
Section 7.1 Diagonalization of Symmetric Matrices

ELOs:

• Define and give examples of symmetric matrices.

• Determine when a matrix A is orthogonally diagonalizable.

• Explain why symmetric matrices are orthogonally diagonalizable.

Definition 1 A symmetric matrix is a matrix such that AT
= A.

Exercise: Construct an example of a symmetric matrix.

Example: Given A =

2

4
6 �2 �1

�2 6 �1

�1 �1 5

3

5 and the following eigenspaces of A:

�1 = 8, E�1 = span

2

4
�1

1

0

3

5 ; �2 = 6, E�2 = span

2

4
�1

�1

2

3

5 ; �3 = 3, E�3 = span

2

4
1

1

1

3

5

(a) Determine whether or not the corresponding eigenvectors of A form an orthogonal basis for R3
.

If so, create an orthonormal basis of eigenvectors for R3
.










































































































Symmetricmatrices arise frequentlyinapplicator
theyhave richextrastructurethat we
examine in this chapter
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Given A =

2

4
6 �2 �1

�2 6 �1

�1 �1 5

3

5 and the following eigenspaces of A:

�1 = 8, E�1 = span

2

4
�1

1

0

3

5 ; �2 = 6, E�2 = span

2

4
�1

�1

2

3

5 ; �3 = 3, E�3 = span

2

4
1

1

1

3

5

(b) Diagonalize A using the orthonormal basis of eigenvectors found in part(a). What properties do we

observe about the matrix P and P�1
?

Theorem 1 If A is a symmetric matrix, then any two eigenvectors from distinct eigenspaces are

.

Proof:
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Definition 2 An n⇥ n matrix A is orthogonally diagonalizable if there is an orthogonal matrix P

and a diagonal matrix D such that A = PDP T= .

Observe:

Theorem 2 An n⇥n matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix!

Note: The set of eigenvalues of a matrix A is also known as the spectrum of A.

Theorem 3 (The Spectral Theorem for Symmetric Matrices)
An n⇥ n symmetric matrix A has the following properties:

(a) A has real eigenvalues, counting multiplicities.

(b) The dimension of the eigenspace for each eigenvalue � the multiplicity of
� as a root of the characteristic equation.

(c) The eigenspaces are , in the sense that the eigen-
vectors corresponding to di↵erent eigenvalues are orthogonal.

(d) A is orthogonally diagonalizable.










































































































remember orthogonal matrix means f PT 7.1

If A PDPT then AT PDP'JT pDTpT
pDpT A

ie if A is orthogonally diagonalitable then
AT_A

what the what This is cool

h

equals

orthogonal
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Example: Orthogonally diagonalize the matrix A =

2

4
3 �2 4

�2 6 2

4 2 3

3

5 given the characteristic equation of A

0 = �(�� 7)
2
(�+ 2).










































































































Step Is A symmetric 7 I

2 7 22 2

Steps Find eigenvectors

Steps Create P and D

Steps Check if Ea is orthogonal to Ez

Step4 Are all eigenvectors orthog
to eachother

If not

UH Gram Schmidt process
to find orthogonal basis
morespace on next page
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7 1

Step Find orthonormal basis for space
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by all eigenvectors

X Findlauild P and D srt.A PD.PT
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Spectral Decomposition

Definition 3 The spectral decomposition of A

A = �1u1u
T
1 + �2u2u

T
2 + · · ·+ �nunu

T
n

Note: Each matrix uju
T
j is a projection matrix. That is, for each x 2 Rn

, the vector (uju
T
j )x is the

orthogonal projection of x onto the subspace spanned by uj .

Example: Construct a spectral decomposition of the matrix A that has the orthogonal diagonalization

A =


7 2

2 4

�
=


2/
p
5 �1/

p
5

1/
p
5 2/

p
5

� 
8 0

0 3

� 
2/
p
5 1/

p
5

�1/
p
5 2/

p
5

�










































































































7 I
A PDP1 for p Fe In where Tei are orthonormal
eigenvectors set Fei corresponds to eigenvalueai

For Asymmetric we have
a PDP PDpt Cui
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t this is spectral
decomposition of A
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Section 7.2 Quadratic Forms

ELOs:

• Find a quadratic form given a symmetric matrix A.

• Find a matrix A associated with a given quadratic form.

Definition 1 A quadratic form on Rn
is a function

Q : Rn ! R
x 7!xTAx

for some n⇥ n symmetric matrix A.

Example: Let x =


x1
x2

�
. Compute x

TAx for A =


4 0

0 3

�
and B =


3 �2

�2 7

�
.

Example: Let Q(x) = 5x21 + 3x22 + 2x23 � x1x2 + 8x2x3 for x =

2

4
x1
x2
x3

3

5 . Find A such that Q(x) = x
TAx.

Example: Let Q(x) = 5x21 + 3x22 + 2x23 � x1x2 + 8x2x3. Compute the value of Q(x) for x =

2

4
1

0

�1

3

5.










































































































We'vespent a long
time looking at

linear things Now
we'll deal w

something quadratic

note ITAI is
dxnXnxuKaxl ascalar

Why is this called quadratic form

and BY notice
what the
diagonal
entiriesfrom

C

Can you use the pattern you found in last example to see what
the diagonal entries of A ore and off diagonalentries
remember also that A is symmetric

same as above
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Note: Sometimes quadratic forms are easier to use when the corresponding matrix A is diagonal. That is,

the quadratic form has no cross-product terms.

Change of Variable in a Quadratic Form:

Example: Suppose A =


1 �4

�4 �5

�
. Let Q(x) = x

TAx. Make a change of variable such that the quadratic

form Q has no cross-product term. Hint: �1 = 3, v1 =


2/
p
5

�1/
p
5

�
; �2 = �7, v2 =


1/

p
5

2/
p
5

�
.

Note: If A is NOT diagonal, we can apply a change of variable to eliminate cross-product terms by replacing

x with x = Py where P is the orthogonal matrix of eigenvectors of A.

