1. Definitions and Concepts

A) (10 points) Complete the following definitions by using complete sentences!

A matrix A is called symmetric if

$$
A^{\tau} = A
$$

A number λ is called an eigenvalue of A if

Anxn $\exists \vec{x} \in \mathbb{R}^n$ s.t. $A\vec{x} = \lambda \vec{x}$

A set of vectors $\{v_1, \ldots, v_n\}$ is called an orthogonal set if

$$
\vec{v}_i \vec{v}_j = 0 \qquad \forall i_j = 1, \dots, n \neq i \neq j
$$

The function $T:\mathbb{R}^n\to\mathbb{R}^m$ is a linear transformation if

For
$$
\vec{u}, \vec{v} \in \mathbb{R}^n
$$
, $c \in \mathbb{R}$
\n $D \top(\vec{u} + \vec{v}) = T(\vec{a}) + T(\vec{v})$
\nand $D \top(c\vec{u}) = cT(\vec{u})$
\nIf A is a matrix then *Null* is (A max)
\n $vec + c$ span a containing all vectors $\vec{x} \in \mathbb{R}^n$
\n $s + c$, $A\vec{x} = \vec{D}$.

B) (2 points) Explain why you know that the matrix

$$
B = \begin{bmatrix} 1 & -5 & -7 & 16 \\ -5 & 6 & 1 & -1 \\ -7 & 1 & 0 & 5 \\ 16 & -1 & 5 & 2 \end{bmatrix}
$$

is diagonalizable.

B BT i ^e its symmetric

C) (4 points) Suppose that A is a 10×5 matrix with three pivots. Then what are: 5columns ³ pivot columns

Rank *A* 3 dim Col $A = S$ dim Nul $A = \mathbb{Z}$ dim Row $A \subset S$

D) (4 points) Write down matrices *A* and *B* in reduced echelon form with the following properties:

i) The column space of *A* is 2 dimensional

 ex A = $\begin{bmatrix} 0 & 0 & 3 & 5 \\ 0 & 0 & 4 & 6 \end{bmatrix}$

ii) The null space of *B* is a 2 dimensional plane in \mathbb{R}^5 .

$$
\lim_{y \to \infty} \beta = \left[\begin{array}{ccc} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \end{array} \right]
$$
\n
$$
= \lim_{x \to \infty} \left\{ 8 - \frac{5}{6} \pi \right\} \left[\begin{array}{c} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \end{array} \right]
$$
\n
$$
= \lim_{x \to \infty} \left\{ 8 - \frac{5}{6} \pi \right\} \left[\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{array} \right]
$$
\n
$$
= \frac{5}{6} \pi \left[\begin{array}{c} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{array} \right]
$$
\n
$$
= \frac{5}{6} \pi \left[\begin{array}{c} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]
$$
\n
$$
= \frac{5}{6} \pi \left[\begin{array}{c} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]
$$
\n
$$
= \frac{5}{6} \pi \left[\begin{array}{c} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]
$$
\n
$$
= \frac{5}{6} \pi \left[\begin{array}{c} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]
$$
\n
$$
= \frac{5}{6} \pi \left[\begin{array}{c} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]
$$
\n
$$
= \frac{5}{6} \pi \left[\begin{array}{c} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0
$$

2) Computations and Interpretations
A) (6 points) Row reduce the following matrix to reduced echelon form

$$
A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 6 & 7 & 8 & 9 \end{bmatrix}.
$$

\nThen determine if the equation $Ax = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$ has a solution.
\n
$$
\begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 \\ 0 & 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 9 & -3 & -1 & -9 \\ 1 & 0 & -5 & -1 & -9 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 &
$$

C) (8 points) Given that *A* and *B* are row equivalent, write down bases for Col *A*, Row *A*, and Nul *A*. Please be careful and make sure your answer is a basis, not some other description of the space.

$$
A = \begin{pmatrix} 1 & -3 & 4 & -1 & 9 \ -3 & 0 & -6 & -1 & -10 \ 3 & 0 & -6 & -6 & -3 \ 3 & -9 & 4 & 9 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & -3 & 0 & 5 & -7 \ 0 & 0 & 0 & 0 & 5 \ 0 & 0 & 0 & 0 & 5 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.
$$

\n
$$
P(EF(A) = \begin{pmatrix} 1 & -3 & 4 & -1 & 9 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

