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1. Introduction

Let G0 be a connected semisimple Lie group with finite center. Discrete series
representations of G0 are the irreducible unitary representations of G0 with square
integrable matrix coefficients. They appear discretely in the decomposition of the
regular representation of G0 on L2(G0); i.e., their Plancherel measure is positive.
In his two seminal papers [9] and [11], Harish-Chandra determined the necessary
and sufficient condition for G0 to admit discrete series representations. Let K0 be
a maximal compact subgroup of G0. Then G0 has discrete series if and only if
the ranks of G0 and K0 are equal. In this situation, a maximal torus T0 in K0 is
a (compact) Cartan subgroup in G0. A discrete series representation has to have
a regular real infinitesimal character. Moreover, the (distribution) character of a
discrete series representation must be a tempered invariant eigendistribution on G0.

In the first paper [9], Harish-Chandra establishes that every tempered invariant
eigendistribution with regular real infinitesimal character is completely determined
by its restriction to the elliptic set, i.e., the set of conjugacy classes represented by
regular elements of T0. He also describes all of these restrictions explicitly. While
the first statement is a straightforward application of Harish-Chandra “matching
conditions”, the exhaustion part in the second statement is technically difficult.

In the second paper [11], Harish-Chandra relates the above invariant eigendis-
tributions to the characters of discrete series representations, by giving explicit
formulas for the restriction of latter to the elliptic set in G0. In particular, the
characters of discrete series span the space of tempered invariant eigendistributions
with regular real infinitesimal character. This part of the proof is intertwined with
the proof of the “discrete part” of the Plancherel formula on G0 and an analogue
of the orthogonality relations for discrete series characters (compare [18]). The
flowchart of the argument is conceptually very similar to Hermann Weyl’s proof
of the character formula for irreducible finite-dimensional representations of con-
nected compact Lie groups (though the adaptation to the discrete series requires
new ideas and introduces tremendous technical complications).

In [15], a different approach to discrete series is introduced. It is based on the
localization theory of Harish-Chandra modules developed by Alexander Beilinson
and Joseph Bernstein [2], [3]. Let g be the complexified Lie algebra of G0 and X the
flag variety of g. Let K be the complexification of K0. Under certain positivity con-
ditions, they establish the equivalence of categories of Harish-Chandra sheaves (i.e.,
K-equivariant coherent D-modules) on X with the categories of Harish-Chandra
modules of the pair (g,K). Using the connection of n-homology (for n corresponding
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the nilpotent subgroup in Iwasawa decomposition of G0) with leading exponents in
the Harish-Chandra expansion of matrix coefficients [23, II.2, Thm. 1], [6, 8.24], one
establishes the relation between the support of the localizations of an irreducible
Harish-Chandra module and asymptotics of matrix coefficients. This result gives a
geometric proof of the existence criterion for discrete series. Moreover, it establishes
that the discrete series are global sections of (irreducible) standard Harish-Chandra
sheaves I(Q, τ) attached to closed K-orbits Q in the flag variety X and irreducible
K-equivariant connections τ on Q compatible with a real regular infinitesimal char-
acter. A simple counting argument shows that Harish-Chandra’s list of irreducible
characters of discrete series agrees with the geometric construction via D-modules,
but the explicit connection is not immediately clear.

In this paper we make this connection explicit. Our argument is based on a
simple geometric formula for the n-homology of modules over the enveloping algebra
U(g) for a regular infinitesimal character proved in Theorem 2.6. Let x be a point
in the flag variety, bx the corresponding Borel subalgebra of g and nx = [bx, bx]. Let
Nx be the unipotent subgroup corresponding to nx; its orbits in X define a Bruhat
stratification of X. Roughly speaking, the weight subspaces of nx-homology of a
Harish-Chandra module are determined by the (derived) direct images to a point
of restrictions of the corresponding Harish-Chandra sheaf to each Bruhat cell. In
Section 4, we use this formula to reprove a result of Wilfried Schmid which describes
the n-homology of the discrete series representations Γ(X, I(Q, τ)) with respect to
nilpotent radical n of a Borel subalgebra b which is stable under the action of Cartan
involution attached to K0. Using a special case of the Osborne conjecture [17], this
gives the formula for the character of these representations on the elliptic set in
G0. This proof is formally similar to the deduction of Weyl character formula
from the the Kostant’s formula for n-homology of irreducible finite-dimensional
representations of connected compact Lie groups. Establishing the formula for the
character of Γ(X, I(Q, τ)) makes the map from geometric parameters of discrete
series into Harish-Chandra parameters completely explicit. As a consequence it
also implies that the space of all tempered invariant eigendistributions on G0 with
a given regular infinitesimal character is spanned by the characters of discrete series;
what immediately implies the most difficult technical result in [9] (the existence of
tempered invariant eigendistributions Θλ in [9, Thm. 3]).

The machinery established above allows us to prove some other results on discrete
series by geometric methods. As an illustration, we explain in Section 6 how a
natural K-equivariant filtration of standard Harish-Chandra sheaves I(Q, τ) leads
to a very simple proof of Blattner’s conjecture [16].

Our arguments can be extended to the Harish-Chandra class of reductive Lie
groups as explained in an appendix to [14] and [12]. To simplify the notation and
reduce a number of technical issues, we leave this as an exercise to an interested
reader.

During two weeks in October 2023, one of us (D. M.) visited at Harish-Chandra
Research Institute in Prayagraj, UP, India, during Centennial Celebration of the
birth of Harish-Chandra. In the first week, during the workshop “Representation
theory of real Lie groups and automorphic forms”, he gave a series of lectures on
the modern view of basic results of Harish-Chandra on representation theory of
reductive Lie groups. During the lectures and in inspiring discussions after them,
the audience asked a lot of questions about the relation between the original results
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of Harish-Chandra and their “modern” interpretation. The present paper is an
attempt to answer some of these questions related to discrete series in a coherent
fashion. We thank the organizers for their hospitality and inspiring atmosphere
during the workshop.

The first draft of the paper was written while the authors were visiting Sydney
Mathematical Research Institute at the University of Sydney. We thank them for
their hospitality and stimulating atmosphere.

2. A geometric formula for n-homology

2.1. Geometric preliminaries. We start with recalling some basic geometric
setup (one can consult [22, Ch. II] for more details). Let g be a complex semisimple
Lie algebra and X its flag variety. For any x ∈ X, we denote by bx the correspond-
ing Borel subalgebra. Denote by B the tautological vector subbundle of the trivial
bundle X × g over X with fiber bx over x ∈ X. For any x ∈ X, we denote by
nx = [bx, bx]. Let N be the vector subbundle of B with fibers nx, x ∈ X. Then the
quotient vector bundle H = B/N is trivial. We denote by h the space of its global
sections. We call h the (abstract) Cartan algebra of g. Let c be a Cartan subalgebra
of g contained in bx. Then there is a canonical linear isomorphism of c with h. The
dual isomorphism of h∗ with c∗ we call the specialization at x ∈ X.