Theorem 4 (The Principal Axes Theorem)

Let A be an n ⇥ n symmetric matrix. Then there is an orthogonal change of variable x = Py, that

transforms the quadratic form xAT
x into a quadratic form y

TDy with no cross-product term.










































































































7 2

we replace XEIR w PIER for some P invertible
min matrix

Then the quadratic form becomes

ITAI PjtACPy yTPTAPy yt ptApy
and since A is symmetric

then we can

choose P orthogonal set PTAP is diagonal

ForA

Notice QE ITAI
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PTA DPT
pTAP D
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Definition 2 The columns of P are called the principal axes of the quadratic form x
TAx. The vector

y is the coordinate vector of x relative to the orthonormal basis of Rn
given by these principal axes.

Question: In what sense are these quadratic forms the same? That is, compare Q(x) and Q(y).

Classifying Quadratic Forms

Definition 3 A quadratic form Q is

(a) positive definite if

(b) negative definite if

(c) indefinite if

Theorem 5 (Quadratic Forms and Eigenvalues) Let A be a symmetric n⇥n matrix. Then a quadratic

form x
TAx is:

(a) positive definite if and only if the eigenvalues of A are .

(b) negative definite if and only if the eigenvalues of A are .

(c) indefinite if and only if the eigenvalues of A are .










































































































7 2

i e J FIB set B pi Fn

From last example we have xp Sx xz 5 5 32,27y5
let E they p ie PTI Ffs tf 3 I

E 2281212 5L42 16 and g 3 5 7 716

Howcool is this Both
ty get mappedto same
t.njio.LT EAxzmuttby IRp

T.FI
96

yTDiyQCx
soV x o positivesemidefinite if E Zo

Q Lo tx to negaffdefinite if QCE Eo
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A Geometric View of Principal Axes










































































































7 Z

A is 2 2 symmetry matrix Fix a valve c c R

Q R2 142 a Ask answer the Gin
xt AE

which I cRid satisfy
ITAI c

i.e we have a quadraticequin
2

variables

Anse we get Lgraphically
one of the following

an ellipse 0

a hyperbola C
two intersecting levies X

a single point
no solution

If A is diagonal then the graph of EtAx c

is in standard positron Lie the axes are on

the X xz axes

ex ellipse ex hyperbola

2
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If A is not diagonal then the principal axes are

yo and jz which we can get from F Pyo a

change of variables 7
In ny nitya

AV V

GraphsofouadraticFori
If we allow c to vary we can graph the

quadratic form is 1123 by plotting pts Lxi Xz cSot C QQ xz

hot horizontal slices level curves give the
Zd

pictures we had earlier
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Section 7.3 Constrained Optimization

ELIS
Find minfnax value of quadratic

form for one given constraint set

We are not covering all
of this section

We are covering specific
constraint case

that I is unit rector i e

11511 1
115112 1 I I E xie

Example Find max min of

QQ 9 12 14 22 3 32 subject to

constraint x 4 24 5 1

let's solve this a couple different ways

Notice 9 is largest coefficient
in Qld

XI Zo and Xiao 4 5 9 5
and 3 32 9 32

0151 9
2 4 2213 5 96,422 5

9 since 11511 1

i.e QQ E 9 if I allowed w our constraint
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7.3

But also notice that If is a unit vector

and QC0,07 9 In other words we just found

a vector where Q
attains the max value it

can have
max Q value is 9 at If I

let's do similar logical
argumentto

find the

main value of Q

Smallest coefficient
is 3 0151 9

214 22 3 5

4 523 5 and 9 223 7

Summary of results

max Q value 9 at I I
min Quake 3 at 9 13














































































































This Uses technique from Calc 3 so if goff

haven't had that yet just enjoy the

pre knowledge

0,451 954422 332 s.t.ge 7 24 5 1

TQ Og NER Coorstant

18 1,8 2,6 37 2424,2 2,2 37

a 18 1 22x lb 8 2 22 2 Cc 6 3 22 3
d 4,42432 1

2x 2 9 0

To sum up the results of

all this algebra
2 9 possible solutus

are
41 0 is 8 2 18 2

X _o X D X 2 3
d x Xz I xz o Li

c 6 3 183 x _0,42 1,43 0 2 4
lb

X 0
iii x 1 Xz 9 3 0 2 9

2 4 Id Xfl
plop 1 3 Mis

d Xz4 4 3 0

a 3 d K I 0,191,07 4
911,901 9 max
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How do 9 and 3 and 4 relate 1 Q 7.3

If we write Q ITAI then A will be

A

I D
and what are eigenvalues of A

max value of Q Largest eigenvalue
of A

St Q ITAI

Min value of Q
smallest eigenvalue

of A
and

St Q xtAx

theorem let m mis ITAI KIKI and

M max ITAI i
11511 13 and A be a

symmetric matrix
Then m smallest eigenvalue

of A

and M largest eigenvalue
of A And if I is a

unit M eigenvector
and Fz is a unit M eigenvector

then ITAI m and TEA E M
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Image CRmSUeVViRn XVing SingXlaU ValXe 
DecRmSRViWiRn (SVD) 
by Brady Mathews 

12 December 2014 

The University of Utah 

(1) What is the Singular Value Decomposition? 
 
 Linear Algebra is a study that works mostly with math on matrices. A matrix is just a 
table that holds data, storing numbers in columns and rows. Linear Algebra then takes these 
matrices and tries to manipulate them which allows for us to analyze large portions of data. This 
paper will be discussing one of these large portions of data as we talk about image compression 
later on where each pixel can be represented as a number, and the columns and rows of the 
matrix hold the position of that value relative to where it is on the image. 
 
First however, let us talk about what the Singular Value Decomposition, or SVD for short, is. 
When given a matrix, there are several important values that mathematicians can derive from 
them that help explain what the data represents, classify the data into families, and they can also 
manipulate matrices by pulling them apart into values that are easier to work with, then stitching 
those values back together at the end of the computation to obtain some type of result. The SVD 
is one such computation which mathematicians find extremely useful. 
 
