3d Geometry Jeopardy

Polyhedra ·

10 points-- Why can't we make a Platonic solid with hexagonal faces?

because 3 regular agons lie flat and cannot form a dihedral angle

20 points-- Draw a right triangular pyramid.

30 points-- List the Platonic Solids.

dodecakedron

dodecakedron

icsahedron

octahedron

40 points-- A prism has 96 edges. How many vertices and faces does it have?

F+V-2=EF+V-2=9L

=) 2 + n + 2n - 2 = 9L 3n = 9L = 32 = 32

if n= # of sides in polygon base, then F=2+n and V=2n

Surface Area

10 points-- Find the surface area of the following solid.

20 points-- Find the surface area of a sphere with radius of 5 meters.

30 points-- Find the surface area of a right circular cone with radius of 2 ft. and height of 6 ft.

$$S = \pi (2^2) + \frac{1}{2} (2\pi (2)) 2\pi 6$$

$$= 4\pi + 4\pi (1+\pi 6) + 4^2$$

Surface Area (continued)

40 points-- Find the surface area of the following

shell.

shell.

SA = 300T

+240T

+36T

=576T

$$A = T(0) - T(8^{+})$$
 $A = T(0) - T(8^{+})$
 $A =$

50 points-- Find the surface area of the following

solid.

Volume

10 points-- Find the volume of the following solid.

20 points-- Find the volume of a sphere with radius of 5 meters.

$$V = \frac{1}{3}\pi(5^3) = \frac{500\pi}{3}m^3$$

30 points-- Find the volume of a right circular cone with radius of 2 ft. and height of 6 ft.

$$V = \frac{1}{3} \pi v^2 h = \frac{1}{3} \pi (z^2)(6)^3$$

$$= 8\pi A^3$$

Volume (continued)

40 points-- Find the volume of the following shell.

50 points-- Find the volume of the following solid.

Scaling

10 points-- If a cube's sides double in length, what happens to its surface area?

20 points-- If a cube's sides triple in length, what happens to its volume?

30 points—We have a scale model prism whose height is 5 inches, and we want the actual prism to have a height of 10 feet. What is the relationship between the scale model's surface area and the actual surface area?

$$5 \text{ in } \rightarrow 10 \text{ ft}$$
 = $5 \text{ m} \rightarrow 120 \text{ m}$
 $5 \text{ s} = 120$ $5 = 5 \text{ calling}$
 $5 \text{ s} = 24$
 $\Rightarrow 5 \text{ A new} = 24^2 \text{ SA}_{\text{model}}$

Scaling (continued)

40 points—We have a scale model prism whose height is 5 inches, and we want the actual prism to have a height of 10 feet. What is the relationship between the scale model's volume and the actual volume?

50 points—For a right square pyramid with height h = 8 inches and the base side length = 5 inches, what is the surface area and volume? If we scale that up to have a height of 3 ft, what is its surface area and volume?

$$\frac{1}{5}$$

$$SA = 8^{2} + \frac{1}{2}(20)(\frac{581}{2})$$

$$= 25 + 5\sqrt{581}$$

$$\approx 108.8 \text{ in}^{2}$$

$$V = \frac{1}{3}Ah = \frac{1}{3}(25)(8) = \frac{200}{3}$$

$$= 106.6 \text{ in}^{3}$$

Hodge Podge

10 points -- Give an exact definition of a sphere.

the set of paints equidistant from a fixed pt (called the center) in 3d

20 points-- What is Euler's Formula and what does it apply to?

30 points-- Find the area of a regular hexagon whose sides are 4 cm in length.

whose sides are 4 cm in length.

A = 6 (
$$\frac{3}{4}$$
 x²)

= $\frac{3\sqrt{3}}{2}$ x²

= $\frac{3\sqrt{3}}{2}$ (4) = $\frac{3$

Hodge Podge (continued)
40 points— What is the relationship between h, l
and e (as drawn on this pyramid)?

50 points-- State the Pythagorean Theorem and give a proof.

