Key Definitions: Sections 3.1-3.3, 4.1-4.7, 5.1-5.2

- The determinant of an $n \times n$ matrix is
- The (i, j)-cofactor of an $n \times n$ matrix A is f a vector space is
- A vector space is
- A subspace of a vector space is
- The null space of an $m \times n$ matrix is
- The column space of an $m \times n$ matrix is
- A linear transformation is
- A basis is
- The \mathcal{B} -coordinates of \mathbf{x} are
- The dimension of a vector space V is
- The rank of A is

- An eigenvector of A is
- An eigenvalue of A is
- Two matrices are similar if

Major Theorems: Sections 3.1-3.3, 4.1-4.7, 5.1-5.2

Chapter 3

Theorem 1 Cofactor Expansion The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column.

Cofactor expansion across the i^{th} row is given by:

 $det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$

Cofactor expansion across the j^{th} column is given by:

 $det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$

Theorem 2 If A is a triangular matrix, then det(A) is the product of the entries on the main diagonal of A.

(e) The determinant of the product AC is,

 $det(AC) = _$

Theorem 4 IMT extended A square matrix A is invertible if and only if $det(A) \neq 0$.

Theorem 5 Cramer's Rule Let A be an invertible $n \times n$ matrix. For any $\mathbf{b} \in \mathbb{R}^n$, the unique solution \mathbf{x} of $A\mathbf{x} = \mathbf{b}$ has entries given by

$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}, \quad i = 1, 2, \dots, n.$$

 $A_i(\mathbf{b})$ is defined as the matrix where the *i*th column of A is replaced by **b**. That is,

 $A_i(\mathbf{b}) = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{b} & \dots & \mathbf{a}_n \end{bmatrix}.$

Theorem 6 An Inverse Formula Let A be an invertible $n \times n$ matrix. Then,

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

where adj(A) denotes the adjugate (or classical adjoint), the $n \times n$ matrix of cofactors $C^T = [C_{ji}].$

Theorem 7 Area or Volume

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is |det(A)|.

If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is |det(A)|.

Theorem 8 Expansion Factors

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear transformation determined by the 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$$\{area of T(S)\} = |det(A)| \cdot \{area of S\}$$

Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation determined by the 3×3 matrix A. If S is a parallelepiped in \mathbb{R}^3 , then

 $\{volume \ of \ T(S)\} = |det(A)| \cdot \{volume \ of \ S\}$

Chapter 4

Theorem 1 If V is a vector space, and $\mathbf{v_1}, \ldots, \mathbf{v_p} \in V$, then $span\{\mathbf{v_1}, \ldots, \mathbf{v_p}\}$ is a subspace of V.

Note: we call span $\{\mathbf{v_1}, \ldots, \mathbf{v_p}\}$ *the* subspace spanned by $\{\mathbf{v_1}, \ldots, \mathbf{v_p}\}$.

Theorem 2 The null space of an $m \times n$ matrix is a subspace of _____

Theorem 3 The column space of an $m \times n$ matrix is a subspace of _____

Theorem 4 An indexed set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ of two or more vectors with $\mathbf{v}_1 \neq \mathbf{0}$ is linearly dependent if and only if some vector \mathbf{v}_j with j > 1 is a linear combination of the preceding $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.

Theorem 5 Spanning Set Theorem Let $S = \{\mathbf{v}_1, \ldots, \mathbf{v}_p\} \subset V$ and $H = span\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$.

- If some $\mathbf{v}_k \in S$ is a linear combination of the remaining vectors in S, the set formed by removing \mathbf{v}_k still spans H.
- If $H \neq \{0\}$, some subset of S is a basis for H.

Theorem 6 The pivot columns of a matrix A form a basis for Col A.