\n
$$
P(EF(A) = \begin{pmatrix} 1 & -3 & 0 & -3 & 0 & 5 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

\n
$$
P(EF(A) = \begin{pmatrix} 1 & -3 & 4 & -1 & 9 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

\n
$$
P(EF(A) = \begin{pmatrix} 1 & -3 & 0 & -3 & 0 & 5 & -7 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

\n
$$
P(EF(A) = \begin{pmatrix} 1 & -3 & 0 & -3 & 0 & 5 & -7 \ 0 & -3 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

\n
$$
P(EF(A) = \begin{pmatrix} 1 & -3 & 0 & -3 & 0 & 5 & -7 \ 0 & -3 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

\n
$$
P(EF(A) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 &
$$

4

3. Diagonalization and Similarity

- A) (10 points) True of False (no explanation needed)
	- i) Invertible matrices are always diagonalizable.
- ii) Symmetric matrices are the only matrices that can be orthogonally diagonalized. iii) If a real matrix has a complex eigenvalue then it is not diagonalizable. iv) If the characteristic polynomial of *A* is $\lambda^2(\lambda - 2)$ then *A* is not diagonalizable. v) The matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is diagonalizable. False (a matrix can be invertible but not have eigenspace of dimension and $Tvue$ (this is an Tff statement) False II depends on how nany eigenvectors the mothix has False (A may or may not be diagonalizable. It
False (A may or may not be diagonalizable. It depends on how many eigenvectors Twe J=0 has A
- $\text{det}(A-\lambda I) = \text{det}\begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} = \lambda + 1 = 0$ i 3 2 district agencies 32 eigenvectors $3 a$ basis for R^2 from eigenvectors A is diagonalizable

B) Consider the following symmetric matrix:

T

The eigenvalues of A are -2 and 7.
\ni) (4 points) To save computation, you are given that\n
$$
\begin{bmatrix}\n1 & -2 & 6 & 2 \\
4 & 2 & 3\n\end{bmatrix}
$$
\n
$$
x^2 - 1 - 3e^{-1} - 3e^{-
$$

6

4. Let $A =$ $\sqrt{2}$ 4 320 221 010 3 $\vert \cdot$

A) (4 points) Write down the corresponding quadratic form x*^TA*x

$$
P(\vec{y}) = \vec{x}^{T} A \vec{x} = 3x_1^2 + 2x_2^2 + 0x_3^2 + 4x_1x_2 + 0x_1x_3 + 2x_2x_3
$$

= $3x_1^2 + 2x_2^2 + 4x_1x_2 + 2x_2x_3$

B) (4 points) Explain why the matrix from part *A* is diagonalizable. Say what this means we could do to the quadratic form to make it simpler. \mathbf{A} \overline{a}

-
$$
ik
$$
 symmetric $\Rightarrow ik$ orthogonally diagonal
\n• This means we can make a transformation
\n $\vec{x} = \rho_{3}$ where ρ is orthogonal s.t. $\hat{\rho}(q) = \vec{y}^T \hat{D}\vec{y}$
\n $\vec{x} = \rho_{3}$ where ρ is orthogonal s.t. $\hat{\rho}(q) = \vec{y}^T \hat{D}\vec{y}$
\n ρ is orthogonal
\n ρ is orthogonal
\n $\rho(q)$ has no
\n $\rho(q)$ has no
\n $\rho(q)$ has no
\n $\rho(q)$ has no
\n ρ is even s.

D) (4 points) Consider the map $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathbf{x} \mapsto A\mathbf{x}$. Is *T* 1-1? Why or why not? Is *T* onto? Why or why not? $det(A) \neq 0 \Rightarrow A^{-1}$ exists T (represented by A) is both onto and H

E) (4 points) Is the vector e_3 an eigenvector of \hat{A} ? Why or why not?

$$
A\vec{e}_{3} = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \neq \lambda \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

\n \Rightarrow no \vec{e}_{3} is not an eigenvalue of A.