What the SVD does is split a matrix into three important sub matrices to represent the data. 
Given the matrix A, where the size of a is 𝑚 × 𝑛 where 𝑚 represents the number of rows in the 
matrix, and 𝑛 represents the number of columns, A can be broken down into three sub matrices 
𝐴 =  𝑈Σ𝑉் where 𝑈 is of size 𝑚 × 𝑚, Σ is of size 𝑚 × 𝑛 and is diagonal, and 𝑉்is of size 𝑛 × 𝑛. 
It is required for matrix multiplication that the size of the columns of the first matrix must match 
up with the size of the rows of the second matrix. When you multiply a matrix of size 𝑎 × 𝑏 and 
a matrix of size 𝑏 × 𝑐, the resulting matrix will yield a matrix of size 𝑎 × 𝑐.  
So, abstracting the matrices into their size components, we can see that this multiplication will 
yield a matrix of the same size: 
 

𝑚 × 𝑛 = ሾሺ𝑚 × 𝑚ሻሺ𝑚 × 𝑛ሻሿሺ𝑛 × 𝑛ሻ 
𝑚 × 𝑛 = ሺ𝑚 × 𝑛ሻሺ𝑛 × 𝑛ሻ 

𝑚 × 𝑛 = ሺ𝑚 × 𝑛ሻ 
 
Now, the interesting part of these matriceV ³𝑈Σ𝑉்´ aUe WhaW Whe daWa iV aUUange in VXch a Za\ WhaW 
the most important data is stored on the top.  𝑈 is a matrix that holds important information 
about the rows of the matrix, and the most important information about the matrix is stored on 
the first column. 𝑉் is a matrix that holds important information about the columns of each 



matrix, and the most important information about the matrix is stored on the first row. Σ is a 
diagRnal maWUi[ Zhich Zill Rnl\ haYe aW mRVW ³𝑚´ imSRUWanW YalXes, the rest of the matrix being 
zero. Because the important numbers of this matrix are only stored on the diagonal, we will 
ignore this for size comparison. 
 
Key point: The reason why the SVD is computed is because you can use the first components of 
these matrices to give you a close approximation of what the actual matrix looked like. Going 
back to our size example, if the most important information of 𝑈 is stored on its first column, 
then 𝑈¶V imSRUWanW infRUmaWiRn can be ZUiWWen aV an ሺ𝑚 × 1ሻ matrix. If the most important 
information of 𝑉் is stored on its first row, then 𝑉்¶V imSRUWanW infRUmaWiRn can be ZUiWWen aV a 
(1 × 𝑛ሻ matrix. We will also say that the important information of Σ is stored on the first row, 
first column of that matrix, yielding a ሺ1 × 1ሻ matrix. By multiplying these matrices together: 
 

𝑈ᇱΣ′𝑉்ᇱ = ሾሺ 𝑚 × 1ሻሺ1 × 1ሻሿሺ1 × 𝑛ሻ 
= ሺ 𝑚 × 1ሻሺ1 × 𝑛ሻ 

= ሺ 𝑚 × 𝑛ሻ 
 
We can see that the resulting computation is the same size as the original matrix. This resulting 
matrix, which we will call 𝐴′, is a good approximation of the original matrix 𝐴. For an even 
closer approximation, you include the next column of 𝑈 and the next row of 𝑉். But where do 
these magic matrices come from? Linear algebra holds the mystery. 

 (2) Computing the SVD 
 

Now we will get into the math and theory behind what I just described above. We will go 
through an example to solve the equation 𝐴 =  𝑈Σ𝑉்.  
 
Given 𝐴 = ቂ 2

−1 
2 
1 

0
0 ቃ find the SVD: 

 
The first thing we need to find in this computation is finding the matrix 𝐴்𝐴. The superscript T 
VWandV fRU ³WUanVSRVe´ Zhich WR SXW nicel\, \RX fliS Whe maWUi[ Rn iWV Vide, URZ Rne becRming 
column one.  
 

൥
2 −1
2 1
0 0

 ൩ ቂ 2 2 0
−1 1 0 ቃ =  ൥

5 3 0
3 5 0
0 0 0

൩ 

 
If \RX¶Ue nRW a maWhemaWician, maWUi[ mXlWiSlicaWiRn ZRUkV likeV VR. TR geW Whe fiUVW URZ, fiUVW 
column of the resulting matrix, you need to take the first row of the first matrix, and the first 
column of the second matrix. Then you multiply the corresponding first values together, and the 
corresponding second values together etc., and then sum those values. 
 
Therefore, first row first column: ሾ2 −1 ሿ ቂ 2

−1ቃ will yield ሺ2 × 2ሻ + ሺ−1 × −1ሻ = 4 + 1 = 5 
 



Once you find 𝐴்𝐴, you will need to find its eigenvalues and eigenvectors. To find the 
eigenvalues of the matrix, you need to compute the determinate of ሺ𝐴்𝐴 −  𝜆𝐼ሻ and solving for 
𝜆, ZheUe I iV Whe idenWiW\ maWUi[. FiUVW leW¶V find ሺ𝐴்𝐴 −  𝜆𝐼ሻ: 
 

൥
5 3 0
3 5 0
0 0 0

൩ − 𝜆 ൥
1 0 0
0 1 0
0 0 1

൩ =  ൥
5 − 𝜆 3 0

3 5 − 𝜆 0
0 0 −𝜆

൩ 

 
Now what we need to do is compute the determinate of this matrix. The determinate is more 
complicated to find. The determinate of a 2 × 2 matrix is defined as the following: 
 

ቚ𝑎 𝑏
𝑐 𝑑ቚ = ሺ𝑎𝑑 − 𝑏𝑐ሻ 

 
For a 3 × 3 matrix, you can pick one column in the matrix. You go down that column, and write 
down the number. You then multiply that number with the determinate of the remaining matrix 
that appears when you cancel out the whole row and column that the corresponding number 
belongs to. Example: 
 
Given the matrix:  

൥
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

൩ 

 
We can pick to iterate down the first column in the matrix and choose the first value to be "𝑎". 
We then cross off the column and row that "𝑎" belongs to, and multiply "𝑎" by the determinate of 
the resulting matrix. 
 

