1. Definitions and Concepts

A) (10 points) Complete the following definitions by using complete sentences!

A matrix A is called symmetric if

A number λ is called an eigenvalue of A if

 $A n \times n$ $\exists \vec{x} \in \mathbb{R}^n s.t. A \vec{x} = \lambda \vec{x}$

A set of vectors $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ is called an orthogonal set if

$$V_{i}^{T}V_{j} = 0$$
 $\forall i,j = 1, \dots, n \neq i \neq j$

The function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if

For
$$\vec{u}, \vec{v} \in [k^{n}], c \in \mathbb{R}$$

 $D = T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
and $D = T(c\vec{u}) = cT(\vec{u})$
If A is a matrix then $NulA$ is (A mm)
vector space containing all vectors $\vec{x} \in \mathbb{R}^{n}$
s.t. $A\vec{x} = \vec{D}$.

B) (2 points) Explain why you know that the matrix

$$B = \begin{bmatrix} 1 & -5 & -7 & 16\\ -5 & 6 & 1 & -1\\ -7 & 1 & 0 & 5\\ 16 & -1 & 5 & 2 \end{bmatrix}$$

is diagonalizable.

C) (4 points) Suppose that A is a 10×5 matrix with three pivots. Then what are:

columns Scolumns, 3 porot Rank A = 3dim Col A = 3 dim Nul A = 2dim Row A = 3

D) (4 points) Write down matrices A and B in reduced echelon form with the following properties:

i) The column space of A is 2 dimensional

 $P = \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & 4 & 6 \end{bmatrix}$

ii) The null space of B is a 2 dimensional plane in \mathbb{R}^5 .

2) Computations and InterpretationsA) (6 points) Row reduce the following matrix to reduced echelon form

C) (8 points) Given that A and B are row equivalent, write down bases for Col A, Row A, and Nul A. Please be careful and make sure your answer is a basis, not some other description of the space.

Ч

3. Diagonalization and Similarity

- A) (10 points) True of False (no explanation needed)
 - i) Invertible matrices are always diagonalizable.
- False (a natix car be invertible but not have eigenspace s/ diversion n) ii) Symmetric matrices are the only matrices that can be orthogonally diagonalized. True (this is an iff statement iii) If a real matrix has a complex eigenvalue then it is not diagonalizable. False (II depends on her many eigenvectors the matrix has.) iv) If the characteristic polynomial of A is $\lambda^2(\lambda - 2)$ then A is not diagonalizable. False (A may or may not be diagonalizable. If v) The matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is diagonalizable. The how many eigenvectors $dt(A-\lambda I) = dt \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} = \lambda^{2} + I = 0$ $\lambda = \pm i$ =) ∃ 2 distinct eigenvalues
 =) ∃ 2 eigenvectors
 =) ∃ α basis for R² from eigenvectors
 =) ∃ α basis for R² from eigenvectors
 =) A is diagonalizable.

B) Consider the following symmetric matrix:

$$A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

The eigenvalues of A are -2 and 7.
i) (4 points) To save computation, you are given that $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ are all so that $\begin{bmatrix} 2 \\ -2 \\ -1 \end{bmatrix}$ are all so that $\begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}$ are all so that $\begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \end{bmatrix}$ are all so that $\begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\$

4. Let $A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

A) (4 points) Write down the corresponding quadratic form $\mathbf{x}^T A \mathbf{x}$

$$Q(\bar{y}) = \bar{x}^{T} A \bar{x} = 3 x_{1}^{2} + 2x_{2}^{2} + 0x_{3}^{2} + 4x_{1}x_{2} + 0x_{1}x_{3} + 2x_{2}x_{3}$$
$$= 3 x_{1}^{2} + 2x_{2}^{2} + 4x_{1}x_{2} + 2x_{2}x_{3}$$

B) (4 points) Explain why the matrix from part A is diagonalizable. Say what this means we could do to the quadratic form to make it simpler.

