y 23
P%o\'wzﬂ wre od eanlier« L

(f

S .
:64\“ + BI&VISHA#'A@(QP-(-:N\'\%a.-kW

v

LWL ot éaw,mv\j speCT . can
wal X ¢ L veoker, T
-~ > - n L
z\=t & (2= & 27 = | & f‘—x;ﬂ
oA

B)(w/\eta,(.
P
&SV\SVA(""* ¥(2+ Yzz‘é)<32: (Q

w cowple Affeent =G>

/
lQ?FS .Sﬁ((/‘ﬁ Hu's

(O Noku q s u?ew cpelicrent o Q).
WEzo od % EC o YxE<9%
oard 3% £ Uy
2

BUJ— “(5" /LO'(';LZ Mt ’;: .
OZ s a wnst vecdo

pud EL10°) -9 Tn
4 vetkor whes O afttens

(e~ N -
= 5 4 af [gfcz-

L do ST Ty, WWJ%M Ha
. vealne 4 &
snna llest roe ¥hced S 3 6 = 0y Yo + 3%
TV E VA e 9v,>2 3¢,
=)

MJ
Swnwwz, o reswtts
AL Qvalue =g ok x © [:él
AL Q’VM:B ax é’(g]j{_
|5

@C’ﬂm‘s/ USeS -(c(,h,\;%,.,_e Lo Che 3 50 F gjf
et had Hat yef, d,ag# % e
pr- baoobedpe.)
DE): et 37 sk gD RO
uQ =) Vg ne@ (eostet)

£ 18% Bta, %07 A L2426, 25 7

2
Ly brye2%s @ KRkt |

W &%, =22x, (b §x, = 2%

2y, (A-—QS>0
AL s Wi‘
229 —
possible cduhrs oL

6D % =9, =S, %zl A=
= =0 >\""“I
Vs %377

Vo c -
)/o‘_ ()é)‘i} 12‘} ®) \c‘ '_-,o) yz
Lo 2=y))(‘Q, (_u_l))(,‘gl) h’% xbco) A‘>‘i

%20 tv) $%,.= 150
3

(d.) y.:(')&;'s (¥, O
L -

7)) ¥3’/() ¥390 C\)[o/o, 1) =3 pL—
[6)353 U’) xz"‘ Q(D)IIO);(/
Q(()OIOB 7@ w¢74

N

st - ’;TA %

Conshaud!
% X+ %= Nokee !
[wik crscle v %G~

6"\ DsthF“J“”j ajjﬂm o
0'4\) 0&/\4(’u‘zs[1
Lol'(ls) Q;-l;ﬂ (0;()5) i‘ '[;} |

q

(1,0

¥

b

ExXar
Gren B[22) Cod or and PO ot
|:23 l'(STAS when Tx=1 a~d
1 M Cod Y veokos Lhere
M~ ¥ X ol vl

Qi (A-»T) s —A F1oX - ZFAMES ~(2-C)(DCA) -

17

2.4 T W Valoe Datonmpositionn

Seckson
ELD:s !
. Define & Rnd Sigular s b madve A
‘ B\M\A ar o(.(al/\owm—o yasis .@/ Lol Sptse =< A.
(suD) =f A

s Fud Svgules yodse decarnpetitio

Wewt Seen Whow « Hrclonpdo— A=PDP" i< VW& e y
W\‘“’k"’\s' UMAJ‘('\NJJ»Z,, rot— 20 madices eon b
Fachoned Lo s, Howrs, % MEn wAohix can

ve Factoed oS A-: - g
: = @DP(sv Wi~ 1 well
pyplove o b S'e.C:(\'oV\.(S D) ,w 5 whad

Nokce! Fovr & Syrmekic makix A A measer= b=

MU A ¢ or Sl/\'/'t}\(k-_f / .
J TV T TN fovs.
W AZ =A% ond IXU=(. =
Then DAL =122 (AL U=l = (A
= (M~

-//):DPuu?:‘ is &'\gm;/:‘f‘— B oY ;
vechor s pordiy Yo 2
/‘\%/;VMUA&S Hre nadhh.)

Ev Lo
% k=4 v gres easr Aansfrrrakia~
R 3 2]
% A
(/%a,«)
|
1§

Fird o unit veder € ob wiih AGl s mesdeized Y
W7 D, “AQW' 16 mgitied A Sanve %o« 1A% (.

O || 2= (B PR)= FTATAZ = XT(AA)X
@ATA S S‘/U\»o-rc ?S‘Umme,\—vfc
v (KW= ACAT= KA

i li*:::“ Hf: : die G XTCATA)S S'UJ’QZ"‘"("
e Lonshaing IXI=I
WL W_) [I\A‘VJ lo Ao -H/‘-;Sl_ o
cMoA VAL TS etk Chgenuaat 2N o ATA.