อ
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

อ ื  𝑎 ቚ𝑒 𝑓
ℎ 𝑖

ቚ 

 
We can continue to iterate down the row to get the other two values for the determinate: 
 

อ
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

อ ื  𝑑 ቚ𝑏 𝑐
ℎ 𝑖ቚ 

 

อ
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

อ ื  𝑔 ฬ𝑏 𝑐
𝑒 𝑓ฬ 

 
Therefore, the resulting determinate looks like: 
 

อ
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

อ = 𝑎 ቚ𝑒 𝑓
ℎ 𝑖

ቚ −  𝑑 ቚ𝑏 𝑐
ℎ 𝑖ቚ +  𝑔 ฬ𝑏 𝑐

𝑒 𝑓ฬ  



 
You do sum the result, but we have the subtraction in the second term because there is really an 
invisible ሺ−1ሻ௫+௬ multiplied to each term, where ³x´ is the row number and ³y´ is the column 
number. Going back to our definition of how to solve the determinate of a 2 × 2 matrix, we get: 
 

𝑎ሺ𝑒𝑖 − 𝑓ℎሻ + 𝑑ሺ𝑏𝑖 − ℎ𝑐ሻ + 𝑔ሺ𝑏𝑓 − 𝑐𝑒ሻ 
 
NRZ in RXU e[amSle maWUi[, Ze haYe a lRW Rf ]eURV in cRlXmn 3, VR inVWead leW¶V iWeUaWe dRZn 
colum3 to compute our result. 
 

อ
5 − 𝜆 3 0

3 5 − 𝜆 0
0 0 −𝜆

อ = 0 ቚ3 5 − 𝜆
0 0 ቚ −  0 ቚ5 − 𝜆 3

0 0ቚ + ሺ−𝜆ሻ ቚ5 − 𝜆 3
3 5 − 𝜆ቚ  

 
Since zero multiplied by anything is zero, we can drop the first two terms:  
 

อ
5 − 𝜆 3 0

3 5 − 𝜆 0
0 0 −𝜆

อ = −𝜆 ቚ5 − 𝜆 3
3 5 − 𝜆ቚ  

 
Computing the 2 × 2 matrix we get: 
 

อ
5 − 𝜆 3 0

3 5 − 𝜆 0
0 0 −𝜆

อ = −𝜆ሺሺ5 − 𝜆ሻሺ5 − 𝜆ሻ − ሺ3ሻሺ3ሻሻ  

 

อ
5 − 𝜆 3 0

3 5 − 𝜆 0
0 0 −𝜆

อ = −𝜆ሺ𝜆2 − 10𝜆 + 16ሻ 

 
Now we can solve to find when 𝜆 = 0 to find our eigenvalues: 
 

−𝜆ሺ𝜆2 − 10𝜆 + 16ሻ =  −𝜆ሺ𝜆 − 2ሻሺ𝜆 − 8ሻ 
 
Therefore or eigenvalues are 8, 2, and 0. You will want to keep these numbers in descending 
order. 
 
With this information, we can find an important value "𝜎" which is the square root of the 
eigenvalues. We ignore zero for the "𝜎" term. Therefore:  
 

𝜎1 =  √8 = 2√2   and  𝜎2 =  2 
 
These values are the important values along the diagonal of matrix "Σ". 
 
Next we need to find the normalized version of the corresponding eigenvectors to each of the 
eigenvalues. To find an eigenvalue, replace 𝜆 with the corresponding eigenvalue in the equation 
ሺ𝐴்𝐴 −  𝜆𝐼ሻ. Then find the nullspace of that resulting matrix: 



 
When 𝜆 = 8, the resulting matrix yields: 
 

൥
−3 3 0
3 −3 0
0 0 −8

൩ 

 
To find the nullspace of this matrix, we need to find some vector ³𝑣⃑´ that when multiplied by 
the matrix, will yield the zero vector. The vector though cannot be the zero vector itself. There 
are complicated methods to solve for the nullspace, however in this example, you might be able 
to just see it. 
 

𝑣⃑1 =  ൥
1
1
0
൩ 

 
As you can see, when we multiply this vector by the matrix, it will yield the zero vector: 
 

1ሺ−3ሻ + 1ሺ3ሻ + 0ሺ0ሻ = 0 
1ሺ3ሻ + 1ሺ−3ሻ + 0ሺ0ሻ = 0 
1ሺ0ሻ + 1ሺ0ሻ + 0ሺ−8ሻ = 0 

 

൥
−3 3 0
3 −3 0
0 0 −8

൩ ൥
1
1
0
൩ =  ൥

0
0
0
൩ 

 
Now that we found ³𝑣⃑´, we need to compute the normalized version, and then solve for the 
remaining eigenvectors in a similar fashion. To find the normalized version, you multiply the 
vector by the reciprocal of the square root of the sum of the squared rows. So for this example, 
12 = 1 and the sum of the squared rows is 2. Therefore the normalized version is: 
 

𝑣⃑1 =  
1
√2

൥
1
1
0
൩ 

Now we need to find the normalized eigenvectors for when 𝜆 = 2 and when 𝜆 = 0. 
 
When 𝜆 = 2, the resulting matrix yields: 
 

൥
3 3 0
3 3 0
0 0 −2

൩ ื 𝑣⃑2 = ൥
−1
1
0

൩ ื 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ื 𝑣⃑2 =
1
√2

൥
−1
1
0

൩ 

 
When 𝜆 = 0, the resulting matrix yields: 
 

൥
5 3 0
3 5 0
0 0 0

൩ ื 𝑣⃑3 = ൥
0
0
1
൩ ื 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ื 𝑣⃑2 =

1
√1

൥
0
0
1
൩ ื  𝑜𝑟 𝑗𝑢𝑠𝑡 ื 𝑣⃑3 = ൥

0
0
1
൩ 

 



Now that we have found or eigenvalues denoted by ³𝑣⃑´ we need to find this term ³u´ which can 
be found using the equation  𝐴𝑣⃑ =  𝜎𝑢ሬ⃑   or  1

𝜎
𝐴𝑣⃑ =  𝑢ሬ⃑ .  