Let U(g) be the enveloping algebra of g and Z(g) its center. We have the
canonical Harish-Chandra homomorphism γ : Z(g) −→ U(h) [5, Ch. VII, §6, no. 4],
defined in the following way. For any x ∈ X, Z(g) is contained in the sum of the
subalgebra U(bx) and the right ideal nxU(g) of U(g). Hence, we have the natural
projection of Z(g) into U(bx)/(nxU(g) ∩ U(bx)) = U(bx)/nxU(bx) = U(c). Its
composition with the natural isomorphism of U(c) with U(h) is independent of x
and, by definition, equal to γ.

The specialization h∗ −→ c∗ identifies the roots of the pair (g, c) with a reduced
root system Σ in h∗ which we call the root system of g. We choose a positive set of
roots Σ+ in Σ such that, for any x ∈ X, the root subspaces corresponding to the
specialization of these roots span nx. Let Π be the set of simple roots determined
by Σ+. Denote by W the Weyl group of Σ and S the set of reflections with respect
to simple roots in Π. We denote by ℓ : W −→ Z+ the corresponding length function
on W . Let ρ be the half sum of roots in Σ+.

Since h is abelian, the enveloping algebra U(h) is equal to the symmetric algebra
S(h) of h, which is isomorphic to the algebra of all polynomials on h∗. Therefore,
for any λ ∈ h∗, the composition φλ of the homomorphism γ : Z(g) −→ U(h) with
the evaluation at λ+ρ is a character of Z(g). By a classic result of Harish-Chandra
[5, Ch. VIII, §2, no. 5, Cor. 1 of Thm. 2], kerφλ = kerφµ if and only if there
exists w ∈ W such that λ = wµ. This map establishes a bijection of W -orbits
in h∗ and maximal ideals in Z(g). Let θ = Wλ ⊂ h∗ be a W -orbit, denote by
Jθ = kerφλ+ρ the corresponding maximal ideal in Z(g). We denote by Uθ the
quotient U(g)/JθU(g).

2.2. Localization of Uθ-modules. For any λ ∈ h∗, Beilinson and Bernstein [2]
constructed a twisted sheaf of differential operators Dλ on the flag variety X with a
natural algebra homomorphism U(g) −→ Γ(X,Dλ). Moreover, this homomorphism
factors through Uθ and the induced map Uθ −→ Γ(X, Dλ) is an isomorphism [22,
Ch. II, Thm. 6.1.(i)].
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Denote by M(Uθ) the category of Uθ-modules, and by M(Dλ) the category of
(quasicoherent) Dλ-modules on X. One define the functors

M(Dλ)

Γ(X,−)
--M(Uθ)

∆λ

mm

where Γ(X,−) is the functor of global sections and

∆λ(V ) = Dλ ⊗Uθ
V

for a module V in M(Uθ). The functor ∆λ is called the localization at λ. Clearly,
the functor ∆λ is a left adjoint of Γ(X,−).

Let Σˇ be the dual root system of Σ. Denote by αˇ the dual root of α. We say
that λ ∈ h∗ is regular if α (̌λ) ̸= 0 for any α ∈ Σ.

Assume that the orbit θ consists of regular elements of h∗. Then Uθ has finite
cohomological dimension [22, Ch. III, Thm. 1.4]. Therefore there exists the left
derived functor L∆λ between bounded derived categories Db(Dλ) of M(Dλ) and
Db(Uθ) of M(Uθ). This functor is a left adjoint of the functor RΓ from Db(Dλ)
into Db(Uθ). Beilinson and Bernstein proved the following result [3].

Theorem 2.1. Let θ be a regular W -orbit in h∗ and λ ∈ θ. Then the functors

Db(Dλ)
RΓ ,, Db(Uθ)
L∆λ

mm

are mutually quasiinverse equivalences of categories.

We say that λ ∈ h∗ is antidominant if α (̌λ) /∈ {1, 2, . . .} for all α ∈ Σ+. For
antidominant λ, the above theorem is a direct consequence of the following result
[2].

Theorem 2.2. Let λ ∈ h∗ be antidominant and regular. Then the functors

M(Dλ)

Γ(X,−)
--M(Uθ)

∆λ

mm

are mutually quasi-inverse equivalences of categories.

One can view this result as a vast generalization of Borel-Weil theorem.

2.3. Intertwining functors. Let λ ∈ h∗ be regular. For any w ∈ W , the functor
L∆wλ ◦RΓ : Db(Dλ) −→ Db(Dwλ) is an equivalence of categories by Theorem 2.1.

In [3], Beilinson and Bernstein describe this functor geometrically under some
additional conditions. We sketch their construction here (compare [22, Ch. III,
Sec. 3]). Let Zw be the variety of pairs of Borel subalgebras in relative position w
in X × X. Then Zw, w ∈ W , are the orbits for the diagonal action of the group
Int(g) of inner automorphisms of g on X × X. Denote by p1 : Zw −→ X and
p2 : Zw −→ X the restrictions of the projections to the first, resp. second factor in
X × X. Then p1 and p2 are locally trivial fibrations with fibers which are affine
spaces of dimension ℓ(w) [22, Ch. III, 3.2]. In particular, dimZw = ℓ(w) + dimX
for any w ∈ W .

The twisted sheaf of differential operators Dλ on X determines a compatible
twisted sheaf Dpi

λ on Zw for i = 1, 2. Let p+2 : M(Dλ) −→ M(Dp2

λ ) be the D-module
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inverse image functor. This functor is exact and therefore determines trivially the
functor between corresponding derived categories of D-modules. Analogously, we
have the direct image functor p1,+ : Db(Dp1

wλ) −→ Db(Dwλ). Since the twisted
sheaves of differential operators Dp2

λ and Dp1

wλ differ by a twist by the invertible
OZw

-module Tw = p∗1(O(ρ− wρ)), we can define the functor

V · −→ p1+(Tw ⊗OZw
p+2 (V ·))

from Db(Dλ) into Db(Dwλ).
There exists a right exact functor Iw : M(Dλ) −→ M(Dwλ) such that its left

derived functor LIw : Db(Dλ) −→ Db(Dwλ) is the functor above

LIw(V ·) = p1+(Tw ⊗OZw
p+2 (V ·))

for any V · in Db(Dλ). The functor LIw is the intertwining functor corresponding
to w ∈ W .

For any subset Θ of Σ+, we say that λ ∈ h∗ is Θ-antidominant if α (̌λ) is not a
strictly positive integer for any α ∈ Θ. Put

Σ+
w = {α ∈ Σ+ | wα ∈ −Σ+}

for w ∈ W . The following result is what we alluded to above.

Theorem 2.3. Let w ∈ W and let λ ∈ h∗ be Σ+
w-antidominant and regular. Then

the functors LIw ◦ L∆λ and L∆wλ are isomorphic.

In particular, we have the following.

Corollary 2.4. Let w ∈ W and λ ∈ h∗ be regular antidominant. Then the functors
L∆wλ and LIw ◦∆λ are isomorphic.

Hence, the localization ∆λ(V ) of a Uθ-module V , for a regular antidominant
λ ∈ θ, determines all (derived) localizations Lp∆wλ(V ), p ∈ Z+.