5.
$$
\frac{3}{4!}
$$
 (6) points) Write down a matrix A that rotates BC B? through an angle of 90 degrees counterclockwise about the origin. Then write a matrix \overline{B} that reflects BC A? does not have a matrix \overline{B} that reflects BC B? across the line $y = x$.
\n27.
$$
\int_{0}^{2} \frac{4x}{3} \left(\int_{0}^{2} \int_{0
$$

 $\overline{}$

ر

C) (4 points) Suppose that V is an abstract vector space with basis $\mathcal{B} = {\bf{b}_1, b_2, b_3}$ and T is a linear transformation that satisfies $% \mathcal{N}$

$$
T(b_1) = b_2 + 2b_3
$$

\n
$$
T(b_2) = -b_1 + b_3
$$

\n
$$
T(b_2 + b_3) = b_1 + b_2 + b_3
$$

\n
$$
T(b_2 + b_3) = b_1 + b_2 + b_3
$$

\n
$$
T(b_2 + b_3) = b_1 + b_2 + b_3
$$

\n
$$
T(b_3) = T(b_3) + T(b_3) = F_1 + F_2 + F_3
$$

\n
$$
T(b_3) = 2F_1 + F_2
$$

\n
$$
T(b_3) = 2F_1 + F_2
$$

\n
$$
T(b_3) = 2F_1 + F_2
$$

D) (6 points) Suppose A is a real 4×4 matrix. You know the following:

• Null A is 2 dimensional
$$
\Rightarrow
$$
 rank A = 2 \Rightarrow A⁻¹ ONE \Rightarrow $\lambda = 0$
\n• $A\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\lambda = 1$ ωI $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ \Rightarrow $\frac{1}{2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ $\$

L,

MATH 2270-001 Spring 2017 Name: Instructor: Anna Romanova Date: April 27, 2017

Final Exam

(200 points) *Show all of your work. You may not use a calculator.*

1. Examples

Give examples of the following.

(a) (5 points) A matrix A whose nullspace is a 3-dimensional subspace of \mathbb{R}^5 .

 $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ + dim (Mil A) = 3
and Nil A C R^S

(b) (5 points) A matrix A which defines a negative-definite quadratic form on \mathbb{R}^4 .

14.3

\n
$$
A = \begin{bmatrix} -1 & 0 \\ -2 & 3 \\ 0 & 3 \end{bmatrix}
$$
\n(c) (5 points) A matrix A such that $\begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$ is a solution of $Ax = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

\n
$$
\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}
$$
\nwhere $\begin{pmatrix} a & b & c \\ -3 & c \end{pmatrix}$ is a solution of $Ax = \begin{pmatrix} -1 \\ 5 \end{pmatrix} + 6$ is a solution of $Ax = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

\n
$$
\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}
$$
\nwhere $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is *linear* complex complex, and $A = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$ is a solution of $Ax = \begin{pmatrix} -1 \\ 5 \end{pmatrix} + 6$ is a solution of $A = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$ and $A = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$ is a solution of $A = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$ and $A = \begin{pmatrix} -1 \\ 5 \end{pmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 5 & 0 & 5/3 \end{bmatrix}$

\n
$$
\begin{bmatrix} a & b & c & d \\ a & c & d \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 5 & 0 & 5/3 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} a & b & c & d \\ a & c & f \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 &
$$

(d) (5 points) A matrix A such that the volume of the parallelepiped in \mathbb{R}^3 determined by the columns of *A* is 12. a

1.2.
$$
|2z| = |det A|
$$
 $|let Az| = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ $\frac{1}{2} |det A| = 12$

\n(e) (5 points) A matrix A such that rank $A = 2$ and det $A = 0$. $\frac{1}{2} |det A| = 12$

\n1. $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 5 & 7 \\ 3 & 1 & 4 \end{bmatrix}$

\n2. $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 4 & 1 \end{bmatrix}$

\n3. $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

\n4. $A = 0$

\n5. $\begin{bmatrix} 1 & 0 & 1 \\ 2 & 5 & 7 \\ 3 & 1 & 4 \end{bmatrix}$

\nAns. column 35. $\begin{bmatrix} \frac{1}{2} \arctan s & \frac{1}{2} \\ \frac{2}{3} \arctan s & \frac{1}{2} \end{bmatrix}$

\nAns. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

\n5. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

\n1. $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

\n1. $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

\n1. $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1$

(h) (5 points) An orthonormal basis for
$$
\mathbb{R}^2
$$
 which is not the standard basis $\mathcal{E} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
\n $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ -\frac{1}{5} \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \end{pmatrix} = \begin{pmatrix} \frac{1}{5}$