Theorem 7 The Unique Representation Theorem

Let $\mathcal{B} = {\mathbf{b_1}, \ldots, \mathbf{b_n}}$ be a basis for a vector space V. Then, for each $\mathbf{x} \in V$, there exist **unique** $c_1, \ldots, c_n \in \mathbb{R}$ such that

$$\mathbf{x} = c_1 \mathbf{b_1} + \dots + c_n \mathbf{b_n}.$$

Theorem 8 Let $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be a basis for a vector space V. The coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a **one-to-one** linear transformation from V **onto** \mathbb{R}^n .

Theorem 9 If a vector space V has a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$, then any set in V containing more

than n vectors must be _____

Theorem 10 If a vector space V has a basis of n vectors, then every basis of V must consist of

exactly _____ vectors.

Theorem 11 Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded to a basis for H. Also, H is finite-dimensional and dim $H \leq \dim V$.

Theorem 12 The Basis Theorem

Let V be a p-dimensional vector space where $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Theorem 13 If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Theorem 14 The Rank-Nullity Theorem Let A be an $m \times n$ matrix.

rank A + dim(Nul A) =_____

Theorem 15 Change of Basis Let $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ and $\mathcal{C} = {\mathbf{c}_1, \ldots, \mathbf{c}_n}$ be bases of a vector space V. Then, there is a unique $n \times n$ matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ such that

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

where the columns $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \dots [\mathbf{b}_n]_{\mathcal{C}}]$$

 $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and is invertible.

Chapter 5

Theorem 1 The eigenvalues of a triangular matrix are the entries on the main diagonal.

Theorem 2 If $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is linearly independent.

Theorem 3 If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial

and hence, the same _____ (with the same multiplicities).

The Invertible Matrix Theorem (continued)

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

(a) A is an <u>invertible</u> matrix.

(b) A is row equivalent to the $n \times n$ _____ matrix.

- (c) A has _____ postions.
- (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the ______ solution.
- (e) The columns of A form a linearly ______ set.
- (f) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is _____.
- (g) The equation $A\mathbf{x} = \mathbf{b}$ has ______ solution for each \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A _____ \mathbb{R}^n .
- (i) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n _____ \mathbb{R}^n .
- (j) There is an $n \times n$ matrix C such that CA =_____.
- (k) There is an $n \times n$ matrix D such that AD = _____.
- (l) A^T is an _____ matrix.
- (m) The _____ of A form a basis of _____.
- (n) Col A = _____

- (o) $\dim(\operatorname{Col} A) =$
- (p) rank A =_____
- (q) Nul A =_____
- (r) dim(Nul A) = _____
- (s) _____ is not an eigenvalue of A.
- (t) $det(A) \neq ___$

Supplemental Practice Problems:

- 1. Let A and B be 5×5 matrices with det A = -2 and det B = 3. Use properties of determinants to compute each of the following:
 - (a) $\det BA$
 - (b) $\det 2A$
- 2. Compute the area of the parallelogram whose vertices are given by $\begin{bmatrix} 0\\0 \end{bmatrix}$, $\begin{bmatrix} 4\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\5 \end{bmatrix}$.
- 3. Use Cramer's Rule to solve the matrix equation

$$\begin{bmatrix} 1 & -2 & 0 \\ 2 & 0 & -1 \\ 0 & 3 & 4 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ -6 \\ 5 \end{bmatrix}$$

4. Let W be the set of all vectors of the form given below. Find a set S of vectors that spans W or give an example to show that W is not a vector space.