2.4. n-homology. Let θ be a W -orbit consisting of regular elements. Let V be an
object in M(Uθ).

Let x ∈ X. As before, we pick a Cartan subalgebra c of g contained in bx.
The Lie algebra homology groups H·(nx, V ) are c-modules. Via the dual of the
specialization map, we can view them as h-modules.

By a result of Casselman and Osborne [7], [24], (compare [22, Ch. III, 2.4]), we
know that the Lie algebra homology groups H·(nx, V ) are semisimple h-modules. If
we denote by Hp(nx, V )(µ) the µ-eigenspace of Hp(nx, V ) for any µ ∈ h∗, we have

Hp(nx, V ) =
⊕
w∈W

Hp(nx, V )(wλ+ρ)

for any p ∈ Z+.
Therefore, to calculate Lie algebra homology H·(nx, V ) we have to calculate

H·(nx, V )(wλ+ρ) for all w ∈ W . In this section, we prove a formula for this calcu-
lation (Theorem 2.6 below).

For an abelian category A we denote by D : A −→ Db(A) the functor which
sends an object A of A into the complex D(A) which is A in degree 0 and 0 in
other degrees.

Let OX be the sheaf of regular functions on X and OX,x the stalk of OX at
x ∈ X. Let V be an OX -module. For x ∈ X, we denote by Vx the stalk of V at x.
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Also, we denote by mx the maximal ideal in OX,x consisting of germs vanishing at
x. The geometric fiber Tx(V) of V is OX,x/mx ⊗OX,x

Vx.
First, we observe that the above components of nx-homology are related to de-

rived geometric fibers of derived localizations. We have the following formula

Hp(nx, V )(µ+ρ) = H−p(LTx(L∆µ(D(V ))))

for any µ ∈ θ and p ∈ Z+ [22, Ch. III, 2.6]. Combining this with Corollary 2.4, we
see that for regular antidominant λ,

Hp(nx, V )(wλ+ρ) = H−p(LTx(LIw(D(∆λ(V )))))

for any Uθ-module V .
Let ix : {x} −→ X be the canonical inclusion. Then the D-module inverse image

functor Li+x is equal to LTx.
It follows that

(LTx ◦ LIw)(V ·) = (Li+x ◦ LIw)(V ·) = (Li+x ◦ p1+)(Tw ⊗OZw
p+2 (V ·))

for any bounded complex V · in Db(Dλ).
Moreover, Y = p−1

1 ({x}) is a closed ℓ(w)-dimensional affine subspace in Zw. The
codimension of Y in Zw is dimX.

Denote by j : Y −→ Zw the natural inclusion. Let qi : Y −→ X the restriction
of pi : Zw −→ X to Y for i = 1, 2. Then we have the commutative diagram

Y
j−−−−→ Zw

q1

y yp1

{x} −−−−→
ix

X

.

Hence, Y = {x} ×X Zw. Then, by base change ([4, Ch. 6, 8.4], [20, Ch. IV,
Thm. 10.2]), we have

Li+x ◦ p1+ = q1+ ◦ Lj+.
This in turn implies that

(LTx ◦ LIw)(V ·) = (q1+ ◦ Lj+)(Tw ⊗OZw
p+2 (V ·)) = q1+(j

∗(Tw)⊗OY
Lj+(p+2 (V ·)))

= q1+(j
∗(Tw)⊗OY

L(p2 ◦ j)+(V ·))) = q1+(j
∗(Tw)⊗OY

Lq+2 (V ·)))

since p+2 is an exact functor.

Lemma 2.5. We have

j∗(Tw) = OY .

Proof. Let Nx be the unipotent subgroup of Int(g) corresponding to nx. Clearly,
Y is an Nx-orbit in Zw under the restriction of the action of Int(g) on X × X.
Also, j∗(Tw) is an Nx-equivariant invertible OY -module. Since Nx is unipotent, it
follows that it is isomorphic to OY . □

Hence we finally get

(LTx ◦ LIw)(V ·) = q1+(Lq
+
2 (V ·))).

Let Bx be the Borel subgroup of Int(g) corresponding to x. Then Bx acts on
X and its orbits are the Bruhat cells C(w), w ∈ W . Let iw : C(w) −→ X be the
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natural inclusion. Then the map k : y 7−→ (x, y) is an isomorphism of C(w) onto
Y . Moreover, we have q2 ◦ k = p2 ◦ j ◦ k = iw. It follows that

k+(Lq+2 (V ·))) = L(q2 ◦ k)+(V ·) = Li+w(V ·)

and

Lq+2 (V ·) = k+(Li
+
w(V ·)).

Hence

(LTx ◦ LIw)(V ·) = q1+(k+(Li
+
w(V ·))) = (q1 ◦ k)+(Li+w(V ·)).

The map q1 ◦ k is a map of C(w) into the point x. If we denote this map by
πw : C(w) −→ {pt}, we finally get the following formula

(LTx ◦ LIw)(V ·) = πw,+(Li
+
w(V ·)).

Putting this together with the first part of the calculation, we get the following
result.

Theorem 2.6. Let λ ∈ θ be antidominant and regular. Then for any x ∈ X,
w ∈ W , and Uθ-module V ,

Hp(nx, V )(wλ+ρ) = H−p(πw,+(Li
+
w(D(∆λ(V )))))

for any p ∈ Z+.

3. Closed K-orbits in the equal rank case

Let G0 be a connected semisimple Lie group with finite center. Let K0 be a
maximal compact subgroup of G0. In this section we assume we are in equal rank
case; i.e., that rankG0 = rankK0. Let T0 be a maximal torus in K0. Then T0 is
a compact Cartan subgroup of G0. Let g, k and t be the complexified Lie algebras
of G0, K0 and T0 respectively. Denote by K the complexification of K0. Then
the connected algebraic group K acts naturally on the flag variety X of g. In this
section we describe the structure of closed K-orbits in X, and their stratification
given by a Bruhat stratification of X.

3.1. Description of closed orbits. Denote by σ the Cartan involution of g de-
termined by k. Then σ fixes k. Therefore, it also fixes t. Let R be the root system
in t∗ of the pair (g, t). Let α ∈ R, and ξ in the root subspace gα. Then for any
η ∈ t, we have

α(η)σ(ξ) = σ(α(η)ξ) = σ([η, ξ]) = [η, σ(ξ)].

Hence σ(ξ) is also in gα. In particular, it has to be proportional to ξ. Hence, σ
is either 1 or −1 on gα. A root α ∈ R is compact (imaginary) in the first case,
and noncompact (imaginary) in the second case. Denote by Rc ⊂ R the set of all
compact roots. Since

k = t⊕
⊕
α∈Rc

gα,

the set Rc is naturally identified with the root system of (k, t). The complement
R−Rc = Rn is the set of all noncompact roots.

