2345600900512 4 Chapter 4 Review

4.1

For each function, find its inverse.

1.
$$f(x) = 2(x+3)^3 - 4$$

2.
$$h(x) = \frac{\sqrt[5]{2x-1}}{3}$$

3.
$$f(w) = \frac{3w}{4w + 9}$$

4.
$$p(y) = 6y^{\frac{-1}{3}} + 2$$

$$5. \quad g(x) = \frac{x^3 + 1}{5 - x^3}$$

6.
$$y(x) = \sqrt[3]{\frac{x+7}{2x-11}}$$

7.
$$f(p) = \frac{-2}{p+1}$$

8. For each function, restrict the domain so it has an inverse. Then, find the inverse function.

a.
$$f(x) = 5(x-1)^2 + 3$$

b.
$$y(x) = \sqrt{\frac{x}{2}} - 1$$

c.
$$h(x) = -2x^4 + 7$$

4.2

Sketch the graph of each function. Label the y-intercept.

9.
$$y = e^x + 2$$

10.
$$y = 5^x - 1$$

11.
$$f(x) = 3^{-x}$$

12.
$$g(x) = -2^x + 3$$

13.
$$y = 4^{\frac{x}{2}}$$

Simplify each expression.

14.
$$(3^{4-x})^{3x}$$

15.
$$\frac{4^{x+1}}{4^{3-x}}$$

16.
$$\frac{\pi^{5x+3}}{\pi^2}$$

17.
$$(-6^2 e)^x$$

18.
$$\frac{\pi^{2x}e^{3y}}{e^{2x}\pi^{3y}}$$

4.3

Rewrite the logarithmic statement as its equivalent exponential statement using the definition of logarithm.

19.
$$\log_5 25 = 2$$

20.
$$\log_4\left(\frac{1}{4}\right) = -1$$

2 Chapter 4 Review

21.
$$\log 1 = 0$$

22.
$$\ln\left(\frac{1}{\sqrt{e}}\right) = -\frac{1}{2}$$

Simplify each expression, without using a calculator.

25.
$$\ln e^{-5}$$

26.
$$\log_3\left(\frac{1}{81}\right)$$

For each function, find the domain and sketch the graph. Label the x-intercept.

27.
$$f(x) = \log_3(-x)$$

28.
$$y = \log(x - 2)$$

29.
$$g(x) = \ln(x) + 3$$

$$30. \ h(x) = 2\log_5(x) - 1$$

31.
$$y = -\log_2(x+1)$$

4.4

Use properties of logarithms to expand each expression completely.

32.
$$\log \left(\frac{x^2 + 5}{x^3} \right)^4$$

33.
$$\ln\left(x^2\sqrt[3]{\frac{(x-1)^4}{x+9}}\right)$$

34.
$$\log_5\left(\frac{(x+1)^2(x-2)^3(x+3)^4}{x}\right)$$

Use properties of logarithms to condense each expression completely.

35.
$$3\log_2 x - 4\log_2(x+5) + \log_2 9$$

36.
$$\frac{1}{2}\log_4(x-3) + \frac{1}{4}\log_4 x - \log_4(\sqrt{x})$$

37.
$$3\ln(e^x) - \ln x^2 + \ln(5x - 2)$$

38.
$$\log(4x) + \log(5y) - \log(xy)$$

39.
$$\log_5(x^2 - 5) + 3\log_5 x - \log_5\left(\frac{x}{2}\right)$$

Evaluate each expression, without using a calculator.

40.
$$3 \ln e - \ln 1 + \ln \left(\frac{1}{\sqrt{e}} \right) + \ln e^5$$

41.
$$\log_4\left(\frac{120(24)}{18(40)}\right) - \log_5 625 + \log 1000$$

42.
$$\log_2(2^{\pi}) + \log_{\pi}(\pi^2) - \ln(e^3)$$

4.5

Solve each equation.