(a)
$$W = \left\{ \begin{bmatrix} -a+1\\a-6b\\2b+a \end{bmatrix} : a, b \in R \right\}$$

(b)
$$W = \left\{ \begin{bmatrix} 4a+3b\\0\\a+b+c\\c-2a \end{bmatrix} : a, b, c \in R \right\}$$

- 5. Constructions:
 - (a) Give an example of a basis $\{\mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}\}$ of \mathbb{P}_2 such that $[t^2]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.
 - (b) Give an example of a vector space V whose objects are matrices such that dimV = 100.
 - (c) Give an example of a 2×2 matrix A such that $\begin{bmatrix} 1\\ 2 \end{bmatrix}$ is not an eigenvector of A with associated eigenvalue $\lambda = 4$.
 - (d) Give an example of a matrix A that has a two-dimensional eigenspace.
- 6. Let $M_{2\times 2}$ be the space of 2×2 matrices with real entries. $M_{2\times 2}$ has natural operations of matrix addition and scalar multiplication, and with these operations, $M_{2\times 2}$ is a vector space. (You do not need to check this.) Consider the subset of symmetric matrices:

$$H = \{ A \in M_{2 \times 2} : A^T = A \}.$$

Is H a subspace of $M_{2\times 2}$? Justify your answer.

- 7. For each vector space, determine if the given set is a basis. Justify your answer. (a) $\mathbb{R}^2: \left\{ \begin{bmatrix} 3\\-2 \end{bmatrix}, \begin{bmatrix} -9\\6 \end{bmatrix} \right\}$
 - (b) \mathbb{R}^2 : $\left\{ \begin{bmatrix} 1\\ 3 \end{bmatrix}, \begin{bmatrix} 3\\ 1 \end{bmatrix} \right\}$
 - (c) \mathbb{R}^2 : $\left\{ \begin{bmatrix} 2\\ 3 \end{bmatrix}, \begin{bmatrix} 3\\ 4 \end{bmatrix}, \begin{bmatrix} 4\\ 2 \end{bmatrix} \right\}$
 - (d) \mathbb{R}^3 : $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 3\\4\\5 \end{bmatrix} \right\}$

(e)
$$\mathbb{R}^3:\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}$$

- 8. For each space, find a basis and express the redundant vectors as linear combinations of the basis vectors.
 - (a) span $\left\{ \begin{bmatrix} 2\\-1 \end{bmatrix}, \begin{bmatrix} -3\\3 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 5\\2 \end{bmatrix} \right\}$

(b) span
$$\left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -3\\3\\6 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \right\}$$

- 9. Consider the matrix $A = \begin{bmatrix} 1 & -2 \\ 2 & 6 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find the eigenvalues of A and their corresponding eigenspaces.
- 10. Consider the set $\mathcal{B} = \{\mathbf{u}, \mathbf{v}\}$ where $\mathbf{u} = \begin{bmatrix} 1\\2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -2\\6 \end{bmatrix}$. (a) Explain why \mathcal{B} is a basis for \mathbb{R}^2 .
 - (b) Express the vectors $\begin{bmatrix} 3 \\ -4 \end{bmatrix}, \begin{bmatrix} -4 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ in terms of the basis \mathcal{B} .
 - (c) Sketch the grid associated to \mathcal{B} along with the vectors from part(b).

11. For each matrix, compute its rank and find a basis for its column space; compute its nullity and find a basis for its null space.

(a)
$$\begin{bmatrix} 1 & 2 & -3 & -2 & 1 \\ -1 & -2 & 5 & 6 & 3 \\ 3 & 6 & -2 & 8 & 17 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 6 & -3 \\ 2 & 7 & -1 \\ 3 & 8 & 1 \\ 4 & 9 & 3 \\ 5 & 10 & 5 \end{bmatrix}$$

- 12. Consider the set \$\mathcal{B} = \{1+t, 1+t^2, t+t^2\}\$ in \$\mathbb{P}_2\$.
 (a) Is \$\mathcal{B}\$ a basis for \$\mathbb{P}_2\$? Show work in support of your answer.
 - (b) Compute the \mathcal{B} -coordinates of the vector $2 + 2t + 2t^2 \in \mathbb{P}_2$.