As it is well known, the group K acts on X with finitely many orbits (see, for
example [22, Ch. IV, Prop. 2.2]). Since we want to describe the K-orbits in the flag
variety X of g, without any loss of generality we can assume that K is a subgroup
of the group Int(g).
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Let Ω be the subvariety of all σ-stable Borel subalgebras in X. Clearly, Ω is a
union of K-orbits. More precisely, by [15, Lem. 6.16], Ω is the union of all closed
K-orbits in X. Hence, the closed K-orbits are the connected components of Ω.

Fix a closed K-orbit Q in X and a point x ∈ Q. Let Sx be the stabilizer of x
in K. Its Lie algebra sx is equal to k ∩ bx. Hence, it is a solvable Lie algebra. On
the other hand, since Q is a closed K-orbit, Q is a projective variety. Hence Sx

must be a parabolic subgroup of K. It follows that Sx is a Borel subgroup of K
and sx = k∩ bx is a Borel subalgebra of k. Therefore the orbit map factors through
the flag variety XK of k. The induced map XK −→ Q is an isomorphism which is
the inverse of the map Q ∋ y 7−→ k ∩ by ∈ XK .

We have proved the following result.

Theorem 3.1. (i) The variety Ω is the disjoint union of all closed K-orbits
in the flag variety X.

(ii) Let Q be a closed K-orbit in X. Then the map bx 7−→ bx ∩ k defines a
K-equivariant isomorphism of Q with the flag variety XK of k.

Now we remark that any closed K-orbit Q contains a point x such that bx
contains the Cartan subalgebra t. Let y be a point in Q. Then by ∩ k is a Borel
subalgebra of k. Let c be a Cartan subalgebra of k contained in by. Then, since all
Cartan subalgebras of k are K-conjugate, c is K-conjugate of t. It follows that a
K-conjugate bx of by contains t and x ∈ Q.

Let b be a Borel subalgebra of k containing t. Then any Borel subalgebra of g
containing b contains the Cartan subalgebra t and it is σ-stable. Therefore, it is
in Ω. Moreover, by Theorem 3.1, the number of closed K-orbits is equal to the
cardinality of the set {x ∈ X | bx ∩ k = b}. This number is equal to the number
of sets of positive roots R+ in R which contain a fixed set of positive roots R+

c in
Rc. It follows that it is equal to the number of Weyl chambers of R contained in
a fixed Weyl chamber of Rc. Let WK be the Weyl group of k. By specialization at
x, it can be identified with a subgroup of W . This immediately implies that it is
equal to Card(W/WK) = Card(W )/Card(WK).

Proposition 3.2. The number of closed K-orbits in X is equal to Card(W/WK).

3.2. A stratification of closed K-orbits. Let b be a Borel subalgebra containing
t. Then it is σ-stable and therefore determines a point in a closed K-orbit in X.
Moreover, b∩k is a Borel subalgebra of k containing t. We consider the specialization
h∗ −→ t∗ determined by b. This defines an isomorphism of W with the Weyl group
of the root system R in t∗. Moreover, it identifies WK with a subgroup of W
generated by reflections with respect compact roots. The set of positive roots Σ+

determines a set of compact positive roots. This set determines a set of simple
roots in the root system of compact roots. Corresponding reflections generate WK

and define the length function ℓK on WK .
Let B be the Borel subgroup of Int(g) corresponding to b. Denote by C(w) the

B-orbit in X corresponding the element w ∈ W . Let BK be the Borel subgroup of
K corresponding to b ∩ k. Then BK naturally maps into B.

We denote by CK(w), w ∈ WK , the Bruhat cells in the flag variety XK of
k corresponding to the action of BK . For any orbit Q, under the isomorphism
Q ∋ bx 7−→ bx ∩ k ∈ XK , they correspond to the BK-orbits DQ(w), w ∈ WK ,
in Q. Therefore, Q is the union of Card(WK) BK-orbits. By Theorem 3.1.(i)
and Theorem 3.2, we see that Ω is the union of Card(W ) BK-orbits. By the
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construction, the Borel subalgebras of g containing t represent all Bruhat cells
C(w), w ∈ W . Therefore, the intersection Ω ∩ C(w) is nonempty for any w ∈ W .
Moreover, for any w ∈ W , the intersection Ω∩C(w) is BK-invariant and therefore
a union of BK-orbits. This in turn implies that Ω ∩ C(w) is a BK-orbit for any
w ∈ W .

Let Q be a closed K-orbit. By the above discussion and Theorem 3.1, we see
that there exists a unique point x ∈ Q which is fixed by BK . Therefore, there exist
a unique u ∈ W such that Q ∩ C(u) = {x}. We summarize this discussion in the
following lemma.

Lemma 3.3. Let Q be a closed K-orbit in X.

(i) There is a unique u ∈ W such that Q ∩ C(u) is a point.
(ii) The orbit Q intersects Bruhat cell C(v), v ∈ W , if and only if v = wu for

some w ∈ WK .
(iii) The variety Q∩C(wu) is a BK-orbit in Q for any w ∈ WK . More precisely,

we have DQ(w) = Q ∩ C(wu) for all w ∈ WK .
(iv) We have dimDQ(w) = ℓK(w).

4. Calculation of n-homology for discrete series

Using Theorem 2.6, we can prove a result of Wilfried Schmid on n-homology of
discrete series representations [25]. To illustrate the simplicity of our argument,
we first treat the special case of irreducible finite-dimensional representations of
a connected compact semisimple Lie groups due to Bertram Kostant [19]. The
method of the proof in both cases is essentially identical.

4.1. Kostant’s theorem. Let b be a Borel subalgebra of g. Let n be the nilpotent
radical of b. Let F be an irreducible finite-dimensional representation with lowest
weight λ. Then, by the Borel-Weil theorem, we have F = Γ(X,O(λ)) [22, Ch. II,
Thm. 5.1]. Moreover, O(λ) is a Dλ−ρ-module. As we remarked before, since λ− ρ
is regular, we have

Hp(n, F ) =
⊕
w∈W

Hp(n, F )(w(λ−ρ)+ρ).

Moreover, we have ∆λ−ρ(F ) = O(λ). Therefore, it follows that Li+w(D(O(λ))) =
D(OC(w)). This implies that

Hp(n, F )(w(λ−ρ)+ρ) = H−p(πw,+(D(OC(w)))).

Lemma 4.1. We have

πw,+(D(OC(w))) = D(C)[ℓ(w)].

Proof. This follows from [20, Ch. I, Thm. 11.2 and Lem. 11.4]. □

This implies thatHp(n, F )(w(λ−ρ)+ρ) = 0 if p ̸= ℓ(w) andHℓ(w)(n, F )(w(λ−ρ)+ρ) =
C.

Putting this all together, we get

Hp(n, F ) =
⊕

w∈W (p)

Cw(λ−ρ)+ρ

where W (p) is the subset of W consisting of all elements w such that ℓ(w) = p. We
have proven the following result.
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Theorem 4.2 (Kostant). Let F be an irreducible finite-dimensional representation
with lowest weight λ. Then

Hp(n, F ) =
⊕

w∈W (p)

Cw(λ−ρ)+ρ

for p ∈ Z+.

This is Kostant’s result mentioned above.