 
1
𝜎

𝐴𝑣1ሬሬሬሬ⃑ =  𝑢1ሬሬሬሬ⃑ ∶  
1

2√2
ቂ 2 2 0
−1 1 0 ቃ 

1
√2

൥
1
1
0
൩ =  𝑢1ሬሬሬሬ⃑  

 
1
4

ቂ40ቃ =  𝑢1ሬሬሬሬ⃑ ื  ቂ10ቃ =  𝑢1ሬሬሬሬ⃑  
 
 
Calculating the next term: 
 

1
𝜎

𝐴𝑣2ሬሬሬሬ⃑ =  𝑢2ሬሬሬሬ⃑ ∶  
1
√2

ቂ 2 2 0
−1 1 0 ቃ 

1
√2

൥
−1
1
0

൩ =  𝑢2ሬሬሬሬ⃑  

 
1
2

ቂ02ቃ =  𝑢1ሬሬሬሬ⃑ ื  ቂ01ቃ =  𝑢2ሬሬሬሬ⃑  
 
Since there are no more 𝜎 terms, we can stop there. Now with all of the values we have found, 
we can complete the three matrices in the equation 𝐴 = 𝑈Σ𝑉். 
 
First is the matrix U which can be found by making the first column in the matrix the first 𝑢ሬ⃑  term 
and the second column the second term. Therefore: 
 

𝑈 =  ቂ1 0
0 1ቃ 

 
Next is the matrix Σ which is the same size as the matrix A and can be found by placing the 𝜎 
terms along the diagonal of a matrix of that size, and then filling in the rest of the matrix with 
zeros. 
 

Σ =  [2√2 0 0
0 √2 0

൨ 

 
Lastly is the matrix 𝑉் which can be found by first computing 𝑉 and then transposing it, by 
turning the columns into the corresponding rows. 𝑉 is found similar to U in the fact that the 
columns of 𝑉 are the corresponding 𝑣⃑ terms. Remember to multiply the constant used to scale 
the vector through the entire term before adding it to the matrix. 
 

𝑉 = 

[
 
 
 
1

√2ൗ −1
√2ൗ 0

1
√2ൗ 1

√2ൗ 0

0 0 1]
 
 
 
 

 



𝑉் =  

[
 
 
 

1
√2ൗ 1

√2ൗ 0

−1
√2ൗ 1

√2ൗ 0

0 0 1]
 
 
 
 

 
So now we have the finished equation 𝐴 = 𝑈Σ𝑉் yields:  
 

ቂ 2 2 0
−1 1 0 ቃ = ቂ1 0

0 1ቃ [2√2 0 0
0 √2 0

൨

[
 
 
 

1
√2ൗ 1

√2ൗ 0

−1
√2ൗ 1

√2ൗ 0

0 0 1]
 
 
 
 

 
You can also multiply the terms together to show that the equation holds true. Now to move onto 
the point of this paper, why do we care, and what are the real world applications. 
 

(3) Compressing an Image 
 

 The monitor on your computer is a truly magical device. When you look at the color 
ZhiWe Rn \RXU VcUeen, \RX¶Ue nRW acWXall\ lRRking aW ZhiWe, and Whe Vame Whing fRU the color 
yellow. There is actually no white or yellow pigment in your screen. What you are looking at is a 
mixture of the colors red, green, and blue displayed by extremely small pixels on your screen. 
These pixels are displayed in a grid like pattern, and the saturation of each pixel tricks your brain 
inWR Whinking iW¶V a diffeUenW cRlRU enWiUel\ Zhen lRRked aW fURm a diVWance. 
 
These red, green, and blue pixels range in saturation on a scale of 0 to 255; 0 being completely 
off, and 255 being completely on. They can also be written in hexadecimal format like #F5C78A 
for example. In hexadecimal, A is the value 10, and F is the value 15, therefore 0F = 15 and A0 = 
16. The first two numbers in this string of numbers represents the red value, the next two 
representing the green value, and the final two representing the blue value. To put reference into 
what these are doing, here are some easy color examples: 
 
     #000000 = Black 
     #FFFFFF = White 
     #A0A0A0 = Gray 
 
     #FF0000 = Red 
     #00FF00 = Green  
     #0000FF = Blue 
 
BecaXVe Rf a Si[el¶V gUid like naWXUe Rn \RXU mRniWRU, a SicWXUe can acWXall\ be UeSUeVenWed aV 
daWa in a maWUi[. LeW¶V VWick ZiWh a gUa\Vcale image fRU UighW nRZ. TR make an image gUa\, Whe 
values for red, green, and blue need to be the same. Therefore you can represent a pixel as 



having a value of 0 through 255 (in hexadecimal 00 through FF), and then repeating that value 
across the red, green, and blue saturation to get the corresponding shade of gray.  
 
LeW¶V Va\ WhaW \RX haYe a gUayscale image that is 100 × 100 pixels in dimension. Each of those 
pixels can be represented in a matrix that is also 100 × 100, where the values in the matrix range 
from 0 to 255. Now, if you wanted to store that image, you would have to keep track of exactly 
100 × 100 numbers or 10,000 different pixel values. That may not seem like a lot, but you can 
also think if the image as your desktop background which is probably and image 1280 × 1024 
in which you would have to store 1,310,720 different pixel values! And thaW¶V if iW ZaV a 
grayscale image, if it was colored, it would be triple that, having to keep track of 3,932,160 
different numbers, which if you think about one of those numbers equating to a byte on your 
computer, that equals 1.25MB for a grayscale image or 3.75MB for a colored image. Just 
imagine how quickly a movie would increase in size if it was updating at the rate of 30-60 
frames per second. 
 
What we can actually do to save memory on our image is to compute the SVD and then calculate 
some level of precision. You would find that in an image that is 100 × 100 pixels would look 
really quite good with only 10 modes of precision using the SVD computation. 
 