13. Let
$$A = \begin{bmatrix} 1 & 6 & -3 \\ 0 & 0 & 0 \\ -2 & -12 & 6 \end{bmatrix}$$
.

- (a) Find the reduced row echelon form of A.
- (b) Find a basis for NulA. What is $\dim(NulA)$?
- (c) Find a basis for ColA. What is dim(ColA)?
- (d) Find a basis for RowA. What is $\dim(RowA)$?
- 14. Is the set of polynomials $\{1+2t, 3t+3t^2, 4t+7t^2\}$ a basis for \mathbb{P}_2 ? Show supporting work!

- 15. Consider the basis $\mathcal{B} = \left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right\}$ of \mathbb{R}^2 .
 - (a) Compute the \mathcal{B} -coordinates of each of the following vectors in \mathbb{R}^2 : $\begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix}, \begin{bmatrix} 4\\1 \end{bmatrix}$
 - (b) Write down the matrix $\underset{\mathcal{E}\leftarrow\mathcal{B}}{P}$ that converts \mathcal{B} -coordinates to standard coordinates. Multiply $\underset{\mathcal{E}\leftarrow\mathcal{B}}{P}$ by one of your answers in the previous part to check that you get back the original vector.
 - (c) Compute the matrix $\underset{\mathcal{B} \leftarrow \mathcal{E}}{P}$ that converts standard coordinates to \mathcal{B} -coordinates. Compute $\underset{\mathcal{B} \leftarrow \mathcal{E}}{P} \begin{bmatrix} -2\\ 1 \end{bmatrix}$ and $\underset{\mathcal{B} \leftarrow \mathcal{E}}{P} \begin{bmatrix} 4\\ 1 \end{bmatrix}$. You should get your answers in the first part.

16. Let $\mathbb{P}_2 \xrightarrow{T} \mathbb{R}^2$ be the linear transformation defined by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(-1) \\ \mathbf{p}(2) \end{bmatrix}$.

- (a) Compute T(1), T(t), and $T(t^2)$. Let $\mathcal{E} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}_2 . Using the coordinate mapping $\mathbb{P}_2 \xrightarrow{[]_{\mathcal{E}}} \mathbb{R}^3$, we can view T as a linear transformation $\mathbb{R}^3 \xrightarrow{S} \mathbb{R}^2$ defined by $S(\mathbf{x}) = A\mathbf{x}$.
- (b) Write down the matrix A. Hint: the columns of A are your answers in (a).
- (c) Use the matrix A to check that $S([t^2]_{\mathcal{E}}) = T(t^2)$.
- (d) Compute a basis for Nul A.
- (e) Use your answer in (d) to write down a basis for the kernel of T.
- 17. Write down the equation that defines what it means for \mathbf{x} to be an eigenvector of matrix A with associated eigenvalue λ .

18. Show that
$$\begin{bmatrix} 7\\ -2 \end{bmatrix}$$
 is an eigenvector of $\begin{bmatrix} 1 & 7\\ 0 & -1 \end{bmatrix}$ and compute its eigenvalue λ .

19. Suppose $\lambda = 6$ is an eigenvalue for the matrix

$$A = \begin{bmatrix} 3 & 0 & 2 \\ -6 & 6 & 4 \\ -3 & 0 & 8 \end{bmatrix}.$$

Compute a basis for the associated eigenspace.

- 20. Let $A = \begin{bmatrix} -1 & 4 \\ -2 & 5 \end{bmatrix}$. (a) Compute the eigenvalues λ_1, λ_2 of A.
 - (b) Compute the associated eigenvectors $\mathbf{v}_1, \mathbf{v}_2$ of A.
- 21. Determine whether each subset of vectors is a subspace of a vector space. If so, find the dimension of the subspace and identify the vector space.

(a) span
$$\left\{ \begin{bmatrix} 2\\0\\-1 \end{bmatrix} \right\}$$
, (b) Row A , (c) Nul A^T , (d) $\left\{ \begin{bmatrix} 4a+3b\\a\\b \end{bmatrix} : a,b \in \mathbb{R} \right\}$,

(e)
$$\{y(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) : c_1, c_2 \in \mathbb{R}\}$$