2. Computations

(a) (10 points) Solve the linear system

$$
x_1 + 2x_2 - 3x_3 = -5
$$

$$
x_1 + x_2 - x_3 = -1
$$

Write your solution in parametric vector form.

$$
\begin{bmatrix} 1 & 2 & -3 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ y_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & -4 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} x_1 = -4 + 2x_3 \\ x_2 = -4 + 2x_3 \end{bmatrix} \quad \text{(a)} \quad \overline{x} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_1 \end{bmatrix}
$$

(b) (10 points) Find a least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ for $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$. $\iff \begin{matrix} 5\sqrt{\sqrt{2}} \\ 7\sqrt{2} \end{matrix} = A^T \begin{pmatrix} 5 \\ 6 \end{pmatrix}$ $A^{T}A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 3 \\ 3 & 2 \end{bmatrix} \Rightarrow (A^{T}A)^{-1} = \frac{1}{20-9} \begin{bmatrix} 2-3 \\ -3 & 10 \end{bmatrix}$ \Rightarrow $\vec{x} = (A^T A)^{-1} A^{T} \vec{b} = \frac{1}{11} \begin{bmatrix} 2 & -3 \\ -3 & 10 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix}$ $=\frac{1}{11}\begin{bmatrix}2&3&-3\\-3&1&10\end{bmatrix}\begin{bmatrix}4\\1\\0\end{bmatrix}=\frac{1}{11}\begin{bmatrix}11\\-11\end{bmatrix}=\begin{bmatrix}1\\-1\end{bmatrix}$

(c) (10 points) The matrices A and B below are row equivalent. Use this information to write down bases for ColA, RowA, and NulA.

$$
A = \begin{pmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & 6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -2 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

(**11**13 **3 Same problem As C on page 4**

(d) (10 points) Consider the subspace $W = \text{span}\left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 9 \\ 1 \\ 5 \end{pmatrix} \right\}$ of \mathbb{R}^3 . Compute an orthogonal basis $B = \{x, y, y\}$ of W . orthogonal basis $\mathcal{B} = {\mathbf{u}_1, \mathbf{u}_2}$ of W.

$$
\vec{v}_1 = \vec{w}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
$$

$$
\vec{v}_2 = \vec{w}_2 - \frac{\vec{w}_2 \cdot \vec{v}_1}{\|\vec{v}_1\|^2} \vec{v}_1 = \begin{bmatrix} 9 \\ 1 \\ 5 \end{bmatrix} - \frac{18 + 165}{4 + 16} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} 9 \\ 1 \\ 5 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}
$$

$$
\Rightarrow 8 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$

5. Singular Value Decomposition

Let
$$
A = \begin{pmatrix} 1 & 2 & -1 \ 1 & 2 & 1 \end{pmatrix}
$$
. An orthogonal diagonalization of A^TA is given by
\n
$$
A^TA = \begin{pmatrix} 2 & 4 & 0 \ 4 & 8 & 0 \ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{5} & 0 & -2/\sqrt{5} \ 2/\sqrt{5} & 0 & 1/\sqrt{5} \ 0 & 2 & 0 \ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 10 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} & 0 \ 0 & 0 & 1 \ -2/\sqrt{5} & 1/\sqrt{5} & 0 \end{pmatrix}
$$
\n(a) (13 points) Use the information above to compute the singular value decomposition
\n $A = U\Sigma V^T$. (Hint: You can immediately write down V and Σ using information given above.)
\n $\lambda_1 = U\Sigma V^T$. (Hint: You can immediately write down V and Σ using information
\ngiven above.)
\n $\lambda_2 = iS, \lambda_3 = 0$ for A^TA
\n $\Rightarrow \sigma_1 = \sqrt{16}, \sigma_2 = \sqrt{2}, \sigma_3 \Rightarrow 0$ {simplued value of
\n $\sigma_1 = \sqrt{16}, \sigma_2 = \sqrt{12}, \sigma_3 = 0$ {simplued value of
\n $\sigma_1 = \sqrt{16}, \sigma_2 = \sqrt{12}, \sigma_3 = 0$
\n $\Rightarrow \sigma_1 = \sqrt{16}, \sigma_2 = \sqrt{12}, \sigma_3 = 0$
\n $\Rightarrow \sigma_1 = \sqrt{16}, \sigma_2 = \sqrt{16}, \sigma_3 = \sqrt{16}, \sigma_$

