INTRODUCTION TO POLYNOMIAL CALCULUS

PROBLEMS

1. Straight Lines

In problems (1) through (6) find the slope of the line containing the indicated two points.

- M= 1 (1) (0,1) and (1,2)
- m=2 (2) (2,3) and (4,7)
- (3) (1,1) and (3,2)
- (4) (1,4) and (3,2)
- M= 1/2 M= -1 M= -2/5 (5) (-2,3) and (3,1)
- (6) (-2,0) and (0,2)M=1

In problems (7) through (12) find the equation of the line with the indicated slope and passing through the indicated point.

- (7) slope 2 and point (0,0) y = 2x(8) slope 5 and point (1,2) y = 5x-3(9) slope -3 and point (2,-1) y = -3x+5(10) slope $\frac{1}{2}$ and point (1,1) $y = \frac{1}{2}x + \frac{1}{2}$ (11) slope $-\frac{2}{3}$ and point (0,5) $y = -\frac{2}{3}x + 5$ (12) slope 7 and point (-2,0) y = 7x+1

- (13) Find the equation of the line with slope 3 and y-intercept 1 $y = 3 \times 4$ (14) Find the equation of the line with slope $\frac{4}{3}$ and y-intercept 2 $y = \frac{4}{3} \times +2$ (15) Find the slope and y-intercept for the line with equation 6x 2y = 4 m = 3; (0, -2) (16) Find the slope and y-intercept for the line with equation 2x + 5y = 3 $m = \frac{2}{3}$; (0, 3/5)
- (17) Find the equation of the line which passes through (1,1) and is parallel to the line
- y = 3x-2 y = 3x + 2.
- (18) Find the equation of the line which passes through (2,-1) and is parallel to the line which passes through (2,0) and (3,2).

 (19) Find the equation of the line which passes through (1,0) and is perpendicular to
- the line y = 3x + 2(20) Find the equation of the line which bisects the line segment from (0,0) to (2,4) at a right angle. at a right angle.
- (21) Find the equation of the line which passes through (0,1) and is perpendicular to the line x = 3. y = 1. (22) Find the equation of the line which passes through (2,0) and is perpendicular to
- X= 2 the line y = 1.
- (23) If a perpendicular line is drawn from the point (1,1) to the line 2y x = 4, at what point does it meet this line? What is the distance from the point (1,1) to the line 2y - x = 4.
- (24) What is the distance from the point (0,1) to the line y = 2x 3?
- (25) What is the distance from the line y = 2x to the parallel line y = 2x + 3?

2. Slope of a Curve

In problems 1 - 8, you are to find the slope of the curve y = f(x) at the point where x has the indicated value by calculating $\frac{f(x+h)-f(x)}{h}$ and determining what number it approaches as h approaches 0.

- (A) 3 (1) f(x) = 3x + 2, x = 1
- (2) $f(x) = x^2, \quad x = 0$ (2) 0
- (3) $f(x) = x^2$, x = 2(4) $f(x) = x^2 3$, x = 1(3) H

- (5) $f(x) = x^2 + 2x 1$, x = 0 (5) 2-(6) $f(x) = 3x^2 2$, x = 1 (6) $f(x) = 3x^2 2$
- (7) $f(x) = x^3, x = 1$ (7)3
- (8) $f(x) = x^3, \quad x = 0$ (8)0

In problems 9 - 14 you are to find f'(x) by calculating $\frac{f(x+h)-f(x)}{h}$ and determining what it approaches as h approaches 0.

- (9) f'(x)=1 $(9) \ f(x) = x$

- (9) f(x) = x(10) f(x) = 2x + 5(11) $f(x) = 3x^2$ (12) $f(x) = x^2 2x + 3$ (13) $f(x) = x^3$ (14) $f(x) = x^3 + x^2$ (15) f'(x) = 2x 2(17) f'(x) = 2x 2(18) $f'(x) = 3x^2$ (19) $f'(x) = 3x^2 + 2x$

3. Derivative of a Polynomial

- (1) 9x 49 (1) Find the derivative of x^9
- (2) Find the derivative of $2x^{50}$
- (3) 3 (3) Find the derivative of 3x - 6
- (4) Find the derivative of $x^3 2x + 4$ (4) $3 \times^2 1$ (5) Find the derivative of $2x^4 + x^3 - 5x^2 + x + 2$ (5) $8x^3 + 3x^2 - 10x + 1$
- (c) 11x 12-18x8+15 (6) Find the derivative of $x^{11} - 2x^9 + 15x$
- (7) Find the slope of the curve $y = x^3$ at the point (1,1) (7) m = 3
- (8) M=0 (8) Find the slope of the curve $y = x^2$ at the point (0,0)
- (9) Find the slope of the curve $y = x^3 x^2$ at the point (1,0) (9) M=1
- (10) Find the slope of the curve $y = x^4 2x^3 + 5x + 3$ at the point where x = -1 (0) M = -5
- (11) Find the slope of the curve $y = 2x^{50} 50x^2$ at the point where x = 1
- (12) For what values of x does the curve $y = x^2 2x + 3$ have positive slope? Negative (12) pos: X71; reg: XC1; Zero: slope? Zero slope?
- (13) If a ball is thrown straight up in such a way that its height t seconds later is

$$s(t) = -16t^2 + 32t + 6$$

find the velocity of the ball at t seconds after it is thrown. At what time t does the ball reach its maximum height (hint: the velocity will be positive before this time and negative after it). How high does the ball get? (13) V(+) = -32++37 ; t= 15ec;

(14) In the previous problem, what is the acceleration of the ball at any time t? 5 = 22 ft.

4. Antiderivatives of Polynomials

(1) Find
$$\int (2x-3) dx = \chi^2 - 3 \times + C$$

(2) Find $\int (3x^2 - 4x + 5) dx = \chi^3 - 2 \times + 5 \times + C$
(3) Find $\int (x^5 + 2x^3 + 1) dx = \frac{1}{6} \chi^6 + \frac{1}{2} \chi^7 + \chi + C$
(4) Find $\int (10x^9 - 8x) dx = \chi^{10} - 4 \chi^2 + C$

- (6) Find the antiderivative of $x^2 5$ that has value 2 when x = 0.

 (7) Find the antiderivative of $2x^3$ that has the value 1 when x = 1.

 (8) Find the antiderivative of $x^3 x$ that has the value 1 when x = 1.

- (9) If a ball is thrown straight up with initial velocity of 64 ft/sec, what will its velocity
- be after t seconds? At what time t will it achieve its maximum height? v = -32t + 64(10) If the ball in the last problem was thrown from an initial height of 6 feet, what t=2 see will its height be after t seconds? What is the maximum height it achieves?

5. Definite integrals

- 1. Find $\int_1^5 (x^2 2x + 1) dx$.
- 2. Find $\int_0^2 (x^3 + 2) dx$.
- 3. Find $\int_0^1 (x^4 x^5) dx$.
- 4. Find $\int_0^1 (x^n x^{n+1}) dx$, for any $n \ge 0$.
- 5. Find the area under the curve $y = x^2 + 5x$ from x = 3 to x = 4.
- 6. Find the definite integral of $y = x^{10} x^9$ from x = 1 to x = 3.
- 7. A particle travels along a horizontal line so that its velocity at time t is v(t) = 0 $2t+3t^2+1$ feet per second. Suppose that at time t=1 the particle is at the origin. What is the location of the particle at time t = 3?