Going back to our example in section 1, ³The reason why the SVD is computed is because you 
can use the first components of these matrices to give you a close approximation of what the 
actual matrix looked like.´ 
 
Then we calculated the first components of these matrices by taking the first column of U and 
multiplying it by the first row of 𝑉். We saw that this resulted in a matrix with the dimensions of 
the original matrix A. 
 

𝑈ᇱΣ′𝑉்ᇱ = ሾሺ 𝑚 × 1ሻሺ1 × 1ሻሿሺ1 × 𝑛ሻ 
= ሺ 𝑚 × 1ሻሺ1 × 𝑛ሻ 

= ሺ 𝑚 × 𝑛ሻ 
 
Modes are how many columns of the matrix U you want to use and how many rows of the matrix 
𝑉் you wanted to use to calculate your specified level of precision. 
 
Therefore if we have a matrix 100 × 100, and we use a level of precision of 10 modes, we will 
find that our matrices are: 
 

𝑈ᇱ =  ሺ100 × 10ሻ, Σᇱ = ሺ10 × 10ሻ,  𝑉்ᇱ = ሺ10 × 100ሻ 
 
So now we are only keeping track of 2,100 different numbers instead of 10,000 which greatly 
increases the storage of memory. Also, if you remember how we computed Σ, it is a diagonal 
matrix with values along the diagonal and zeros everywhere else. Therefore, we can represent Σ 
as only being the first ten values of 𝜎, and saving only those values in memory, reconstructing 
the matrix when opening the file, and Σ goes from size 100 to size 10. However, there may not 
be as many 𝜎 in the computation as the size of the matrix, in a 5 × 5 matrix, you can have at 
most five 𝜎¶V, bXW \RX can alVR haYe aV liWWle aV Rne, Whe UeVW Rf Whe YalXeV Rn Whe diagRnal alVR 



being zero. So really 𝜎 ≤ # modes, which is going to be so little anyway, we are going to negate 
it from our computation. 
 
ThaW¶V gUeaW in WheRry, but when you compute these new matrices using your specified modes of 
precision, what do they actually look like? Well, XVing a SURgUam called ³MatLab´, we can write 
a program that will load in image file, turn the pixel values of the grayscale image into a matrix, 
compute the SVD for us, and then convert our new matrix back into an image for our viewing 
pleasure. 
 

 
Figure 3.1: Image size 250x236 –  modes used 
{{1,2,4,6},{8,10,12,14},{16,18,20,25},{50,75,100,original image}} 



In figure 3.1 we see that the image size is 250x236 pixels. By storing the image in its entirety, we 
can calculate that we would need to store 59,000 different pixel values. The image starts to look 
very decent along the bottom row, the last images using modes 50, 75, and 100. By negating the 
size of Σ since it is so miniscule, we can calculate: 
 

Original Image:  59,000 bytes 
Mode 100:   48,600 bytes 
Mode 75:   36,450 bytes 
Mode 50:   24,300 bytes 

 
So, these modes actually do save on memory quite a bit, more than halving the amount of 
memory used at mode 50, which is represented by the bottom left image in figure 3.1. 
 
We can even graph the error involved in the image compression, or how badly the image differs 
from the original image. We can gather the data by measuring the error as the difference in our 
new image by the differences in our original image and plot it on a graph. 
 

 
Graph 3.1: Shows the difference in the new image to the original image of Figure 
3.1 by calculating the error rate between the two.  

 
The graph starts to show a heavy turn at about 15 modes in, and starts to show a decent image 
approximately 30 modes in, 50 modes having an extremely low number or error, and 100 modes 
having a miniscule amount. 



 
Figure 3.2: Image size 600x387, same modes used as in Figure 3.1  

A second example, the image shown by figure 3.2, we use the exact same modes, and the image 
is even bigger. For this we can calculate the estimated file sizes again: 
 

Original Image:  232,200 bytes 
Mode 100:   98,700 bytes 
Mode 75:   74,025 bytes 
Mode 50:   49,350 bytes 

 
And we can also show the error rates from the new image to the original image as well, and by 
halving the memory on mode 100, you could keep increasing the number of modes and still get 
save on memory. 



 
Graph 3.2: Shows the difference in the new image to the  original image of Figure 
3.2 by calculating the error rate between the two.  

Now we can see that this works for a grayscale image, but what about a colored image? Would 
this still have the same application for image compression? The answer is a surprising yes, but it 
does require a few more calculations. 
 
The difference between a grayscale image and a colored image is that you are now storing 3 
bytes of information per pixel rather than 1 byte per pixel. This is because the red, green, and 
blue pixel values are now different rather than the same, so we have to represent each 
individually. 
 
First, we need to take a colored image, and split it into three new images, a red-scale, green-
scale, and blue-scale image. 
 

 



We can treat the red-scale, green-scale, and blue-scale images just like we did with the grayscale 
image. This time the values 0 through 255 on our table represent only the saturation of that 
particular color. We can compute the SVD computation on each of these images separately, and 
then combine them back together to create our colored image. 

 



Figure 3.3 shows an image of size 2800x2052 being split into three scaled images 
representing red, green, and blue pixel values, and then performs the SVD 
computation using modes {{1, 5, 10, 15, 20}}  

This image is pretty big, and as you can see, even just by 20 modes of precision, you have a very 
gRRd idea Rf ZhaW \RX¶Ue lRRking aW. 
 

 
Figure 3.4: Image size 2800x2052 with modes used {{1, 2, 4, 6}, {8, 10, 12, 14}, 
{16, 18, 20, 25}, {50, 75, 100, original image}} 

As you can see, the image still looks very good at 50 modes even with such a large image. It is 
very hard to tell, but by squinting at the difference of the picture derived from mode 100 to the 



original image, the pink lines on the petals appear to be a little stronger, giving the image more 
contrast. But to the average person, most people will think that modes 50-100 look relatively the 
same. The reason for the sharper contrast is because the SVD is very pattern oriented, so those 
natural patters in the image may show up a little stronger than in the original image. 
 