we could do to the quadratic form to make it simpler.
• it's symmetric =) it's orfhogonally diagonalizable.
• This means we can make a transformation

$$\vec{x} = f_{\vec{y}}$$
 where f is orthogonal s.t. $Q(\vec{y}) = \vec{y} T D \vec{y}$
C) (4 points) What is the determinant of the matrix A ?
 $dut(A) = \begin{vmatrix} 3 & 2 & 0 \\ 2 & -2 & 0 \\ 0 & 1 & 0 \end{vmatrix} = -1 \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} = -1 & 3 & 2 \\ 0 & 1 & 0 \end{vmatrix} = -1 \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} = -1 & 3 & 2 \\ 0 & 1 & 0 \end{vmatrix} = -1 \begin{vmatrix} 3 & 2 \\ 0 & 1 & 0 \end{vmatrix} = -1 \begin{vmatrix} 3 & 2 \\ 0 & 1 & 0 \end{vmatrix} = -1 \begin{vmatrix} 3 & 2 \\ 0 & 1 & 0 \end{vmatrix}$

D) (4 points) Consider the map $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathbf{x} \mapsto A\mathbf{x}$. Is T 1-1? Why or why not? Is T onto? Why or why not? $\Rightarrow T$ (represented by A) is both $\Rightarrow T$ (represented by A) is both $\Rightarrow T$ (represented by A) is both

E) (4 points) Is the vector \mathbf{e}_3 an eigenvector of A? Why or why not?

$$A\dot{e}_{3} = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \ddagger \lambda \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \ddagger \lambda \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \ddagger \lambda \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

5.
$$\Rightarrow A \text{ is } 2x^{2}$$
A) (6 points) Write down a matrix A that rotates \mathbb{R}^{2} through an angle of 90 degrees conterce chockwase about the origin. Then write a matrix \mathbb{R} that reflects \mathbb{R}^{2} across the line $y = -x$.
The active $\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R$

J

-

C) (4 points) Suppose that V is an abstract vector space with basis $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ and T is a linear transformation that satisfies

$$T(\mathbf{b}_{1}) = \mathbf{b}_{2} + 2\mathbf{b}_{3}$$

$$T(\mathbf{b}_{2}) = -\mathbf{b}_{1} + \mathbf{b}_{3}$$

$$T(\mathbf{b}_{2} + \mathbf{b}_{3}) = \mathbf{b}_{1} + \mathbf{b}_{2} + \mathbf{b}_{3} \implies T(\mathbf{b}_{3}) + T(\mathbf{b}_{3}) = \mathbf{b}_{1} + \mathbf{b}_{3} + \mathbf{b}_{3}$$
write down the matrix for T with respect to the basis $\mathcal{B}_{.()} \implies -\mathbf{b}_{1} + \mathbf{b}_{3} + T(\mathbf{b}_{3}) = \mathbf{b}_{1} + \mathbf{b}_{3}$

$$T(\mathbf{b}_{3}) = 2\mathbf{b}_{1} + \mathbf{b}_{3}$$

$$T(\mathbf{b}_{3}) = 2\mathbf{b}_{1} + \mathbf{b}_{3}$$

$$T(\mathbf{b}_{3}) = 2\mathbf{b}_{1} + \mathbf{b}_{3}$$

D) (6 points) Suppose A is a real 4×4 matrix. You know the following:

• Nul A is 2 dimensional
$$\Rightarrow$$
 rank $A = Z$ $\Rightarrow A' \cup A E \Rightarrow \lambda = 0$
• $A \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \Rightarrow \lambda = 1 \quad \forall I \quad \forall z = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$
• $det(A - 4I) = 0$. $\Rightarrow \lambda_3 = 4$
What are the eigenvalues of A ?
What are the eigenvalues of A ?
 $\chi = 0, \lambda_2 = 1, \lambda_3 = 4$
What are the eigenvalues of A ?
 $\chi = 0, \lambda_2 = 1, \lambda_3 = 4$
Is A diagonalizable? Why or why not?
we have $\lambda_1 = 0$ $Z = 0$ $Z = 1, \lambda_3 = 4$
Is a diagonalizable? Why or why not?
 $\chi = 0, \lambda_2 = 1, \lambda_3 = 4$
If possible, write down the characteristic polynomial of $A = A$ is 4×4
 $J = 0, \lambda_2 = 1, \lambda_3 = 4$
If possible, write down the characteristic polynomial of $A = A$ is 4×4
 $J = 0, \lambda_2 = 1, \lambda_3 = 4$
 $J = 0, \lambda_2 = 1, \lambda_3 = 4$

MATH 2270-001 Spring 2017 Instructor: Anna Romanova Date: April 27, 2017 Name:

Final Exam

(200 points) Show all of your work. You may not use a calculator.