=
‘W n~o) olLUYS d.* UN"’ LTJuNJZOB/ -

TA-41¢% 4 11 M7 =(go Lo Yo
A [ﬂ'{ ";Z[g T2 oo o 4o
L Yo Yo Z&P

s &ijvaiwut =30 | Wﬂéc)w\&“j e/‘na,mn/*&-ler_v

2, 90 T: (Vs /</'L= A) Gy® 2y
/ ?‘? =0 24 -l/3 -‘:/{3
Y k£ 3
. / A
&igwmlm v "*““’7"
ve, by dunedkTr~
of WAL

Ly AT % e po Furthast fom dhe orfgen on e Mpse.
> (4 U witz)-(® ond for [Rl=(, Hre
A\Il";g * —L] 2 Sj g valoa 1

{ A, 1= 300 = 6dio
\9

X

Rt ¢ can be ar#aagswﬂ,% JJMKA

, E\'/’\) .-\)7,.3 ov-Haonovral basks for R of

&?gmwd-fs of ATA
' TNy ghn] W aSodisded et
A D) "(ML)TA\)'L =3 {TATAT, = VTAT = Allvil®>=ay |
< TA are VN .
El"’“aﬁ V\M’Mgp\\w = agtmmﬁwr-s of A ‘2’“’*;“"

s k.
= We ¢ a/fa»j/,
2)2‘222 -"’ZAAB o

&fﬁw\.\raj.w

roots of
ang v oS o A o He
D et .H?e\f’,wj, a‘;;ﬂ:aiw of ATA, dewroied loa[?6,),__)0;\1

(6= (AL)-

The svgular valits ove Ha lnghs of AD,, .., AT,

Exorgle. A ’ 1 ! ‘ (Some A o5 sk yny.
d,’leo) 62_5\1%—31\0)03

7 VB]) 9F [){3] y = Aﬁl:[l(«xl) A9 ['Bﬁ}
N

| ;,/3
*fs

4/3
2{

D(‘cf—hea,gw‘_Qu

3.4
™Meorer : {q”) __.}\T:\S or enovmell baSs of RN of 0322«-/*:0('{5

ok ATA wath Qx\jmv‘aiu-@ 2\\2--.22“'3.,‘10?@;4;4 has o~
NSV O ﬁvzdw vadoeg, Thon ?A{Z)_..)Au,.i TS @A
o Moganal Dus or (dA and rllA=r,

QW Value Decam P“l‘hﬁ_

Teorem: b A be an M madix) ok r, Then
A = \AZV‘V where W= msxmm WMM i
SV D Z=[b ol

o O gm-qr row s

ceols N-v cels

a4 \/ = nxn orl—h.agaw-Q Mmadi -

Dsr%\(i W" ,,a/ of A
Wt fies C X valuss

6‘(2 O‘ZZ'Z 6(Pl

(fo

E\(M&'. LQV\S-\VLLU\' SVD =4 A= 4 U \qz tonlies
- (% % = orcanghis)
\ © Fud exgevaluss 4""2%4«5 Lo ATA-
%& ’ 2% r o [w& Lid g
?\\ = ?GO) ?\z ;4'73) >\3 /; } 7_/3 wl'\”)
—~ = (/3 \/I;'— -93) US’ _2/
Vi {2/31) 4@ 1/3
% % 3

A

Shp3'

Constvusr U.

= oA, Ve Pre fsb v cRunns of U

vedes AT, - M

24
norrolizsd

22

Cool. STUFE To END /T

SUb and Tarnge Cdmpv—cmm

+9

M)(""

\uaMM or<
am&rles arc-

s of
/‘rv.,PLLs Amw vvv°5
Lad,\ OO\UJ"“A ; m of
ok ATA

_E’Xaﬁ\LﬂLLoJc)z lode badk Jo

6! = e,fl/f.(fk(’Je A—TA l 3
: A= l‘ij; 'Ai_ = -
(ovves e Nag\ | =
J ¢, = bllo

QRS

D
AA"A oS uyujr
\rec;*fs

oy prple we lpep WSVG

}

23

+Y

Q/\'. whtdn 4\\/\3«1%{ valie Gves uS Hre st u~6e(m4mr\

A T™he Kook ovie, because + ~measuyres Hre f/fjﬂ&l’
oumounk A giveddhes oy veotsy

&%Obﬂrwﬁm; Twe ™Mot Unepaviant WMLM pbad A= s

Sroeed n Hre frst column of Uy Pra dop WA Ludvy < =

od Mo Ay voS of\T 0

"59 wWe cen D?M\/V\aak- A b“a ov*-(g WRNIV\%
Certzin piecs of He SVD.

=) QPW(&%N ok A’
M:.] 1\ e y o MK MahIX

4[] [(—9—)=A' Yusd carces Hre inbo
v s W A shetzias Hre pemsh.

» «, |
T\:s ISt A gre 0P Hiraakon pud ek (£ e Jeole e
st o LS
e el *“)%wwu*gw
Lk dwo vos o VT7

Thea we weuld have ndfprmadeon aband H=

ANehonS Mpak A skeires Hre most O
Secovnd ™est.

29

2.4

\A}l/&a:\’ S an umwg,g o & Wonder 7

e Agnd of peels
of ool'g:\
“red - green - blua
8255 D-2SS ©- -25S
I S esinh pn)ée) has ove colov
WSU’"M Usge = w/an—\-vu,s Fen g & Corttin® Sakyzdiow
of ved, gueen ard L.

s mdo alds o

o0 ¥\ papel umige = LooX | &0 Madn LS
w i D-25S

TE | p«\(&l‘ ‘ba’k') Hran IWX\OOM umage \S;Omo‘aa:\d

Desktep W.Ultﬂ'my\e(hos 20X ioU pel wege
=) 3,432 leo l«gks of duda (”3;6/\49>

maie Was 5D fawes e Seond
‘TM& SO-C@M; eegec Q@Mh)Nl’l’B
—(;f‘auv-c, [moie of Jod

Vikes , pis 1s oo mkdn dada!