43.
$$2e^{5x} - 3 = 9$$

44.
$$5^{x^2}5^{3x} = 5^{10}$$

45.
$$3^{x+1} + 2 = 4(3^{x+1}) - 7$$

46.
$$2^{3w+5} + 1 = 2^0 + \frac{1}{16}$$

47.
$$2(e^{2x} - 10) = -3e^x$$

48.
$$\log_4 5 + \log_4 x = \log_4 (3x + 10)$$

49.
$$\log_2 x^2 - \log_2(x+5) = 2$$

50.
$$\log x + \log(x + 5) = \log 66$$

51.
$$e^{\ln(x^2+x)} = 90$$

52.
$$ln(x + 2) = ln(x + 1) + 3$$

53.
$$3 = \log_5(x+2) + \log_5\left(\frac{1}{x}\right)$$

$$54. \ \ 2x10^x = x^210^x$$

4.6

- 55. Suppose the number of rabbits on a small island is given by $N = 400(0.1^{0.2}^t)$, where t is the number of years after 2005.
 - a. How many rabbits are on the island in 2005?
 - **b.** How many rabbits are on the island in 2006?
 - c. In the year 2020, what will the rabbit population be?
- **56.** The number *N* of people in a community who are reached by a particular rumor at time *t* (in days) is given by $N(t) = \frac{680}{1 + 169e^{-0.4t}}$.
 - **a.** Find N(0), the number of people who initially know the rumor.
 - **b.** How long will it take 340 people to know the rumor?
- 57. The demand function for a product is given by $p = 180(4^{\frac{-q}{15}})$.
 - **a.** At what price will there be 2 units demanded?
 - **b.** If the unit price is \$110, how many units will be demanded?
- **58.** The half-life of radioactive radium is 1620 years. What percent of a present amount of radioactive radium will remain after 870 years?
- **59.** The number of units of a product sold after t years is given by $n(t) = 150(0.2^{0.03t})$. After how many years will there be 125 units sold?

- 60. The quantity, measured in milligrams, of a radioactive substance present after t years is given by $q = 180e^{-0.04t}$. After how many years will there be 14 mg present?
- **61.** The population of Mathville, with initial population of 14,000 in the year 2000, grows at a rate of 3% per year.
 - a. What is the population function?(Let P = population and t = number of years past year 2000.)
 - **b.** What is the population in 2002?
 - c. In what year will the population be 35,000?
- 62. Melida saved \$5,000 from her weekly cash over the last two years. She wants to invest her money in an account that grows according to the formula $A(t) = P(1.05^{2t})$, where P is the original amount invested, t is the number of years she leaves her money in that account and A is the value of that account at time t.
 - **a.** How much will the account be worth after two years?
 - **b.** After how many years will she have \$8,500?

CHAPTER 4 REVIEW ANSWER KEY

1.
$$f^{-1}(x) = \sqrt[3]{\frac{x+4}{2}} - 3$$

2.
$$h^{-1}(x) = \frac{(3x)^5 + 1}{2}$$

$$3. \ f^{-1}(w) = \frac{9w^2}{3 - 4w}$$

4.
$$p^{-1}(y) = \frac{216}{(y-2)^3}$$

5.
$$g^{-1}(x) = \sqrt[3]{\frac{5x-1}{x+1}}$$

6.
$$y^{-1}(x) = \frac{7 + 11x^3}{2x^3 - 1}$$

7.
$$f^{-1}(p) = -1 - \frac{2}{p}$$

8. **a.** domain:
$$x \ge 1$$
; $f^{-1}(x) = \sqrt{\frac{x-3}{5}} + 1$

b. domain:
$$x \ge -1$$
; $y^{-1}(x) = 2(x+1)^2$

c. domain:
$$x \ge 0$$
; $h^{-1}(x) = \sqrt[4]{\frac{7-x}{2}}$

9.

10.

11.

12.

13.

14.
$$3^{12x-3x^2}$$

15.
$$4^{2x-2}$$

16. π^{5x+1}

16.
$$\pi^{5x}$$
 +

17.
$$(-36)^x e^x$$

18.
$$\left(\frac{\pi}{e}\right)^{2x-3}$$

19.
$$5^2 = 25$$

20.
$$4^{-1} = \frac{1}{4}$$

21.
$$10^0 = 1$$

22.
$$e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}$$

27. domain:
$$x < 0$$

28. domain: x > 2

6 Chapter 4 Review

29. domain: x > 0

30. domain: x > 0

31. domain: x > -1

32. $4\log(x^2+5)-12\log x$

33.
$$2 \ln x + \frac{4}{3} \ln(x-1) - \frac{1}{3} \ln(x+9)$$

34.
$$2\log_5(x+1) + 3\log_5(x-2) + 4\log_5(x+3) - \log_5 x$$

35.
$$\log_2\left(\frac{9x^3}{(x+5)^4}\right)$$

$$36. \log_4\left(\frac{\sqrt{x-3}}{\sqrt[4]{x}}\right)$$

37.
$$\ln \left(\frac{e^{3x}(5x-2)}{x^2} \right)$$

38. log (20)

39. $\log_5 (2x^2(x^2-5))$

40. 7.5

41. 0

42. $\pi - 1$

43. $x = \frac{\ln 6}{5}$

44. x = 2, -5

45. x = 0

46. w = -3

47.
$$x = \ln\left(\frac{5}{2}\right)$$

48. x = 5

49. $x = 2 \pm 2\sqrt{6}$

50. x = 6

51. x = 9, -10

52.
$$x = \frac{e^3 - 2}{1 - e^3} \approx -0.9476$$

53.
$$x = \frac{1}{62}$$

54. x = 0, 2

55. a. 40

b. ~252

c. 400

56. a. 4

b. ~13 days

57. a. \$149.62

b. ~5 units

58. 68.9%

59. ~4 years

60. ~64 years

61. a. $P = 14000e^{0.03t}$

b. ~14866

c. 2031

62. a. \$6077.53

b. ~5.44 years