1. Examples

Give examples of the following.

(a) (5 points) A matrix A whose nullspace is a 3-dimensional subspace of \mathbb{R}^5 .

 $A = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad rank(A) = 2$ dim(MulA) = 3 $and NulA \subset \mathbb{R}^{5}$

(b) (5 points) A matrix A which defines a negative-definite quadratic form on \mathbb{R}^4 .

$$A = \begin{bmatrix} -1 & 0 \\ -2 & -3 \\ 0 & -3 \end{bmatrix}$$
(c) (5 points) A matrix A such that $\begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$ is a solution of $A\mathbf{x} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$
we need $\begin{bmatrix} -1 \\ 5 \end{bmatrix}$ to be in column space of A to be in the form the

(d) (5 points) A matrix A such that the volume of the parallelepiped in \mathbb{R}^3 deterined by the columns of A is 12.

2. Computations

(a) (10 points) Solve the linear system

$$x_1 + 2x_2 - 3x_3 = -5$$
$$x_1 + x_2 - x_3 = -1$$

Write your solution in parametric vector form.

$$\begin{bmatrix} 1 & 2 & -3 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -S \\ -1 \end{bmatrix}$$

$$(-1) \begin{bmatrix} 1 & 2 & -3 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 2 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 - 4 \end{bmatrix}$$

$$(=) \begin{array}{c} x_1 = 3 - x_3 \\ x_2 = -4 + 2x_3 \\ x_3 = -4 + 2x_3 \\ x_5 = 4 + 2x_3 \\ x_5 = 4 + 2x_3 \\ x_5 = 4 + 2x_5 \\$$

(b) (10 points) Find a least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ for $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$. $\overleftarrow{A^{\mathsf{T}} A \mathbf{x}} = A^{\mathsf{T}} \overleftarrow{b}$ $A^{\mathsf{T}} A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & i \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \Rightarrow (A^{\mathsf{T}} A)^{\mathsf{T}} = \frac{1}{2\mathfrak{D} - 9} \begin{bmatrix} 2 - 3 \\ -3 & 0 \end{bmatrix}$ $\Rightarrow \mathbf{x} = (A^{\mathsf{T}} A)^{\mathsf{T}} A^{\mathsf{T}} \overleftarrow{b} = \frac{1}{11} \begin{bmatrix} 2 & -3 \\ -3 & 10 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4 \\ -3 & 10 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1 \\$ (c) (10 points) The matrices A and B below are row equivalent. Use this information to write down bases for ColA, RowA, and NulA.

$$A = \begin{pmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & 6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -2 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(His is save problem as (on page 4))

(d) (10 points) Consider the subspace
$$W = \operatorname{span} \left\{ \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 9\\1\\5 \end{pmatrix} \right\}$$
 of \mathbb{R}^3 . Compute an orthogonal basis $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ of W .

$$\vec{V}_{1} = \vec{W}_{1} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\vec{V}_{2} = \vec{W}_{2} - \frac{\vec{W}_{2} \cdot \vec{V}_{1}}{N\vec{V}_{1} | |^{2}} \vec{V}_{1} = \begin{bmatrix} 9 \\ 1 \\ 5 \end{bmatrix} - \frac{(8+1+5)}{(4+1+1)} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 9 \\ 1 \\ 5 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 9 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ -3 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}$$