A poss\bu, an Use SVD 4= uzfyi'u-m Hre Mot Lnepvtont
D-(' Hre P-.(,Q-we "T\U} S uv%j‘ﬂ- Cﬂ-«pq‘CSSl%V\

25

—%&:NWM'(’V“GW\MMM&M‘XAWK

modes of prllifen s AawW (V) where

W= Qv oluws of U
S's kxic wppu UfF blodk »f =

(VO = Ly ¥ ows of VT

how dots Has help?

ot loo vz pxel UnoPL s Gregseals = W is Lo
i s O X0

(_\(1)’ ¢ ©XI80
=) 2100 veloes
(us. (ojooos

Ldz See o s adleds 2n “umage -

20

Image Compression using Singular Value
Decomposition (SVD)

by Brady Mathews
12 December 2014
The University of Utah

(1) What is the Singular Value Decomposition?

Linear Algebra is a study that works mostly with math on matrices. A matrix is just a
table that holds data, storing numbers in columns and rows. Linear Algebra then takes these
matrices and tries to manipulate them which allows for us to analyze large portions of data. This
paper will be discussing one of these large portions of data as we talk about image compression
later on where each pixel can be represented as a number, and the columns and rows of the
matrix hold the position of that value relative to where it is on the image.

First however, let us talk about what the Singular Value Decomposition, or SVD for short, is.
When given a matrix, there are several important values that mathematicians can derive from
them that help explain what the data represents, classify the data into families, and they can also
manipulate matrices by pulling them apart into values that are easier to work with, then stitching
those values back together at the end of the computation to obtain some type of result. The SVD
is one such computation which mathematicians find extremely useful.

What the SVD does is split a matrix into three important sub matrices to represent the data.
Given the matrix A, where the size of a is m X n where m represents the number of rows in the
matrix, and n represents the number of columns, A can be broken down into three sub matrices
A = UZVT where U is of size m X m, X is of size m X n and is diagonal, and VTis of size n X n.
It is required for matrix multiplication that the size of the columns of the first matrix must match
up with the size of the rows of the second matrix. When you multiply a matrix of size a X b and
a matrix of size b X c, the resulting matrix will yield a matrix of size a X c.

So, abstracting the matrices into their size components, we can see that this multiplication will
yield a matrix of the same size:

mxn=[(mxm)(mxn)](nxn)
mxn=(mxn)(nxn)
mxn=(mxn)

Now, the interesting part of these matrices “UXV T are that the data is arrange in such a way that
the most important data is stored on the top. U is a matrix that holds important information
about the rows of the matrix, and the most important information about the matrix is stored on
the first column. V7 is a matrix that holds important information about the columns of each

matrix, and the most important information about the matrix is stored on the first row. X is a
diagonal matrix which will only have at most “m” important values, the rest of the matrix being
zero. Because the important numbers of this matrix are only stored on the diagonal, we will
ignore this for size comparison.

Key point: The reason why the SVD is computed is because you can use the first components of
these matrices to give you a close approximation of what the actual matrix looked like. Going
back to our size example, if the most important information of U is stored on its first column,
then U’s important information can be written as an (m X 1) matrix. If the most important
information of VT is stored on its first row, then V7’s important information can be written as a
(1 X n) matrix. We will also say that the important information of X is stored on the first row,
first column of that matrix, yielding a (1 X 1) matrix. By multiplying these matrices together:

U'SVT = [(mx1)(1x D](1xn)
=(mx1)(1xn)
=(mxn)

We can see that the resulting computation is the same size as the original matrix. This resulting
matrix, which we will call A", is a good approximation of the original matrix A. For an even
closer approximation, you include the next column of U and the next row of V7. But where do
these magic matrices come from? Linear algebra holds the mystery.

(2) Computing the SVD

Now we will get into the math and theory behind what I just described above. We will go
through an example to solve the equation A = UZVT.

220

Given A = 110

] find the SVD:

The first thing we need to find in this computation is finding the matrix AT A. The superscript T
stands for “transpose” which to put nicely, you flip the matrix on its side, row one becoming

column one.

2 -1 2 2 07_ 5 3 0

2 1[5] g]=p3 s 0

0 O 0 0O
If you’re not a mathematician, matrix multiplication works likes so. To get the first row, first
column of the resulting matrix, you need to take the first row of the first matrix, and the first

column of the second matrix. Then you multiply the corresponding first values together, and the
corresponding second values together etc., and then sum those values.

Therefore, first row first column: [2 —1] [_21] willyield 2x2)+(-1x—-1)=4+1=5

Once you find AT A, you will need to find its eigenvalues and eigenvectors. To find the
eigenvalues of the matrix, you need to compute the determinate of (ATA — AI) and solving for
A, where 1 is the identity matrix. First let’s find (ATA — AI):

5 30 1 0 0 5-4 3 0
3 5 0[—4f0 1 o0f= 3 5-1 0

0 0 O 0 0 1 0 0 -2

Now what we need to do is compute the determinate of this matrix. The determinate is more
complicated to find. The determinate of a 2 X 2 matrix is defined as the following:

¢ Z| — (ad — bo)

For a 3 X 3 matrix, you can pick one column in the matrix. You go down that column, and write
down the number. You then multiply that number with the determinate of the remaining matrix
that appears when you cancel out the whole row and column that the corresponding number
belongs to. Example:

Given the matrix:

a b c

d e f]
h i

g

We can pick to iterate down the first column in the matrix and choose the first value to be "a".

We then cross off the column and row that "a" belongs to, and multiply "a" by the determinate of
the resulting matrix.