(b) (7 points) What are the singular values of A^T = $\sqrt{ }$ $\overline{1}$ 1 1 2 2 -1 1 1 A? What does this tell you about the rank of A^T ? (*Hint: You don't have to do any calculations to do this problem.*)

$$
A=U\leq V^{T}
$$
 $\Rightarrow A^{T}=(U\leq V^{T})^{T}=V\leq V_{T}$
\nand $\leq E\left(\begin{matrix}V_{10} & 0 & 0\\ 0 & \sqrt{2} & 0\end{matrix}\right)$ $\Rightarrow \leq T = \left[\begin{matrix}V_{10} & 0\\ 0 & \sqrt{2}\end{matrix}\right]$
\n $\Rightarrow \circ \circ \sqrt{2} = \sqrt{10}, \sigma_{2} = \sqrt{2}$ for A^{T} SVD.
\nrank $(A^{T}) = \frac{1}{T}$ nonzuo sryulav values \Rightarrow rank $(A^{T}) = 2$

6. Linear Transformations

(a) (8 points) Write down a matrix A that rotates \mathbb{R}^2 ninety degrees counterclockwise about the origin. Write down a matrix *B* that reflects \mathbb{R}^2 across the line $y = -x$.

Ans 15

\nSince
$$
A = \frac{1}{2} \times 10^{-10} \text{ m/s}
$$
 is $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ is $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ and $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ is $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$. The equation is $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ is $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ and $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ is $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ and $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ is $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$. The equation is $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ and $A = \frac{1}{2} \times 10^{-10} \text{ m/s}$ is $A = \frac{1}{2} \times 10^{-10} \text{$

iii. (5 points) Use your answer in part ii. to write down a basis for kerT. (*Hint*: You can check your answer to this problem by applying the transformation T to $your\ basis.)$ ϵ and the set of ϵ

$$
\left\{\begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}\right\} \text{ times } \text{pnds } + \left(\frac{2}{2} - 2 - t + t^2 \right) = \begin{bmatrix} -2 - (1) + (-1)^2 \\ -2 - 2 + 2^2 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}
$$

7. Quadratic Forms

Let
$$
A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}
$$
.

(a) (4 points) Write down the corresponding quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. <u> 1989 - Johann Stein, marwolaethau (b. 19</u>

$$
\phi(\vec{x}) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 0x_1x_3 + 4x_2x_3
$$

(b) $(4 points)$ Explain why the matrix A is diagonalizable.

$$
\begin{aligned}\n\text{Needed } \text{ (ater: } \text{ } \text{det}(A-2I) = \text{det} \begin{bmatrix} 3-\lambda & 2 & 0 \\ 2 & 2-\lambda & 2 \\ 0 & 2 & 1-\lambda \end{bmatrix} \\
&= (3-\lambda)\left[(2-\lambda)(1-\lambda) - 4 \right] - 2\left[2(1-\lambda) - 0 \right] \\
&= -(2-\lambda)^2 - 6\lambda^2 + 3\lambda + 0 \\
&= -(2-\lambda)\lambda^2 - 2\lambda + 1\n\end{aligned}
$$
\n
$$
\Rightarrow \text{eigenvalues } \text{ are } \lambda_1 = S_1 \lambda_2 = Z_2 \lambda_3 = -1
$$

(c) (4 points) What is the determinant of A ?

 $A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ $\frac{\partial u}{\partial t}A = 3 \begin{vmatrix} 2 & 2 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ 0 & 1 \end{vmatrix} = 3(2-y) - 2(2-0)$

(d) (4 points) Two eigenvalues of A are $\lambda_1 = 5$ and $\lambda_2 = 2$. What are the minimum and maximum values of $Q(\mathbf{x})$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$?

work above, on last page) (See $2,5,2,5,3,-1$ min $Q(\vec{x})$ st. $||\vec{x}||^2 = |$ is $-|$
max $Q(\vec{x})$ st. $||\vec{x}||^2 = |$ is 5

(e) (4 points) Consider the map $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathbf{x} \mapsto A\mathbf{x}$. Is T one-to-one? Why or why not? Is T onto? Why or why not?

Suice det A #O, then A^+ exists
=> T is both H and onto.

8. Invertible Matrices

(10 points) Which of the following matrices are invertible? Circle all the apply. You do not need to justify your choice.