4.2. Schmid’s result. Now we discuss a generalization of Kostant’s result corre-
sponding to the n-homology of discrete series representations. This result has been
proved by Schmid [25, Thm. 4.1].

We first recall the geometric version of the classification of discrete series rep-
resentations of a connected semisimple Lie group G0 with finite center [15]. First,
the discrete series exist if and only if the rank of G0 is equal to the rank K0. In this
situation, we follow the notation from the introduction to the preceding section.

Let V the Harish-Chandra module of a discrete series representation of G0. As-
sume that V is in M(Uθ). Then θ is a regular W -orbit of a unique real strongly
antidominant λ ∈ h∗; i.e., α (̌λ) < 0 for any α in Σ+ (see [15, Thm. 12.4]). More-
over, there exist a unique closed K-orbit Q and a unique irreducible K-equivariant
connection on Q compatible with λ+ρ such that V = Γ(X, I(Q, τ)) [15, Thm. 12.5].

Let b be a σ-stable Borel subalgebra of g. Let n = [b, b].
Denote by iQ : Q −→ X the natural immersion of Q, and, for any v ∈ W ,

by iv : C(v) −→ X the natural immersion of the Bruhat cell (with respect to b)
C(v) into X. Since Q is the support of I(Q, τ), the restriction of I(Q, τ) to the
complement of Q is 0. Therefore Li+v (I(Q, τ)) = 0 for any v such that C(v)∩Q = ∅.
Hence, in this case, Hp(n,Γ(X, I(Q, τ)))(vλ+ρ) = 0 for p ∈ Z+, by Theorem 2.6.

Let v ∈ W be such that Q∩C(v) ̸= ∅. As we explained in Lemma 3.3, there exists
a unique u ∈ W such that Q ∩ C(u) is a point. Then v = wu, for some w ∈ WK ,
and DQ(w) is a smooth subvariety of Q. Denote by a : DQ(w) −→ C(wu) and
b : DQ(w) −→ Q the natural immersions. Then we have the commutative diagram

DQ(w)
a−−−−→ C(wu)

b

y yiwu

Q −−−−→
iQ

X

,

i.e., DQ(w) is the fiber product Q ⊗X C(wu). By base change [20, Ch. IV,
Thm. 10.2], we have

Ri!wu ◦ iQ,+ = a+ ◦Rb!.

Moreover, we have Li+wu = Ri!wu[dimX − dimC(wu)] and Lb+ = Rb![dimQ −
dimDQ(w)]. Therefore, we have

Li+wu(D(I(Q, τ))) = Li+wu(D(iQ,+(τ))) = Li+wu(iQ,+(D(τ)))

= Ri!wu(iQ,+(D(τ)))[dimX − ℓ(wu)]

= a+(Rb!(D(τ)))[dimX − ℓ(wu)]

= a+(Lb
+(D(τ)))[dimX − ℓ(wu)][− dimQ+ dimDQ(w)]

= a+(Lb
+(D(τ)))[dimX − dimXK − ℓ(wu) + ℓK(w)].
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Since τ is a connection on Q, we have

Li+wu(D(I(Q, τ))) = a+(D(b+(τ)))[dimX − dimXK − ℓ(wu) + ℓK(w)].

Denote by c the map of DQ(w) into a point {pt}. Using Lemma 4.1 this finally
leads to

πw,+(Li
+
wu(D(I(Q, τ)))) = πw,+(a+(D(b+(τ)))[dimX − dimXK − ℓ(wu) + ℓK(w)]

= (πw ◦ a)+(D(ODQ(w)))[dimX − dimXK − ℓ(wu) + ℓK(w)]

= c+(D(ODQ(w)))[dimX − dimXK − ℓ(wu) + ℓK(w)]

= D(C)[dimX − dimXK − ℓ(wu) + ℓK(w)][ℓK(w)]

= D(C)[dimX − dimXK − ℓ(wu) + 2ℓK(w)].

Finally, dimX is equal to the number of all positive roots; i.e., to half of the number
of all roots. Analogously, dimXK is equal to the half of the number of all compact
roots. Hence, the difference dimX − dimXK is equal to the half of the number of
all noncompact roots, i.e., 1

2 dim(g/k).
Applying again Theorem 2.6, we have

Hp(n,Γ(X, I(Q, τ)))(wuλ+ρ) = H−p(πw,+(Li
+
wu(D(I(Q, τ)))))

=

{
0 if p ̸= 1

2 dim(g/k)− ℓ(wu) + 2ℓK(w);

C if p = 1
2 dim(g/k)− ℓ(wu) + 2ℓK(w)

for any w ∈ WK .
This proves the following result.1

Theorem 4.3 (Schmid). Let V be a discrete series representation such that V =
Γ(X, I(Q, τ)).

Then, if v /∈ WKu,
Hp(n, V )(vλ+ρ) = 0,

for all p ∈ Z+. Moreover, for w ∈ WK , we have

Hp(n, V )(wuλ+ρ) =

{
0 if p ̸= 1

2 dim(g/k)− ℓ(wu) + 2ℓK(w);

C if p = 1
2 dim(g/k)− ℓ(wu) + 2ℓK(w).

4.3. Kostant’s result and BGG-resolution. In this section we interpret the cal-
culation of n-homology of finite-dimensional representations using BGG-resolution.
This gives us a more precise version of the result, we see that each cohomology class
corresponds to a Bruhat cell in X.

Let λ be an antidominant weight. Then, the Dλ−ρ-module O(λ) can be repre-
sented in Db(Dλ−ρ) by its Cousin resolution corresponding to the stratification of
X by Bruhat cells C(w) as explained in Appendix A.

Let C(w) be a Bruhat cell in X and iw : C(w) −→ X the natural inclusion. The
cell C(w) admits unique irreducible N -equivariant connection OC(w). Its direct
image I(w, λ− ρ) = iw,+(OC(w)) is a standard Dλ−ρ-module attached to C(w) [22,
Ch. V, Sec. 1].

The Cousin resolution (see Theorem A.3 in Appendix) is a complex C· such that

Cp =
⊕

w∈W (dimX−p)

I(w, λ− ρ)

1Clearly, if G0 is compact, this specializes to Kostant’s result.
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for any p ∈ Z+, with explicitly given differentials.
Clearly, there is a natural monomorphism from O(λ) into the standard Dλ−ρ-

module I(w0, λ − ρ) attached to the open Bruhat cell C(w0) (where w0 is the
longest element of the Weyl group W ). Therefore, there is a natural morphism ϵ
of D(O(λ)) into C· in Db(Dλ−ρ). Theorem A.3 says that ϵ is an isomorphism.

Let θ be the Weyl group orbit of λ − ρ. Since the functor Γ is exact for an-
tidominant λ, C · = Γ(X, C·) is isomorphic to D(F ) in Db(Uθ) where F is the
finite-dimensional U(g)-module with lowest weight λ; i.e., we get a resolution of F
by modules Cp, p ∈ Z+. By [22, Ch. V, 1.14], we know that

Cp =
⊕

w∈W (dimX−p)

I(w(λ− ρ))

for all p ∈ Z+. Here I(µ) are the duals of the Verma modules M(µ) in the category
of highest weight modules. This is the BGG-resolution of F . 2

By Theorem 2.6, we have

Hp(n, I(w(λ− ρ)))(v(λ−ρ)+ρ) = H−p(πv,+(Li
+
v (D(I(w, λ− ρ))))).