&
d

b €
o el

)

We can continue to iterate down the row to get the other two values for the determinate:

a b c

d e f|—all
. h i

g h i

a b b

def—>g|e

g R i

Therefore, the resulting determinate looks like:

b c
gef

Q Q

aly Al-aly G+

S o

c
fl=
[

Q

You do sum the result, but we have the subtraction in the second term because there is really an
invisible (—1)**Y multiplied to each term, where “x” is the row number and “y” is the column
number. Going back to our definition of how to solve the determinate of a 2 X 2 matrix, we get:

a(ei — fh) + d(bi — hc) + g(bf — ce)

Now in our example matrix, we have a lot of zeros in column 3, so instead let’s iterate down
colum3 to compute our result.

=4 3 0 3 5-1 5-1 3 51 3
_ =0 -0 -1
oo A0 o ol-oPet SlrenP It 52,

Since zero multiplied by anything is zero, we can drop the first two terms:

5-12 3 0
30 5-2 o|=-AP74 2
0 0 -a

5-1 3 0
3 5-12 0l=-20G-DG-2)-03B)(73)
0 0o -2

5-1 3 0

3 5-1 0[|=-12(12-101+16)

0 0 -2

Now we can solve to find when A = 0 to find our eigenvalues:
—A(A2 - 101+ 16) = —A(1—2)(1—8)

Therefore or eigenvalues are 8, 2, and 0. You will want to keep these numbers in descending
order.

With this information, we can find an important value "¢" which is the square root of the
eigenvalues. We ignore zero for the "o" term. Therefore:

o, = V8=22 and o, = 2

These values are the important values along the diagonal of matrix "X".

Next we need to find the normalized version of the corresponding eigenvectors to each of the
eigenvalues. To find an eigenvalue, replace A with the corresponding eigenvalue in the equation
(ATA — AI). Then find the nullspace of that resulting matrix:

When A = 8, the resulting matrix yields:
-3 3 0
3 =3 0
0 0 -8

To find the nullspace of this matrix, we need to find some vector “v” that when multiplied by
the matrix, will yield the zero vector. The vector though cannot be the zero vector itself. There
are complicated methods to solve for the nullspace, however in this example, you might be able

to just see it.
1
51 =11
0

As you can see, when we multiply this vector by the matrix, it will yield the zero vector:

1(=3)+1(3) +0(0) = 0
1(3) + 1(=3) + 0(0) = 0
1(0) + 1(0) + 0(—8) = 0

BERRY

Now that we found “v”, we need to compute the normalized version, and then solve for the
remaining eigenvectors in a similar fashion. To find the normalized version, you multiply the
vector by the reciprocal of the square root of the sum of the squared rows. So for this example,
12 = 1 and the sum of the squared rows is 2. Therefore the normalized version is:

S}
V= —
1 \/E 0
Now we need to find the normalized eigenvectors for when A = 2 and when 4 = 0.
When A = 2, the resulting matrix yields:
[3 3 0] [—1] 1 [1
3 3 0|—wv,=]1]|—normalized »>v,=—|1
0 0 -2 0 V2 0

When A = 0, the resulting matrix yields:

5 3 0 0 L0 0
3 5 0|— 73 =|0|— normalized — v, =—|0| — or just — v; = |0
0 0 O 1 \/Tl 1

Now that we have found or eigenvalues denoted by “v”” we need to find this term “u”” which can

1,
be found using the equation Av = ou or ;Av = u.

Calculating the next term:

1 [

gsz—uz \/_I: 1 1 O]T[]:uz
1 . .
-5 [)- =

Since there are no more o terms, we can stop there. Now with all of the values we have found,
we can complete the three matrices in the equation A = UZVT.

First is the matrix U which can be found by making the first column in the matrix the first « term

and the second column the second term. Therefore:

v=1o 1

Next is the matrix £ which is the same size as the matrix 4 and can be found by placing the o
terms along the diagonal of a matrix of that size, and then filling in the rest of the matrix with
ZEeros.

v

Lastly is the matrix VT which can be found by first computing V and then transposing it, by
turning the columns into the corresponding rows. V is found similar to U in the fact that the
columns of V are the corresponding ¥ terms. Remember to multiply the constant used to scale
the vector through the entire term before adding it to the matrix.

[1/\/5 - 1/\/2 0]

V =
|1/\/§ 1/\/§ 0
0 0 1

e e

V' = [_ 1/\/E 1/\/E 0

0 0 1

So now we have the finished equation A = UZVT yields:

1 1 0
20 R 5 e
0 VZ 0 l N A J
0 0 1

You can also multiply the terms together to show that the equation holds true. Now to move onto
the point of this paper, why do we care, and what are the real world applications.

(3) Compressing an Image

The monitor on your computer is a truly magical device. When you look at the color
white on your screen, you’re not actually looking at white, and the same thing for the color
yellow. There is actually no white or yellow pigment in your screen. What you are looking at is a
mixture of the colors red, green, and blue displayed by extremely small pixels on your screen.
These pixels are displayed in a grid like pattern, and the saturation of each pixel tricks your brain
into thinking it’s a different color entirely when looked at from a distance.