LeW¶V cRmSXWe Whe Vi]eV Rf Whe image again. RemembeU, nRZ inVWead of a grayscale image, we 
have color, so we have to add the matrix three times instead of just the once. So for an image that 
is 2800x2052 we have: 
 

Original Image:  17,236,800 bytes (16.4MB) 
Mode 100:   1,455,600 bytes (1.4MB) 
Mode 75:   1,091,700 bytes (1.0MB) 
Mode 50:   727,800 bytes (0.7MB) 

 
The error is a little more difficult to plot, as the graph would be three dimensional, since the 
image has three layers. But you can still see that once you hit that certain point of precision, you 
XlWimaWel\ can¶t tell the difference between the compressed and the original image as the error 
UaWe becRmeV VR minXWe, WhaW in Whe laUge SicWXUe iW Ueall\ dReVn¶W maWWeU. 
 
Conclusion: All an image is, is data represented on a matrix being visually displayed to you 
through pixels of red, green and blue on your computer. This data can be manipulated through 
the use of the SVD theorem to calculate a level of precision close to the original without storing 
as much data. The SVD allows us to store ሺ#𝑚𝑜𝑑𝑒𝑠ሻሺ𝑚 + 𝑛ሻ information instead of ሺ𝑚 × 𝑛ሻ 
information where the size of the image is 𝑚 × 𝑛, or 3ሺ#𝑚𝑜𝑑𝑒𝑠ሻሺ𝑚 + 𝑛ሻ when the image is in 
color instead of 3ሺ𝑚 × 𝑛ሻ. 
 
If you would like to try this out for yourself, the following pages will have an attached reference 
to the MatLab code used to create the above images and graphs. 
  



Ma�Lab C�de f�� G�a�Scale Image� 
% Brady Mathews - The University of Utah December 2014 
  
% This document contains instructions for Matlab which will Open an image 
% file, turn the image into a grayscale format Grab the image data and 
% build a matrix representing each pixel value as 0-255 as data on the 
% matrix. It will then compute the SVD on the matrix, and display varying 
% different modes and levels of pressision based on the image compression, 
% as well as an error graph at the end on how accurate the image got based 
% on the difference from the original image. It will also save these 
% resulting images on your computer. To upload an image, replace the 
% "image.jpg" with the filepath, name, and data type of the image you wish 
% to use. If you would not like the program to save the image to your 
% computer, comment out or eleminate the lines that say 
% "imwrite(unit8(...), '%d...')" 
  
% The following will give you modes 1, then (2,4,6,8,10,12,14,16,18,20) 
% then it will give you modes (25,50.75.100). To edit these, change the 
% value of N in the loops. 
  
close all 
clear all 
clc 
  
%reading and converting the image 
inImage=imread('image.jpg'); 
inImage=rgb2gray(inImage); 
inImageD=double(inImage); 
imwrite(uint8(inImageD), 'original.jpg'); 
  
% decomposing the image using singular value decomposition 
[U,S,V]=svd(inImageD); 
  
% Using different number of singular values (diagonal of S) to compress and 
% reconstruct the image 
dispEr = []; 
numSVals = []; 
  
N = 1 
  
    % store the singular values in a temporary var 
    C = S; 
  
    % discard the diagonal values not required for compression 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
  
    % Construct an Image using the selected singular values 
    D=U*C*V'; 
  
  



    % display and compute error 
    figure; 
    buffer = sprintf('Image output using %d singular values', N) 
    imshow(uint8(D)); 
    imwrite(uint8(D), sprintf('%dbw.jpg', N)); 
    title(buffer); 
    error=sum(sum((inImageD-D).^2)); 
  
    % store vals for display 
    dispEr = [dispEr; error]; 
    numSVals = [numSVals; N]; 
     
for N=2:2:20 
    % store the singular values in a temporary var 
    C = S; 
  
    % discard the diagonal values not required for compression 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
  
    % Construct an Image using the selected singular values 
    D=U*C*V'; 
  
  
    % display and compute error 
    figure; 
    buffer = sprintf('Image output using %d singular values', N) 
    imshow(uint8(D)); 
    imwrite(uint8(D), sprintf('%dbw.jpg', N)); 
    title(buffer); 
    error=sum(sum((inImageD-D).^2)); 
  
    % store vals for display 
    dispEr = [dispEr; error]; 
    numSVals = [numSVals; N]; 
end 
  
for N=25:25:100 
    % store the singular values in a temporary var 
    C = S; 
  
    % discard the diagonal values not required for compression 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
  
    % Construct an Image using the selected singular values 
    D=U*C*V'; 
  
  
    % display and compute error 
    figure; 
    buffer = sprintf('Image output using %d singular values', N) 
    imshow(uint8(D)); 
    imwrite(uint8(D), sprintf('%dbw.jpg', N)); 



    title(buffer); 
    error=sum(sum((inImageD-D).^2)); 
  
    % store vals for display 
    dispEr = [dispEr; error]; 
    numSVals = [numSVals; N]; 
end 
  
% dislay the error graph 
figure;  
title('Error in compression'); 
plot(numSVals, dispEr); 
grid on 
xlabel('Number of Singular Values used'); 
ylabel('Error between compress and original image'); 
  



Ma�Lab C�de f�� C�l��ed Image� 
% Brady Mathews - The University of Utah December 2014 
  
% This document contains instructions for Matlab which will Open an image 
% file, and then split the image into three separate images; a red-scale, 
% a green-scale, and a blue-scale image. It will then plot the pixel data 
% from these images into a matrix, representing values 0-255 based on the 
% pixel saturation. It will then compute the SVD on each of these scaled 
% images, save them on the computer, display the corresponding scaled 
% images, and then it will also merge these images back together to form a 
% colored image, also displaying and saving the image as well. You can 
% prevent the program from saving images to your computer by commenting out 
% or eliminating the lines that say imwrite(uint8(...), 
% sprintf('%d....jpg', N)); 
  