By base change,

Li+v (D(I(w, λ− ρ))) = 0

if v ̸= w. Hence, we have

Hp(n, I(w(λ− ρ)))(v(λ−ρ)+ρ) = 0

for all p ∈ Z+ if v ̸= w.
On the other hand, if v = w we have Li+w = Ri!w[dimX − ℓ(w)], and

Li+w(D(I(w, λ−ρ))) = Ri!w(D(I(w, λ−ρ)))[dimX−ℓ(w)] = D(OC(w))[dimX−ℓ(w)]

by Kashiwara’s equivalence of categories. By Lemma 4.1, this implies that

πw,+(Li
+
w(D(I(w, λ− ρ)))) = D(C)[dimX].

Hence, we conclude that

Hp(n, I(w(λ− ρ)))(w(λ−ρ)+ρ) =

{
C if p = dimX;

0 if p ̸= dimX.

Therefore, we proved the following result.

Lemma 4.4. Let λ be an antidominant weight. Then

Hp(n, I(w(λ− ρ))) =

{
Cw(λ−ρ)+ρ if p = dimX;

0 if p ̸= dimX.

This implies the following result.

Corollary 4.5. Let λ be an antidominant weight. Then

Hp(n, C
q) =

{⊕
w∈W (dimX−q) Cw(λ−ρ)+ρ if p = dimX;

0 if p ̸= dimX.

2More precisely, this is the dual of the original BGG-resolution.
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By the above discussion, the n-homology of F is given by the hypercohomology
of the n-homology functor for the complex C ·.

More precisely, the n-homology is the left derived functor of the functor V 7−→
V/nV from M(Uθ) into the category Mss(U(h)) of semisimple U(h)-modules. We
can view this functor as an exact functor from Db(Uθ) into Db(Mss(U(h))).

Let w ∈ W . Then we can consider the composition of this functor with the
functor of taking the weight subspace of the weight w(λ− ρ) + ρ. This is an exact
functor S from Db(Uθ) into the bounded derived category of vector spaces Db(C).
Clearly, we have

Hp(n, V )(w(λ−ρ)+ρ) = H−p(S(D(V ))).

Therefore, we see that

H−p(S(D(Cq))) = Hp(n, C
q)(w(λ−ρ)+ρ)

=

{
0 if p ̸= dimX or q ̸= dimX − ℓ(w);

C if p = dimX and q = dimX − ℓ(w).

It follows that

S(D(Cq)) = 0

if q ̸= dimX − ℓ(w); and

S(D(CdimX−ℓ(w))) = D(C)[dimX].

We interrupt the proof to prove a simple result in homological algebra. An
interested reader can easily supply an alternate argument via spectral sequences.

Let A and B be two abelian categories. We denote by Db(A) and Db(B) their
bounded derived categories. Let F : Db(A) −→ Db(B) be an exact functor between
these triangulated categories.

Lemma 4.6. Let C · be a complex in Db(A). Assume that there exists an integer
p0 such that F (D(Cp)) = 0 for all p ̸= p0. Then

F (C ·) = F (D(Cp0))[−p0].

Proof. We use freely the results on stupid truncations from [21, Ch. III, 4.4 and
4.5].

For any complex X · in Db(A) and an integer s we denote by σ≥s(X
·) and

σ≤s(X
·) its stupid truncations. Then we have the distinguished triangle of stupid

truncations

σ≤s−1(X
·)

[1]

��
σ≥s(X

·) // X ·

[[
.

Assume first that F (D(Cp)) = 0 for all p ∈ Z. We claim that F (C ·) = 0 in this
case.

The proof is by induction the length of C ·. If C · = 0, the claim is obvious. If
ℓ(C ·) = 1, we have C · = D(Cq)[−q] for some q ∈ Z. Therefore, we have

F (C ·) = F (D(Cq)[−q]) = F (D(Cq))[−q] = 0.
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This establishes the claim in this case. Assume now that ℓ(C ·) > 1. Then there
exists s ∈ Z such that the lengths of σ≤s−1(C

·) and σ≥s(C
·) are strictly less than

ℓ(C ·). By the induction assumption, we see that F (σ≤s−1(C
·)) = F (σ≥s(C

·)) = 0.
From the distinguished triangle of stupid truncations we conclude that F (C ·) = 0.

Now we can discuss the general case. If Cp0 ̸= 0, ℓ(C ·) is greater or equal
to 1. If ℓ(C ·) = 1, we have C · = D(Cp0)[−p0]. Therefore, we have F (C ·) =
F (D(Cp0))[−p0]. Then there exists s ∈ Z such that the lengths of σ≤s−1(C

·) and
σ≥s(C

·) are strictly less than ℓ(C·). Moreover, either p0 < s or p0 ≥ s.
In the first case, by the induction assumption, F (σ≤s−1(C

·)) = F (D(Cp0))[−p0].
Moreover, by the above claim F (σ≥s(C

·)) = 0. From the distinguished triangle of
stupid truncations we conclude that F (C·) = F (σ≤s−1(C

·)) = F (D(Cp0))[−p0].
In the second case, by the induction assumption, F (σ≥s(C

·)) = F (D(Cp0))[−p0].
Moreover, by the above claim F (σ≤s−1(C

·)) = 0. From the distinguished triangle of
stupid truncations we conclude that F (C·) = F (σ≥s(C

·)) = F (D(Cp0))[−p0]. □

Now we go back to the discussion of n-homology. By Lemma 4.6 it follows that

S(C·) = D(C)[dimX][− dimX + ℓ(w)] = D(C)[ℓ(w)].

SinceD(F ) is isomorphic to its BGG-resolution C · inDb(Uθ), we see that S(D(F )) =
D(C)[ℓ(w)]. This implies that

Hp(n, F )(w(λ−ρ)+ρ) = H−p(S(D(F ))) = H−p(S(C
·))

= H−p(D(C)[ℓ(w)]) =

{
0 if p ̸= ℓ(w);

C if p = ℓ(w).

This finally leads to

Hp(n, F ) =
⊕
w∈W

Hp(n, F )(w(λ−ρ)+ρ) =
⊕

w∈W (p)

Cw(λ−ρ)+ρ,

i.e., Kostant’s theorem (Theorem 4.2).
Therefore, this calculation shows that each dual Verma module in the BGG-

resolution of F gives exactly one cohomology class in n-homology of F .

4.4. Schmid’s result and Trauber resolution. In this section we interpret the
calculation of n-homology of discrete series representations representations using
Trauber resolution [26]. This argument is very similar to that in Section 4.3.

Let λ be antidominant and regular. Then, the Dλ-module I(Q, τ) can be repre-
sented in Db(Dλ) by its Cousin resolution corresponding to the stratification of Q
by BK-orbits DQ(w) as explained in the Appendix A.4.