These red, green, and blue pixels range in saturation on a scale of 0 to 255; 0 being completely
off, and 255 being completely on. They can also be written in hexadecimal format like #F5C78A
for example. In hexadecimal, A is the value 10, and F is the value 15, therefore OF = 15 and A0 =
16. The first two numbers in this string of numbers represents the red value, the next two
representing the green value, and the final two representing the blue value. To put reference into
what these are doing, here are some easy color examples:

#000000 = Black
#FFFFFF = White
#A0AOAOQ = Gray

#FF0000 = Red
#00FF00 = Green
#0000FF = Blue

Because of a pixel’s grid like nature on your monitor, a picture can actually be represented as
data in a matrix. Let’s stick with a grayscale image for right now. To make an image gray, the
values for red, green, and blue need to be the same. Therefore you can represent a pixel as

having a value of 0 through 255 (in hexadecimal 00 through FF), and then repeating that value
across the red, green, and blue saturation to get the corresponding shade of gray.

Let’s say that you have a grayscale image that is 100 X 100 pixels in dimension. Each of those
pixels can be represented in a matrix that is also 100 X 100, where the values in the matrix range
from 0 to 255. Now, if you wanted to store that image, you would have to keep track of exactly
100 x 100 numbers or 10,000 different pixel values. That may not seem like a lot, but you can
also think if the image as your desktop background which is probably and image 1280 x 1024
in which you would have to store 1,310,720 different pixel values! And that’s if it was a
grayscale image, if it was colored, it would be triple that, having to keep track of 3,932,160
different numbers, which if you think about one of those numbers equating to a byte on your
computer, that equals 1.25MB for a grayscale image or 3.75MB for a colored image. Just
imagine how quickly a movie would increase in size if it was updating at the rate of 30-60
frames per second.

What we can actually do to save memory on our image is to compute the SVD and then calculate
some level of precision. You would find that in an image that is 100 X 100 pixels would look
really quite good with only 10 modes of precision using the SVD computation.

Going back to our example in section 1, “The reason why the SVD is computed is because you
can use the first components of these matrices to give you a close approximation of what the
actual matrix looked like.”

Then we calculated the first components of these matrices by taking the first column of U and
multiplying it by the first row of V7. We saw that this resulted in a matrix with the dimensions of
the original matrix A.

U's'VT = [(mx1)(1 x D](1 X n)
=(mxXx1)(1xn)
=(mxn)

Modes are how many columns of the matrix U you want to use and how many rows of the matrix
VT you wanted to use to calculate your specified level of precision.

Therefore if we have a matrix 100 X 100, and we use a level of precision of 10 modes, we will
find that our matrices are:

U’ = (100 x 10),2" = (10 x 10), V7' = (10 x 100)

So now we are only keeping track of 2,100 different numbers instead of 10,000 which greatly
increases the storage of memory. Also, if you remember how we computed Z, it is a diagonal
matrix with values along the diagonal and zeros everywhere else. Therefore, we can represent £
as only being the first ten values of o, and saving only those values in memory, reconstructing
the matrix when opening the file, and X goes from size 100 to size 10. However, there may not
be as many o in the computation as the size of the matrix, in a 5 X 5 matrix, you can have at
most five o’s, but you can also have as little as one, the rest of the values on the diagonal also

being zero. So really o < # modes, which is going to be so little anyway, we are going to negate
it from our computation.

That’s great in theory, but when you compute these new matrices using your specified modes of
precision, what do they actually look like? Well, using a program called “MatLab”, we can write
a program that will load in image file, turn the pixel values of the grayscale image into a matrix,
compute the SVD for us, and then convert our new matrix back into an image for our viewing
pleasure.

l
(\\\/Gentleman"S k:/(}entleman\xf)

A4}

‘ ki) ;t\
Pirafe

Figure 3.1: Image size 250x236 - modes used
{{1,2,4,6},{8,10,12,14},{16,18,20,25},{50,75,100,0riginal image}}

(S !\
Pirate

In figure 3.1 we see that the image size is 250x236 pixels. By storing the image in its entirety, we
can calculate that we would need to store 59,000 different pixel values. The image starts to look
very decent along the bottom row, the last images using modes 50, 75, and 100. By negating the
size of X since it is so miniscule, we can calculate:

Original Image: 59,000 bytes
Mode 100: 48,600 bytes
Mode 75: 36,450 bytes
Mode 50: 24,300 bytes

So, these modes actually do save on memory quite a bit, more than halving the amount of
memory used at mode 50, which is represented by the bottom left image in figure 3.1.

We can even graph the error involved in the image compression, or how badly the image differs
from the original image. We can gather the data by measuring the error as the difference in our
new image by the differences in our original image and plot it on a graph.

N
o
T

N

..

..

-
o

o nn e e s ee e e eeeneafeneeenee ey

—

=
o

I R D R D T R D R D . T R D R T P R T R D S AR D D R D oA,

Error between compress and original image

ey S R R e N S Sy M S s g
. g g P .

e e e ccadecasscencbanscensedeseesesesbeensssesscdemssesmss.e el

| |
0 10 20 30 40 50 60 70 80 90 100

Number of Singular Values used

Graph 3.1: Shows the difference in the new image to the original image of Figure
3.1 by calculating the error rate between the two.

The graph starts to show a heavy turn at about 15 modes in, and starts to show a decent image
approximately 30 modes in, 50 modes having an extremely low number or error, and 100 modes
having a miniscule amount.

