Key Definitions: Sections 2.1-2.4

- The identity matrix I_n is
- A diagonal matrix is
- A zero matrix is
- \bullet The transpose of a matrix A is
- An elementary matrix is
- $\bullet\,$ A partitioned or block matrix A is

Major Theorems: Sections 2.1-2.4

Section 2.1

Theorem 1 Properties of Matrix Addition and Scalar Multiplication Let A, B, and C be matrices of the same size, $m \times n$, and let r and s be scalars.

(a)
$$A + B =$$

(d)
$$r(A + B) =$$

(b)
$$(A + B) + C =$$

(e)
$$(r+s)A =$$

$$(c) A + 0 =$$

$$(f) r(sA) =$$

Theorem 2 Properties of Matrix Multiplication Let A, B, and C be matrices and r be a scalar such that the sums and products below are defined. Then,

(a)
$$A(BC) =$$

(b)
$$A(B+C) =$$

(c)
$$(B+C)A =$$

$$(d) r(AB) =$$

(e)
$$I_m A =$$

Theorem 3 Transpose Properties Let A and B be matrices whose sizes are appropriate for the following sums and products.

$$(a) (A^T)^T =$$

(c) For any scalar
$$r$$
, $(rA)^T =$

(b)
$$(A + B)^T =$$

$$(d) (AB)^T =$$

 $\textbf{Note:}\ \ \textit{The transpose of a product of matrices equals the product of their transposes in reverse order.}$

Theorem 4 2×2 **Inverses** Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible, and

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].$$

If ad - bc = 0, then A is not invertible (is singular).

The quantity ad - bc is called the **determinant** of A.

Thus, a 2×2 matrix is invertible if and only if det $A \neq 0$.

Theorem 5 Matrix Equation Solutions and Inverses If A is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution, $\mathbf{x} = A^{-1}\mathbf{b}$.

Theorem 6 Properties of Inverses

(a) If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = \underline{\hspace{1cm}}$$

(b) If A and B are $n \times n$ invertible matrices, then AB is also invertible. The inverse of AB is the product of the inverses of A and B in reverse order. That is,

$$(AB)^{-1} =$$

(c) If A is an invertible matrix, then A^T is also invertible. The inverse of A^T is the transpose of A^{-1} . That is,

$$(A^T)^{-1} = \underline{\hspace{1cm}}$$

Theorem 7 An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n to A^{-1} .

Section 2.3

Theorem 8 The Invertible Matrix Theorem Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A , the statements are either all true or all false.	
(a) A is an <u>invertible</u> matrix.	
(b) A is row equivalent to the $n \times n$	matrix.
(c) A has postions.	
(d) The equation $A\mathbf{x} = 0$ has only the	$___$ solution.
(e) The columns of A form a linearly	$___$ $set.$
(f) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is	·
(g) The equation $A\mathbf{x} = \mathbf{b}$ has	solution for each b in \mathbb{R}^n .
(h) The columns of A \mathbb{R}^n .	
(i) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n	\mathbb{R}^n .
(j) There is an $n \times n$ matrix C such that $CA = \underline{\hspace{1cm}}$	<i>.</i>
(k) There is an $n \times n$ matrix D such that $AD = \underline{\hspace{1cm}}$	
(l) A^T is an matrix.	

Theorem 9 Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then, T is invertible if and only if A is an invertible matrix, and the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function such that

$$A^{-1}(A\mathbf{x}) = S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n$$

$$A(A^{-1}\mathbf{x}) = T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n$$

where $S = T^{-1}$ is the inverse of T.

- Supplemental Practice Figure 1. Compute the inverse of $A = \begin{bmatrix} 1 & 0 & 5 \\ 4 & 2 & 20 \\ 0 & 4 & -5 \end{bmatrix}$ using the inverse algorithm, $[A\ I] \sim [I\ A^{-1}]$.

 (yet can book up on Swess on matrices:

(a)
$$\begin{bmatrix} -1 & 2 & 2 \\ 2 & -4 & -3 \\ -1 & 1 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 5 & 5 & 2 \\ 4 & 5 & 2 \\ -2 & 1 & 0 \end{bmatrix}$$

- 3. Consider the matrix $A = \begin{bmatrix} 2 & 3 & 1 \\ -2 & 5 & 2 \\ 0 & 3 & 1 \end{bmatrix}$
 - (a) Show that $A^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1 & -1 & 3 \\ 3 & 3 & -8 \end{bmatrix}$. (multiply AA^{-1} to see it gives T)
 - (b) Using matrix A or A^{-1} , determine the number of pivots of A and whether the columns of A are linearly independent or dependent. Since A-1 exists, # prots = 3 +
 - (c) Using matrix A or A^{-1} , find all solutions, if any, to the matrix equation $A\mathbf{x} = \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$.
- 4. Suppose that an $n \times n$ matrix has a column which is a multiple of another column. Either give an example of an invertible matrix of this type or explain why such a matrix is not invertible.
- 5. Consider the following matrices

$$A = \begin{bmatrix} 2 & -1 & 4 \\ -3 & 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -2 \\ 2 & 5 \\ 3 & 3 \end{bmatrix}, \quad \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$$