Let DQ(w), w ∈ WK , be a BK-orbit in X. Denote by NK the unipotent radical
of BK . Then DQ(w) admits unique irreducible NK-equivariant connection ODQ(w).
Its direct image J (w, λ) is a standard Dλ-module attached to DQ(w).

The Cousin resolution of I(Q, τ) from Theorem A.4 is a complex D· such that

Dp =
⊕

w∈WK(dimQ−p)

J (w, λ)

for any p ∈ Z+, with explicitly given differentials.
Clearly, there is a natural monomorphism I(Q, τ) into the standard Dλ-module

J (w0, λ) attached to the open BK-orbit DQ(w0) (here w0 is the longest element of
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the Weyl group WK now). Therefore, there is a natural morphism ϵ of D(I(Q, τ))
into D· in Db(Dλ). The main result of A.4 says that ϵ is an isomorphism.

Let θ be the Weyl group orbit of λ. Since the functor Γ is exact for antidomi-
nant λ, D· = Γ(X,D·) is isomorphic to D(Γ(X, I(Q, τ))) in Db(Uθ), i.e., we get a
resolution of Γ(X, I(Q, τ)) by modules Dp, p ∈ Z+. This is the Trauber resolution
of the discrete series Γ(X, I(Q, τ)) [26].

We put

J(w, λ) = Γ(X,J (w, λ))

for any w ∈ WK .
By Theorem 2.6, we have

Hp(n, J(w, λ))(vλ+ρ) = H−p(πv,+(Li
+
v (D(J (w, λ)))))

for any v ∈ W . By base change, we get

Li+v (D(J (w, λ))) = 0

if v ̸= wu.
Hence, we have

Hp(n, J(w, λ))(vλ+ρ) = 0

for all p ∈ Z+ if v ̸= wu.
On the other hand, if v = wu we have

Li+wu(D(J (w, λ))) = Ri!wu(D(J (w, λ)))[dimX − ℓ(wu)].

Denote by jw the immersion of DQ(w) into C(wu). Then we have

D(J (w, λ)) = iQ,+(jw,+(D(ODQ(w)))),

since DQ(w) is affine and Q is affinely imbedded. Therefore, using the commutative
diagram from Section 4.2, we have

Ri!wu(D(J (w, λ))) = Ri!wu(iQ,+(jw,+(D(ODQ(w)))))

= a+(Rb!(jw,+(D(ODQ(w))))) = a+(D(ODQ(w)))

by base change and Kashiwara’s equivalence of categories. If we denote c = πw ◦ a
by Lemma 4.1, this implies that

πw,+(Li
+
wu(D(J (w, λ)))) = πw,+(a+(D(ODQ(w))))[dimX − ℓ(wu)]

= c+(D(ODQ(w)))[dimX − ℓ(wu)]

= D(C)[dimX − ℓ(wu)][ℓK(w)]

= D(C)[dimX − ℓ(wu) + ℓK(w)].

Hence, we conclude that

Hp(n, J(w, λ))(wuλ+ρ) =

{
C if p = dimX − ℓ(wu) + ℓK(w);

0 if p ̸= dimX − ℓ(wu) + ℓK(w).

Therefore, we proved the following result.

Lemma 4.7. Let λ be an antidominant weight and w ∈ WK . Then

Hp(n, J(w, λ)) =

{
Cwuλ+ρ if p = dimX − ℓ(wu) + ℓK(w);

0 if p ̸= dimX − ℓ(wu) + ℓK(w).
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By the above discussion, the n-homology of Γ(X, I(Q, τ)) is given by the hyper-
cohomology of the n-homology functor for the complex D·.

Let v ∈ W . As in Section 4.3, we consider the exact functor S from Db(Uθ) into
bounded derived category of vector spaces Db(C).

Therefore, we see that

H−p(S(D(Dq))) = Hp(n, D
q)(vλ+ρ)

=

{
0 if v ̸= wu, w ∈ WK , or p ̸= dimX − ℓ(wu) + ℓK(w) or q ̸= dimQ− ℓK(w);

C if v = wu, w ∈ WK , p = dimX − ℓ(wu) + ℓK(w) and q = dimQ− ℓK(w).

If v /∈ WKu, we see that S(D(Dq)) = 0. By Lemma 4.6 it follows that S(D·) = 0.
Since D(Γ(X, I(Q, τ))) is isomorphic to its Trauber resolution D· in Db(Uθ), we see
that S(D(Γ(X, I(Q, τ)))) = 0. Therefore, we see that Hp(n,Γ(X, I(Q, τ)))(vλ+ρ) =
0 if v /∈ WKu for all p ∈ Z+.

Assume that v = wu, w ∈ WK . It follows that

S(D(Dq)) = 0

if q ̸= dimQ− ℓK(w); and

S(D(DdimQ−ℓK(w))) = D(C)[dimX − ℓ(wu) + ℓK(w)].

By Lemma 4.6 it follows that

S(D·) = D(C)[dimX − ℓ(wu) + ℓK(w)][− dimQ+ ℓK(w)]

= D(C)[dimX − dimXK − ℓ(wu) + 2ℓK(w)]

= D(C)[12 dim(g/k)− ℓ(wu) + 2ℓK(w)].

Since D(Γ(X, I(Q, τ))) is isomorphic to its Trauber resolution D· in Db(Uθ), we
see that S(D(Γ(X, I(Q, τ)))) = D(C)[ 12 dim(g/k)− ℓ(wv) + 2ℓK(w)]. This implies
that

Hp(n,Γ(X, I(Q, τ)))(wuλ+ρ) = H−p(S(D(Γ(X, I(Q, τ))))) = H−p(S(D
·))

= H−p(D(C)[ 12 dim(g/k)− ℓ(wu) + 2ℓK(w)])

=

{
0 if p ̸= 1

2 dim(g/k)− ℓ(wu) + 2ℓK(w);

C if p = 1
2 dim(g/k)− ℓ(wu) + 2ℓK(w).

This is exactly Schmid’s theorem (Theorem 4.3).
Therefore, this calculation shows that each module J(w, λ) in the Trauber reso-

lution contributes exactly one cohomology class in n-homology of Γ(X, I(Q, τ)).

5. Character formulas

In this section we calculate the characters of discrete series representations
Γ(X, I(Q, τ)) on the elliptic set. We start with the trivial (and well-known) exam-
ple of a compact Lie group G0. In this case, our result is just the well-known Weyl
character formula.
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5.1. Case of compact groups. Let G0 be a connected compact semisimple Lie
group with complexified Lie algebra g. We fix a maximal tours T0 in G0. Let t ⊂ g
be its complexified Lie algebra. Fix a set of positive roots R+ in the root system R
of (g, t). Then, t and the root subspaces of gα corresponding to roots α ∈ R+ span
a Borel subalgebra b. We put n = [b, b].

Let F be the irreducible finite-dimensional representation of G0 with lowest
weight λ ∈ h∗. We want to determine the character ch(F ) of F . Since all conjugacy
classes in G0 intersect T0, it is enough to give a formula for ch(F ) on T0.