'A\wmmm
vf"_’ 5 i:‘

CA\]IMFQ%B“
1

Figure 3.2: Image size 600x387, same modes used as in Figure 3.1

A second example, the image shown by figure 3.2, we use the exact same modes, and the image
is even bigger. For this we can calculate the estimated file sizes again:

Original Image: 232,200 bytes
Mode 100: 98,700 bytes
Mode 75: 74,025 bytes
Mode 50: 49,350 bytes

And we can also show the error rates from the new image to the original image as well, and by
halving the memory on mode 100, you could keep increasing the number of modes and still get
save on memory.

x 10
9 I I I I I I | I I
' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
8 csacelecccnedeccanad ecacaea e eaeamas Leccaea Lacaee -
T d ' V T i ' V T
@ ' ' ' ' ' ' ' ' '
=23 , ' ' : ' : ' , i
o ' ' ' ' ' ' ' ' '
| Looppe g e P sl PO Foaampe s s oo
' ' ' ' ' ' ' ' '
E ' ' ' ' ' ' ' ' '
2 : : : : : : : : :
Tz Ene R T PR L sns oo e Chomans Vonos o
— ' ' ' ' ' [' ' '
o ' ' ' ' ' ' ' ' '
- ' ' ' ' ' ' ' ' '
= ‘ i : : : i : i i
' ' ' [' ' ' ['
o 2 | : : : : : : :
w ' ' ' ' ' ' ' '
@ ' ' ' ' ' ' ' '
[=4 ' ' ' ' ' ' ' '
(=1 1 ' [' ' ' ' '
I i W e R, R 6 G [o T e N i
o ' ' ' ' ' ' ' '
[&] ' [' ' ' ' ' '
' ' ' ' ' ' ' '
c ' ' ' ' ' ' ' '
L4} 3 decccsas | PR - [E - deccaea decccas deccccas [- [- —t
@ ' ' ' ' [' ' '
z ' ' , ' : ' : '
o : : : : : i i ‘
| RS SRR EREERRE R o BN ek r XX ISEEEREL GREERRE FEREEE -
o ' ' ' ' ' ' ' '
= ' ' ' ' ' ' ' '
(1] : ' , ' : ' : '
' ' ' ' ' ' '
1 ------- T, oo o) L LA XX)i oo o A o o . o Comm e
' ' ' ' ' ' ' ' '
' ' ' ' ' ' '
' ' ' ' 0 ' '
' ' ' ' ' ' '
0 | | | |] | | | |

0 10 20 30 40 50 60 70 80
Number of Singular Values used

(L)
o

100

Graph 3.2: Shows the difference in the new image to the original image of Figure
3.2 by calculating the error rate between the two.

Now we can see that this works for a grayscale image, but what about a colored image? Would
this still have the same application for image compression? The answer is a surprising yes, but it
does require a few more calculations.

The difference between a grayscale image and a colored image is that you are now storing 3
bytes of information per pixel rather than 1 byte per pixel. This is because the red, green, and
blue pixel values are now different rather than the same, so we have to represent each
individually.

First, we need to take a colored image, and split it into three new images, a red-scale, green-
scale, and blue-scale image.

3 v
g‘ o },‘
b

N

We can treat the red-scale, green-scale, and blue-scale images just like we did with the grayscale
image. This time the values 0 through 255 on our table represent only the saturation of that
particular color. We can compute the SVD computation on each of these images separately, and
then combine them back together to create our colored image.

FT
T=; 2

'o
!

i

Figure 3.3 shows an image of size 2800x2052 being split into three scaled images
representing red, green, and blue pixel values, and then performs the SVD
computation using modes {{1, 5, 10, 15, 20}}

This image is pretty big, and as you can see, even just by 20 modes of precision, you have a very
good idea of what you’re looking at.

Figure 3.4: Image size 2800x2052 with modes used {{1, 2, 4, 6}, {8, 10, 12, 14},
{16, 18, 20, 25}, {50, 75, 100, original image}}

As you can see, the image still looks very good at 50 modes even with such a large image. It is
very hard to tell, but by squinting at the difference of the picture derived from mode 100 to the

original image, the pink lines on the petals appear to be a little stronger, giving the image more
contrast. But to the average person, most people will think that modes 50-100 look relatively the
same. The reason for the sharper contrast is because the SVD is very pattern oriented, so those
natural patters in the image may show up a little stronger than in the original image.

Let’s compute the sizes of the image again. Remember, now instead of a grayscale image, we
have color, so we have to add the matrix three times instead of just the once. So for an image that
1s 2800x2052 we have:

Original Image: 17,236,800 bytes (16.4MB)
Mode 100: 1,455,600 bytes (1.4MB)
Mode 75: 1,091,700 bytes (1.0MB)
Mode 50: 727,800 bytes (0.7MB)

The error is a little more difficult to plot, as the graph would be three dimensional, since the
image has three layers. But you can still see that once you hit that certain point of precision, you
ultimately can’t tell the difference between the compressed and the original image as the error
rate becomes so minute, that in the large picture it really doesn’t matter.

Conclusion: All an image is, is data represented on a matrix being visually displayed to you
through pixels of red, green and blue on your computer. This data can be manipulated through
the use of the SVD theorem to calculate a level of precision close to the original without storing
as much data. The SVD allows us to store (#modes)(m + n) information instead of (m X n)
information where the size of the image is m X n, or 3(#modes)(m + n) when the image is in
color instead of 3(m X n).

If you would like to try this out for yourself, the following pages will have an attached reference
to the MatLab code used to create the above images and graphs.

MatLab Code for GrayScale Images

Brady Mathews - The University of Utah December 2014

o°

o°

This document contains instructions for Matlab which will Open an image
file, turn the image into a grayscale format Grab the image data and
build a matrix representing each pixel value as 0-255 as data on the
matrix. It will then compute the SVD on the matrix, and display varying
different modes and levels of pressision based on the image compression,
as well as an error graph at the end on how accurate the image got based
on the difference from the original image. It will also save these
resulting images on your computer. To upload an image, replace the
"image.jpg" with the filepath, name, and data type of the image you wish
to use. If you would not like the program to save the image to your
computer, comment out or eleminate the lines that say

19

"imwrite (unit8(...), sd...")"