(a)
$$
A = \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \end{pmatrix}
$$
. (Note that the columns of A are orthonormal.)
\n(b) A matrix with a trivial nullspace.
\n(b) A matrix with a trivial nullspace.
\n(c) A matrix A with det A = 12.
\n(d) A 4 x 4 matrix with det A = 12.
\n(e) A matrix A with det A = 12.
\n(f) A 3 x 2 matrix that represents a one-to-one linear transformation T : R² → R³.
\n(f) A 3 x 2 matrix that represents a one-to-one linear transformation T : R² → R³.
\n(g) The matrix (A - 2I), where 2 is an eigenvalue of the matrix A.
\n $A = 2L + 4 + 2L + 4 = 12$
\n(g) The matrix (A - 2I), where 2 is an eigenvalue of the matrix A.
\n $A = 2L + 4 + 12L + 4 = 12$
\n $2L + 5 = 12$
\n $$

Math 2270-005 Monday $5/1/17$ Final

(c) Consider the subspace
$$
W = \text{span}\left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 9 \\ 1 \\ 5 \end{pmatrix} \right\}
$$
 of \mathbb{R}^3 .

• (3 points) Compute an orthogonal basis $\mathcal{B} = {\mathbf{u}_1, \mathbf{u}_2}$ of *W*.

$$
\vec{u}_1 = \vec{w}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}
$$
\n
$$
\vec{u}_2 = \vec{w}_2 - \frac{\vec{w}_2 \cdot \vec{v}_1}{||\vec{u}_1||^2} \vec{u}_1 = \begin{bmatrix} 9 \\ 5 \end{bmatrix} - \frac{18 + 165}{4 + 4} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ 1 \end{bmatrix}
$$
\n
$$
\vec{B} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}^2
$$
\n
$$
\vec{C} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} -9 \\ 2 \\ 4 \end{bmatrix}. \text{ Find the closest point in } W \text{ to } y.
$$
\n
$$
\vec{C} = \begin{bmatrix} -9 \\ 4 \\ 4 \end{bmatrix}. \text{ Find the closest point in } W \text{ to } y.
$$
\n
$$
\vec{C} = \begin{bmatrix} 18 + 244 \\ 14 + 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -9 - 644 \\ 1 + 44 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$
\n
$$
\vec{C} = \begin{bmatrix} -4 \\ -2 \end{bmatrix} + \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -5 \\ 1 \\ -3 \end{bmatrix}
$$

Final

5. (12 points) Fitting data with a line

Suppose you have some data with three points

with three points

$$
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix}.
$$

- (a) Use the following steps to find the line that best approximates these points.
	- *•* (4 points) Write down the three equations in two variables *m* and *c* that would have to be satisfied for each of these points to go through the line $x_2 = mx_1 + c$.

$$
\begin{array}{c}\n\textcircled{1} & \textcircled{1} = m(2) + C \\
\textcircled{2} & \textcircled{1} = m(1) + C \\
\textcircled{3} & \textcircled{1} = m(2) + C\n\end{array}\n\quad \begin{array}{c}\n\textcircled{2} & \textcircled{2} & \textcircled{2} \\
\textcircled{3} & \textcircled{3} & \textcircled{4} \\
\textcircled{4} & \textcircled{5} & \textcircled{6}\n\end{array}
$$

• (4 points) Write down the matrix equation that corresponds to the linear system from part (a).

$$
\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}
$$

A =
$$
\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}
$$

 χ

• (4 points) Find the equation for the line that is the closest possible line to these three points; that is, find the least squares solution.

$$
A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad \begin{matrix} 2 & 1 \\ 4 & 1 \end{matrix}
$$

\n
$$
10ast + 5yra-es = sdu
$$

\n
$$
\hat{x} = xch \hat{y} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 3 \end{bmatrix}
$$

\n
$$
\Rightarrow [A^{T}A]^{-1} = \frac{1}{15-9} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix}
$$

\n
$$
\Rightarrow \hat{x} = (A^{T}A)^{T}A^{T}b = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}
$$

\n
$$
\hat{x} = \frac{1}{6} \begin{bmatrix} 3 & 0 & -3 \\ -1 & 2 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} -2 \\ 22 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 6 \end{bmatrix}
$$

=) best fit line is
$$
x_2 = mx_1 + c
$$

6. e. $x_2 = -2x_1 + 1/3$
Final