Calculate (if possible) each of the following matrix products:

(a) AB =
$$\begin{bmatrix} 12 & 3 \\ 4 & 19 \end{bmatrix}$$

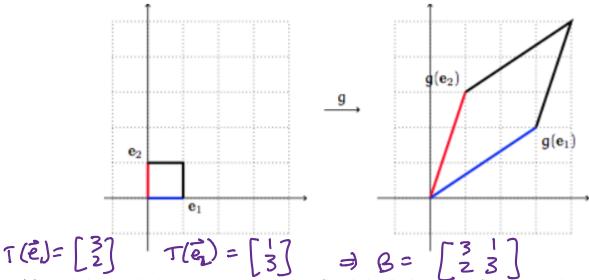
(b) BA
$$= \begin{pmatrix} 3 & -4 & 2 \\ -11 & 8 & 13 \\ -3 & 3 & 15 \end{pmatrix}$$

(c) AC DNE # als of A
$$\neq$$
 # rows
(d) CA [22)(22)
$$(2\times3)(2\times2)$$

$$(-11 7 -1)$$

Midtern Periew Chp 2

- 6. Let R be the rectangle with vertices (-2, -1), (-2, 2), (3, 2), (3, -1). Consider the linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by $T(x_1, x_2) = (4x_1 - 3x_2, -x_1 + x_2)$.
 - (a) Find the standard matrix A of the linear transformation T, and sketch the image of the rectangle R under T.
 - (b) Find the standard matrix A^{-1} corresponding to the inverse of T and sketch the image of the rectangle R under T^{-1} .
- 7. Let R be the rectangle with vertices (-2, -1), (-2, 2), (3, 2), (3, -1). Consider the linear transformation $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which maps the unit square to the parallelogram pictured below.



- (a) Find the standard matrix B associated to S and sketch the image of the rectangle R under S.
- (b) Find the matrix B^{-1} associated to the inverse of S and sketch the image of the rectangle R under S^{-1} . $B^{-1} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 3/3 & -1/3 \\ -1/3 & 3/3 \end{bmatrix}$ 8. Consider the matrices $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & b \\ c & -1 \end{bmatrix}$ where b and c are unknowns. Find values of
- b and c such that AB = BA
- $\begin{bmatrix} X & Y & Z \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}.$ Find formulas for X, Y and Z in terms of A, B and C. Justify your calculations. That is, in some cases, you may need to make assumptions about the size of a matrix in order to produce a formula.
- 10. Let $A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$ where B and C are square blocks. Show that A is invertible if and only if both B and C are invertible.

(=) Assume A-1 exists. Let
$$A^{-1} = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$$
 and we know $AA^{-1} = I$.

(\$\frac{1}{2} \text{ or } \frac{1}{2} \text{ or } \te

$$T(32) = (12-6, -3+2) = (6,-1)$$

$$T(3,-1) = (12+3,-3-1) = (15,-4)$$

$$T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 4x_1 - 3x_2 \\ -x_1 + x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix} + \begin{bmatrix} x_1 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

(w)
$$A = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix}$$
 \Rightarrow $A^{-1} = \frac{1}{4-3} \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$

$$A^{-1} \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{etc.} \quad \text{well} \quad \text{undo}$$

$$A^{-1} \begin{bmatrix} 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1$$

transformed quadrilateral by A-1, and get back to original pts.

#8)
$$\begin{bmatrix} 3+5c & 3b-5 \\ 1+2c & b-2 \end{bmatrix} = \begin{bmatrix} 3+b & 5+2b \\ 3c-1 & 5c-2 \end{bmatrix}$$

(3)
$$1+2c=3c-1$$

 $-c=-2$
 $10-2=5c-2$
 $10-2=5(2)-2)$

$$\Rightarrow \beta = \begin{bmatrix} 1 & 10 \\ 2 & -1 \end{bmatrix}$$

#9)

$$\begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \begin{bmatrix} X & Y & 2 \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}$$

$$A \times I$$

$$A \times I$$

$$A \times A = 0$$

$$A2+B = 0$$
 $A2 = -B$
 $2 = -A^{-1}B$

we had to assume Ais square and A-1

Ossists