A® o® d° o o° o o° o

o° oP

o\°

o\°

The following will give you modes 1, then (2,4,6,8,10,12,14,16,18,20)
then it will give you modes (25,50.75.100). To edit these, change the
value of N in the loops.

o\°

o\°

close all
clear all
clc

$reading and converting the image
inImage=imread('image.jpg') ;
inImage=rgb2gray (inImage) ;
inImageD=double (inImage) ;
imwrite (uint8 (inImageD), 'original.jpg'):;

% decomposing the image using singular value decomposition
[U,S,V]=svd(inImageD) ;

% Using different number of singular values (diagonal of S) to compress and
% reconstruct the image

dispEr = [];

numSVals = [];

N =1

oo

store the singular values in a temporary var
=S;

@

oo

discard the diagonal values not required for compression
C(N+1l:end, :)=0;

C(:,N+1l:end)=0;

% Construct an Image using the selected singular values
D=U*C*V';

for

end

for

[}

% display and compute error

figure;

buffer = sprintf ('Image output using %d singular values',
imshow (uint8 (D)) ;

imwrite (uint8 (D), sprintf ('%dbw.Jjpg', N));

title (buffer);

error=sum(sum((inImageD-D) ."2)) ;

[}

% store vals for display

dispEr = [dispEr; error];

numSVals = [numSVals; NJ;

N=2:2:20

% store the singular values in a temporary var
cC =8S;

% discard the diagonal values not required for compression
C(N+1l:end, :)=0;
C(:,N+1l:end)=0;

% Construct an Image using the selected singular wvalues
D=U*C*V';

o)

% display and compute error

figure;

buffer = sprintf ('Image output using %d singular values',
imshow (uint8 (D)) ;

imwrite (uint8 (D), sprintf ('%dbw.Jjpg', N));

title (buffer);

error=sum (sum((inImageD-D) ."2)) ;

% store vals for display

dispEr = [dispEr; error];

numSVals = [numSVals; N];

o
]

tore the singular values in a temporary var

N=25:25:100
S

Q

% discard the diagonal values not required for compression
C(N+l:end, :)=0;

C(:,N+1:end)=0;

% Construct an Image using the selected singular values
D=U*C*V';

Q

% display and compute error

figure;

buffer = sprintf('Image output using %d singular values',
imshow (uint8 (D)) ;

imwrite (uint8 (D), sprintf ('%dbw.jpg', N));

N)

N)

N)

title (buffer);
error=sum(sum((inImageD-D) ."2)) ;

% store vals for display

dispEr = [dispEr; error];

numSVals = [numSVals; NJ;
end

% dislay the error graph
figure;

title('Error in compression');

plot (numSvals, dispEr);

grid on

xlabel ('Number of Singular Values used');

ylabel ('"Error between compress and original image');

MatLab Code for Colored Images

o°

Brady Mathews - The University of Utah December 2014

o°

This document contains instructions for Matlab which will Open an image
file, and then split the image into three separate images; a red-scale,
a green-scale, and a blue-scale image. It will then plot the pixel data
from these images into a matrix, representing values 0-255 based on the
pixel saturation. It will then compute the SVD on each of these scaled
images, save them on the computer, display the corresponding scaled
images, and then it will also merge these images back together to form a
colored image, also displaying and saving the image as well. You can
prevent the program from saving images to your computer by commenting out
or eliminating the lines that say imwrite(uint8(...),

sprintf ('%d....Jjpg', N));

0® o° O o° A° o° A° o o°

o\°

o

The following will give you modes 1, then (2,4,6,8,10,12,14,16,18,20)
then it will give you modes (25,50.75.100). To edit these, change the
value of N in the loops.

o\°

o\°

close all
clear all
clc

filename = 'image.jpg';
[X, map] = imread(filename);
figure ('Name', '"ORIGINAL component of the imported image');
imshow (X) ;

imwrite (X, 'loriginal.jpg');

R=X(:,:,1);

G = X(:,:,2);

B = X(:,:,3);

Rimg = cat (3, R, zeros(size(R)), zeros(size(R)));
Gimg = cat (3, zeros(size(G)), G, zeros(size(G)));
Bimg = cat (3, zeros(size(B)), zeros(size(B)), B);

figure ('Name', 'RED component of the imported image');
imshow (Rimg) ;

imwrite (Rimg, '!red.jpg');

figure ('Name', 'GREEN component of the imported image');
imshow (Gimg) ;

imwrite (Gimg, '!green.jpg');

figure ('Name', 'BLUE component of the imported image');
imshow (Bimg) ;

imwrite (Bimg, '!blue.jpg');

Red =double (R) ;
Green = double (G);
Blue = double (B);

N = 1;

% Compute values for the red image

[U,S,V]=svd(Red) ;

Cc =5;
C(N+1l:end, :)=0;
C(:,N+1:end)=0;
Dr=U*C*V';

% Rebuild the data back into a displayable image and show it
figure;

buffer = sprintf ('Red image output using %d singular values', N);
Rimg = cat (3, Dr, zeros(size(Dr)), zeros(size(Dr)));

imshow (uint8 (Rimg)) ;

imwrite (uint8 (Rimg), sprintf ('%dred.jpg', N));

title (buffer);