% The following will give you modes 1, then (2,4,6,8,10,12,14,16,18,20) 
% then it will give you modes (25,50.75.100). To edit these, change the 
% value of N in the loops. 
  
close all 
clear all 
clc 
  
 filename = 'image.jpg'; 
        [X, map] = imread(filename); 
        figure('Name','ORIGINAL component of the imported image'); 
        imshow(X); 
        imwrite(X, '!original.jpg'); 
        R = X(:,:,1); 
        G = X(:,:,2); 
        B = X(:,:,3); 
        Rimg = cat(3, R, zeros(size(R)), zeros(size(R))); 
        Gimg = cat(3, zeros(size(G)), G, zeros(size(G))); 
        Bimg = cat(3, zeros(size(B)), zeros(size(B)), B); 
        figure('Name','RED component of the imported image'); 
        imshow(Rimg); 
        imwrite(Rimg, '!red.jpg'); 
        figure('Name','GREEN component of the imported image'); 
        imshow(Gimg); 
        imwrite(Gimg, '!green.jpg'); 
        figure('Name','BLUE component of the imported image'); 
        imshow(Bimg); 
        imwrite(Bimg, '!blue.jpg'); 
  
  
Red =double(R); 
Green = double(G); 
Blue = double(B); 
  
N = 1; 
  
% Compute values for the red image 



[U,S,V]=svd(Red); 
  
C = S; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dr=U*C*V'; 
  
% Rebuild the data back into a displayable image and show it 
figure; 
buffer = sprintf('Red image output using %d singular values', N); 
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr))); 
imshow(uint8(Rimg)); 
imwrite(uint8(Rimg), sprintf('%dred.jpg', N)); 
  
title(buffer); 
  
% Compute values for the green image 
[U2, S2, V2]=svd(Green); 
  
C = S2; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dg=U2*C*V2'; 
  
% Rebuild the data back into a displayable image and show it 
figure; 
buffer = sprintf('Green image output using %d singular values', N); 
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg))); 
imshow(uint8(Gimg)); 
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N)); 
  
title(buffer); 
  
% Compute values for the blue image 
[U3, S3, V3]=svd(Blue); 
  
C = S3; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Db=U3*C*V3'; 
  
% Rebuild the data back into a displayable image and show it 
figure; 
buffer = sprintf('Blue image output using %d singular values', N); 
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db); 
imshow(uint8(Bimg)); 
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N)); 
  
title(buffer); 
  
% Thake the data from the Red, Green, and Blue image 
% Rebuild a colored image with the corresponding data and show it 
figure; 
buffer = sprintf('Colored image output using %d singular values', N); 



Cimg = cat(3, Dr, Dg, Db); 
imshow(uint8(Cimg)); 
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N)); 
  
title(buffer); 
     
for N=2:2:20 
  
    % Recompute modes for the red image - already solved by SVD above 
    C = S; 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
    Dr=U*C*V'; 
  
    % Rebuild the data back into a displayable image and show it 
    figure; 
    buffer = sprintf('Red image output using %d singular values', N); 
    Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr))); 
    imshow(uint8(Rimg)); 
    imwrite(uint8(Rimg), sprintf('%dred.jpg', N)); 
  
    title(buffer); 
  
    % Recompute modes for the green image - already solved by SVD above 
    C = S2; 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
    Dg=U2*C*V2'; 
  
    % Rebuild the data back into a displayable image and show it 
    figure; 
    buffer = sprintf('Green image output using %d singular values', N); 
    Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg))); 
    imshow(uint8(Gimg)); 
    imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N)); 
  
    title(buffer); 
  
    % Recompute modes for the blue image - already solved by SVD above 
    C = S3; 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
    Db=U3*C*V3'; 
  
    % Rebuild the data back into a displayable image and show it 
    figure; 
    buffer = sprintf('Blue image output using %d singular values', N); 
    Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db); 
    imshow(uint8(Bimg)); 
    imwrite(uint8(Bimg), sprintf('%dblue.jpg', N)); 
  
    title(buffer); 
  
    % Thake the data from the Red, Green, and Blue image 



    % Rebuild a colored image with the corresponding data and show it 
    figure; 
    buffer = sprintf('Colored image output using %d singular values', N); 
    Cimg = cat(3, Dr, Dg, Db); 
    imshow(uint8(Cimg)); 
    imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N)); 
  
    title(buffer); 
  
end 
  
for N=25:25:100 
  
    % Recompute modes for the red image - already solved by SVD above 
    C = S; 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
    Dr=U*C*V'; 
  
    % Rebuild the data back into a displayable image and show it 
    figure; 
    buffer = sprintf('Red image output using %d singular values', N); 
    Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr))); 
    imshow(uint8(Rimg)); 
    imwrite(uint8(Rimg), sprintf('%dred.jpg', N)); 
  
    title(buffer); 
  
    % Recompute modes for the green image - already solved by SVD above 
    C = S2; 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
    Dg=U2*C*V2'; 
  
    % Rebuild the data back into a displayable image and show it 
    figure; 
    buffer = sprintf('Green image output using %d singular values', N); 
    Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg))); 
    imshow(uint8(Gimg)); 
    imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N)); 
  
    title(buffer); 
  
    % Recompute modes for the blue image - already solved by SVD above 
    C = S3; 
    C(N+1:end,:)=0; 
    C(:,N+1:end)=0; 
    Db=U3*C*V3'; 
  
    % Rebuild the data back into a displayable image and show it 
    figure; 
    buffer = sprintf('Blue image output using %d singular values', N); 
    Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db); 
    imshow(uint8(Bimg)); 
    imwrite(uint8(Bimg), sprintf('%dblue.jpg', N)); 



  
    title(buffer); 
  
    % Thake the data from the Red, Green, and Blue image 
    % Rebuild a colored image with the corresponding data and show it 
    figure; 
    buffer = sprintf('Colored image output using %d singular values', N); 
    Cimg = cat(3, Dr, Dg, Db); 
    imshow(uint8(Cimg)); 
    imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N)); 
  
    title(buffer); 
  
end 
 