5. Singular Value Decomposition

Let
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 2 & 1 \end{pmatrix}$$
. An orthogonal diagonalization of $A^T A$ is given by
 $A^T A = \begin{pmatrix} 2 & 4 & 0 \\ 4 & 8 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{5} & 0 & -2/\sqrt{5} \\ 2/\sqrt{5} & 0 & 1/\sqrt{5} \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 10 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} & 0 \\ 0 & 0 & 1 \\ -2/\sqrt{5} & 1/\sqrt{5} & 0 \end{pmatrix}$.
(a) (13 points) Use the information above to compute the singular value decomposition
 $A = U \Sigma V^T$. (*Hint: You can immediately write down V and* Σ *using information*
given above.)
 $\gamma_1 = 80, \ \gamma_2 = 7, \ \gamma_3 = 0$ for $A^T A$
 $\Rightarrow \sigma_1 = \sqrt{10}, \ \sigma_2 = \sqrt{2}, \ \sigma_3 = 0$ for $A^T A$
 $\Rightarrow \sigma_1 = \sqrt{10}, \ \sigma_2 = \sqrt{2}, \ \sigma_3 = 0$ (*singular values* of
 $U = \begin{pmatrix} \sqrt{10} & 0 & 0 \\ 0 & 5\Sigma & 0 \end{pmatrix}$
 $u = \begin{pmatrix} \sqrt{10} & 0 & -2/\sqrt{10} \\ \sqrt{10} & -2/$

(b) (7 points) What are the singular values of $A^T = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ -1 & 1 \end{pmatrix}$? What does this tell you about the rank of A^T ? (*Hint: You don't have to do any calculations to do this problem.*)

$$A = U \leq V^{T} \implies A^{T} = (U \leq V^{T})^{T} = V \leq U^{T}$$

and
$$Z = \begin{bmatrix} V^{IO} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix} \implies Z^{T} = \begin{bmatrix} I^{IO} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix}$$

$$= \int \mathcal{G}_{I} = J^{IO}, \ \mathcal{G}_{2} = J^{2} \quad \text{for } A^{T} \quad SVD.$$

rank $(A^{T}) = \# \text{ nonzero singular values } rank(A^{T}) = Z$
of $A^{T} \qquad V^{I}$

6. Linear Transformations

(a) (8 points) Write down a matrix A that rotates \mathbb{R}^2 ninety degrees counterclockwise about the origin. Write down a matrix B that reflects \mathbb{R}^2 across the line y = -x.

Hys is same problem as #S = page f

$$A = B =$$
(b) Let $T: \mathbb{P}_2 \to \mathbb{R}^2$ be the linear transformation defined by $T(p(t)) = \binom{p(-1)}{p(2)}$.
i. (5 points) Find the matrix M for T relative to the standard basis $\mathcal{E} = \{1, t, t^2\}$
of \mathbb{P}_2 .

$$M = \begin{bmatrix} 1 & -1 & i \\ 1 & 2 & 4 \end{bmatrix}$$

$$T(\varphi(t)) = \begin{bmatrix} \varphi(t) \\ \varphi(2) \\ \varphi(2) \end{bmatrix}$$

$$T(t) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$T(t) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$T(t) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
i. (5 points) Compute a basis for Nul M .

$$(J) \begin{bmatrix} 1 & -1 & i \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & i \\ 0 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & i \\ 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$
Null $\mathcal{R}^{P(t)}$

$$X = -2x_3$$

$$X_2 = x_3$$

$$X_3 = x_3$$

iii. (5 points) Use your answer in part ii. to write down a basis for kerT. (*Hint:* You can check your answer to this problem by applying the transformation T to your basis.)

7. Quadratic Forms

Let
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(a) (4 points) Write down the corresponding quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

$$\varphi(\dot{x}) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 0x_1x_3 + 4x_2x_3$$

(b) (4 points) Explain why the matrix A is diagonalizable.

Needed (ater: det(A-
$$\lambda$$
I)= det $\begin{bmatrix} 3-\lambda & 2 & 0\\ 2 & 2-\lambda & 2\\ 0 & 2 & (-\lambda) \end{bmatrix}$
= $(3\lambda)((2-\lambda)((-\lambda))-4]-2[z(\lambda-3)-0]$
= $-(\lambda^3-6\lambda^2+3\lambda+10)$
= $-(\lambda-5)(\lambda-2)(\lambda+1)$
=) eigenvalues are $\lambda_1 = 5$, $\lambda_2 = 2$, $\lambda_3 = -1$

(c) (4 points) What is the determinant of A?