% Compute values for the green image
[U2, S2, V2]=svd(Green);

C = 52;
C(N+1l:end, :)=0;
C(:,N+1l:end)=0;
Dg=U2*C*V2"';

% Rebuild the data back into a displayable image and show it
figure;

buffer = sprintf ('Green image output using %d singular values', N);
Gimg = cat (3, zeros(size(Dg)), Dg, zeros(size(Dg))):;

imshow (uint8 (Gimg)) ;

imwrite (uint8 (Gimg), sprintf ('Sdgreen.jpg', N));

title (buffer);

% Compute values for the blue image
[U3, S3, V3]=svd(Blue);

C = 33;
C(N+l:end, :)=0;
C(:,N+1:end)=0
Db=U3*C*V3';

’

o)

% Rebuild the data back into a displayable image and show it
figure;

buffer = sprintf('Blue image output using %d singular values', N);
Bimg = cat (3, zeros(size(Db)), =zeros(size (Db)), Db);

imshow (uint8 (Bimg)) ;

imwrite (uint8 (Bimg), sprintf ('sdblue.jpg', N));

title (buffer);

% Thake the data from the Red, Green, and Blue image
% Rebuild a colored image with the corresponding data and show it
figure;

buffer = sprintf('Colored image output using %d singular values', N);

Cimg
imsh
imwr

titl

for

= cat (3, Dr, Dg, Db);
ow (uint8 (Cimg)) ;
ite (uint8(Cimg), sprintf('%dcolor.jpg', N));

e (buffer);
N=2:2:20

% Recompute modes for the red image - already solved by SVD above
c =35;
C(N+1l:end, :)
C(:,N+1:end)
Dr=U*C*V';

=O;
=0:

’

Q

% Rebuild the data back into a displayable image and show it
figure;

buffer = sprintf ('Red image output using %d singular values', N);
Rimg = cat (3, Dr, zeros(size(Dr)), zeros(size(Dr))):;

imshow (uint8 (Rimg)) ;

imwrite (uint8 (Rimg), sprintf ('%dred.jpg', N));

title (buffer);

% Recompute modes for the green image - already solved by SVD above
C = S52;
C(N+1l:end, :)=0;
C(:,N+1:end)=0
Dg=U2*C*V2';

’

Q

% Rebuild the data back into a displayable image and show it
figure;

buffer = sprintf ('Green image output using %d singular wvalues', N);
Gimg = cat (3, zeros(size(Dg)), Dg, zeros(size(Dg))):;

imshow (uint8 (Gimg)) ;
imwrite (uint8 (Gimg), sprintf ('%dgreen.jpg', N));

title (buffer);

% Recompute modes for the blue image - already solved by SVD above
C = S3;

C(N+1l:end, :)=0;

C(:,N+1l:end)=0;

Db=U3*C*V3';
% Rebuild the data back into a displayable image and show it
figure;

buffer = sprintf('Blue image output using %d singular values', N);
Bimg = cat (3, zeros(size(Db)), zeros(size(Db)), Db);

imshow (uint8 (Bimg)) ;

imwrite (uint8 (Bimg), sprintf('Sdblue.jpg', N));

title (buffer);

% Thake the data from the Red, Green, and Blue image

[}

% Rebuild a colored image with the corresponding data and show it
figure;

buffer = sprintf('Colored image output using %d singular values', N);
Cimg = cat (3, Dr, Dg, Db);

imshow (uint8 (Cimg)) ;

imwrite (uint8(Cimg), sprintf ('%dcolor.jpg', N));

title (buffer);
end

for N=25:25:100

% Recompute modes for the red image - already solved by SVD above
C =S;

C(N+1l:end, :)=0;

C(:,N+1l:end)=0;

Dr=U*C*V';

)

% Rebuild the data back into a displayable image and show it

figure;
buffer = sprintf ('Red image output using %d singular values', N);
Rimg = cat (3, Dr, zeros(size(Dr)), zeros(size(Dr)));

imshow (uint8 (Rimg)) ;
imwrite (uint8 (Rimg), sprintf ('%dred.jpg', N));

title (buffer);

% Recompute modes for the green image - already solved by SVD above
C = 52;

C(N+1l:end, :)=0;
C(:,N+1:end)=0;
Dg=U2*C*V2"';

o)

% Rebuild the data back into a displayable image and show it

figure;
buffer = sprintf ('Green image output using %d singular wvalues', N);
Gimg = cat (3, zeros(size(Dg)), Dg, zeros(size(Dg))):;

imshow (uint8 (Gimg)) ;
imwrite (uint8 (Gimg), sprintf ('Sdgreen.jpg', N));

title (buffer);

% Recompute modes for the blue image - already solved by SVD above
C = S3;

C(N+l:end, :)=0;

C(:,N+1:end)=0;

Db=U3*C*V3';

% Rebuild the data back into a displayable image and show it
figure;

buffer = sprintf('Blue image output using %d singular values', N);
Bimg = cat (3, zeros(size(Db)), zeros(size(Db)), Db);

imshow (uint8 (Bimg)) ;

imwrite (uint8 (Bimg), sprintf('Sdblue.jpg', N));

title (buffer);

% Thake the data from the Red, Green, and Blue image

% Rebuild a colored image with the corresponding data and show it
figure;

buffer = sprintf('Colored image output using %d singular values', N);
Cimg = cat (3, Dr, Dg, Db);

imshow (uint8 (Cimg)) ;

imwrite (uint8 (Cimg), sprintf('S%dcolor.jpg', N));

title (buffer);

end