 $A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ det A = 3 $\begin{vmatrix} z & z \\ -2 & | z & z \end{vmatrix} = 3(2-4) - 2(2-0)$ 2 1 $\begin{vmatrix} 0 \\ 0 \\ -4 & | -1 \end{vmatrix}$

(d) (4 points) Two eigenvalues of A are $\lambda_1 = 5$ and $\lambda_2 = 2$. What are the minimum and maximum values of $Q(\mathbf{x})$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$?

work above, on last page) lSee $\lambda_1 = S_1 \lambda_2 = 2, \lambda_3 = -1 =)$ min $Q(\vec{x})$ s.t. $\|\vec{x}\|^2 = |$ is -|max $Q(\vec{x})$ s.t. $\|\vec{x}\|^2 = |$ is \leq

(e) (4 points) Consider the map $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathbf{x} \mapsto A\mathbf{x}$. Is T one-to-one? Why or why not? Is T onto? Why or why not?

Since det A #O, then A+ exists =) T is both H and onto.

8. Invertible Matrices

(10 points) Which of the following matrices are invertible? Circle all the apply. You do not need to justify your choice.

(a)
$$A = \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix}$$
. (Note that the columns of A are orthonormal.)
if columns one orthonormal, then columns of A are orthonormal, then columns of A one him indep
(b) A matrix with a trivial nullspace. $\Rightarrow A^{-1}$ excites $\Rightarrow A^{-1}$ excites $\Rightarrow A^{-1}$ excites A^{-1} excites A

Math 2270-005 Monday 5/1/17

Final

(c) Consider the subspace
$$W = \operatorname{span} \left\{ \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 9\\1\\5 \end{pmatrix} \right\}$$
 of \mathbb{R}^3 .

• (3 points) Compute an orthogonal basis $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ of W.

$$\begin{split} \vec{u}_{1} &= \vec{w}_{1} = \begin{bmatrix} 2\\1\\1 \end{bmatrix} \\ \vec{u}_{2} &= \vec{w}_{2} - \frac{\vec{w}_{2} \cdot \vec{v}_{1}}{\|\vec{u}_{1}\|^{2}} \vec{u}_{1} = \begin{bmatrix} 9\\1\\5 \end{bmatrix} - \frac{188 + 145}{944 + 1} \begin{bmatrix} 2\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-3\\-3\\1 \end{bmatrix} \\ \\ \vec{u}_{1} &= \begin{bmatrix} 2\\-3\\1 \end{bmatrix} \begin{pmatrix} 1\\-3\\-3\\1 \end{bmatrix} \\ \vec{u}_{1} &= \begin{bmatrix} -3\\-3\\-3\\1 \end{bmatrix} \\ \vec{u}_{2} &= \begin{bmatrix} -9\\2\\4 \end{bmatrix} \\ \vec{u}_{1} &= \begin{bmatrix} -9\\2\\4 \end{bmatrix} \\ \vec{u}_{2} &= \begin{bmatrix} -9\\2\\4 \end{bmatrix} \\ \vec{u}_{1} &= \begin{bmatrix} -9\\2\\4 \end{bmatrix} \\ \vec{u}_{2} &= \begin{bmatrix} -9\\2\\4 \end{bmatrix} \\ \vec{$$

Final

5. (12 points) Fitting data with a line

Suppose you have some data with three points

with three points
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

- (a) Use the following steps to find the line that best approximates these points.
 - (4 points) Write down the three equations in two variables m and c that would have to be satisfied for each of these points to go through the line $x_2 = mx_1 + c$.

(1)
$$D = m(2) + C = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$$

• (4 points) Write down the matrix equation that corresponds to the linear system from part (a).

$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$$

Final

• (4 points) Find the equation for the line that is the closest possible line to these three points; that is, find the least squares solution.

$$A = \begin{bmatrix} 2 & | \\ 1 & | \\ 0 & 1 \end{bmatrix} \quad \overrightarrow{b} = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$$

$$least signales solus: ATA = \begin{bmatrix} 2 & | \\ 1 & | \\ 1 & | \end{bmatrix} \begin{bmatrix} 2 & | \\ 1 & | \\ 0 & | \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 3 \end{bmatrix}$$

$$= \left[\begin{pmatrix} ATA \end{pmatrix}^{T} = \frac{1}{15-9} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix}$$

$$= \left[\begin{pmatrix} ATA \end{pmatrix}^{T} A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ -3 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} -12 \\ 22 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 4 \end{bmatrix}$$

=) best fit live is
$$\chi_2 = m\chi_1 + c$$

t.e. $\chi_2 = -2\chi_1 + \frac{1}{3}$
Final