Clearly, F and the standard complex C ·(n, F ), with C−p(n, F ) =
∧p

n ⊗ F ,
p ∈ Z, have natural structure of finite-dimensional representations of T . Therefore,
their characters chT are well-defined. By Euler’s principle, we have

n∑
p=0

(−1)p chT (C
−p(n, F )) =

n∑
p=0

(−1)p chT (Hp(n, F ))

where n = dim n.
Moreover, we have

chT (C
−p(n, F )) = chT

(
p∧
n⊗ F

)
= chT

(
p∧
n

)
· ch(F )

on T0. Hence, it follows that
n∑

p=0

(−1)p chT (Hp(n, F )) =

n∑
p=0

(−1)p chT (C
−p(n, F ))

= ch(F ) ·
n∑

p=0

(−1)p chT

(
p∧
n

)
.

This finally implies the following formula

ch(F ) =

∑n
p=0(−1)p chT (Hp(n, F ))∑n

p=0(−1)p chT (
∧p

n)

on T0.
Let eµ : T −→ C∗ be the morphism with the differential corresponding under

specialization to µ ∈ h∗. Then the weights in
∧p

n are the sums of all sets of p
different roots from R+; i.e, we have

chT

(
p∧
n

)
=

∑
P⊂R+, Card(P )=p

(∏
α∈P

eα

)
.

Therefore, we have

n∑
p=0

(−1)p chT

(
p∧
n

)
=

n∑
p=0

(−1)p

 ∑
P⊂R+, Card(P )=p

(∏
α∈P

eα

)
=

n∑
p=0

 ∑
P∈R+, Card(P )=p

(∏
α∈P

(−eα)

)
=
∑

P⊂R+

(∏
α∈P

(−eα)

)
=
∏

α∈R+

(1− eα).
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Hence, we have

ch(F ) =

∑n
p=0(−1)p chT (Hp(n, Fλ))∏

α∈R+(1− eα)

on T0. Using Kostant’s theorem 4.2, we get

chT (Hp(n, F )) =
∑

w∈W (p)

ew(λ−ρ)+ρ

and finally
n∑

p=0

(−1)p chT (Hp(n, F )) =
∑
w∈W

(−1)ℓ(w)ew(λ−ρ)+ρ.

Putting everything together, we conclude that

ch(F ) =

∑
w∈W (−1)ℓ(w)ew(λ−ρ)+ρ∏

α∈R+(1− eα)
.

This finally implies the following result.

Theorem 5.1 (Weyl). Let F be the irreducible finite-dimensional representation
of g with lowest weight λ. Then

ch(F ) =

∑
w∈W (−1)ℓ(w)ew(λ−ρ)+ρ∏

α∈R+(1− eα)

on the maximal torus T0 in G0.

5.2. Discrete series. The formal Euler characteristic argument in the case of
compact G0 clearly does not work in the case of discrete series of a noncompact
G0 since they are infinite-dimensional. It is replaced by an argument based on
Osborne’s formula [17].3

Let G0 be a connected semisimple Lie group and K0 its maximal compact sub-
group. Let C∞

0 (G0) be the space of complex-valued smooth functions on G0 with
compact support, equipped with the usual topology. The continuous dual of that
space is the space of distributions on G0. Let V be a Harish-Chandra module of
finite length, then the Harish-Chandra character ch(V ) of V is a distribution on
G0 [8].4

The characters are invariant under inner automorphisms ofG0, therefore they are
invariant distributions on G0. The center Z(g) of U(g) is naturally identified with
the invariant differential operators on G0. If V is an irreducible Harish-Chandra
module in M(Uθ), its character ch(V ) is annihilated by the maximal ideal Jθ in
Z(g); i.e., it is an invariant eigendistribution on G0. We denote the space of all
invariant eigendistributions annihilated by Jθ by E(G0, θ). Harish-Chandra has
shown that any distribution T in E(G0, θ) is given by

C∞
0 (G0) ∋ f 7−→ T (f) =

∫
G0

f(g)ΘT (g) dµ(g)

3Actually, we need only a special case for compact Cartan subgroups [17, 7.27], which is already
implicit in [25].

4Harish-Chandra defines the character for a representation of G0 on a Hilbert space. By [6,
Proposition 8.23], every Harish-Chandra module V of finite length is the module of K0-finite vec-

tors of a subrepresentation of a representation of G0 induced by a finite dimensional representation

of a minimal parabolic subgroup P0 of G0. Therefore, Harish-Chandra construction applies to
the closure of V . Moreover, the character is the sum of K0-finite matrix coefficients which are

completely determined by the Harish-Chandra module [6, Thm. 8.7].
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where µ is a fixed Haar measure on G0 and ΘT is a locally integrable real analytic
function on the set G′

0 of all regular elements in G0 [10, Thm. 2].
Therefore, for any irreducible Harish-Chandra module V the character ch(V ) is

given by

C∞
0 (G0) ∋ f 7−→ ch(V )(f) =

∫
G0

f(g)ΘV (g) dµ(g)

for a locally integrable real analytic function ΘV on the setG′
0 of all regular elements

in G0.
From now on, we assume that ranks of G0 and K0 are equal. Let T0 be a

maximal torus in K0. An element g ∈ G0 is elliptic if its adjoint action Ad(g) on g
is semisimple and its eigenvalues are complex numbers of absolute value 1. Denote
by E the set of all regular elliptic elements in G0. Also denote by T ′

0 the set of
regular elements in T0. Clearly, E is an open set in G0, invariant under conjugation
by elements of G0, and every conjugacy class in E intersects T0.

The restriction to E of the function ΘV for an irreducible Harish-Chandra mod-
ule is a real analytic function on E constant on conjugacy classes. The Osborne’s
formula describes this function explicitly. Let b be a Borel subalgebra in X such
that t ⊂ b and n = [b, b]. Then, we have

ΘV |T ′
0
=

∑n
p=0(−1)p chT (Hp(n, V ))∏

α∈R+(1− eα)

on the regular elements in a compact Cartan subgroup T0 of G0. This is the special
case of the Osborne’s formula we alluded to above. It is a generalization of the
formula we used in calculations for compact group G0 in the preceding section.

Now, we are going to apply this formula to the case of discrete series repre-
sentation V = Γ(X, I(Q, τ)) as discussed in Section 4. Assume that b is a Borel
subalgebra corresponding to a point in Q.

Let ϵ : W −→ {±1} be the character of the Weyl group W given by ϵ(w) =
det(w), w ∈ W . Then, ϵ(s) = −1 for any reflection s in W . Therefore, we
have ϵ(w) = (−1)ℓ(w) for any w ∈ W . In addition, since ϵ(s) = −1 for any
reflection s with respect to a compact root, the restriction of ϵ to WK is equal
to the corresponding character of Weyl group WK . First, by Theorem 4.3, the
numerator in Osborne’s formula is equal to∑

p∈Z+

(−1)p chT (Hp(n,Γ(X, I(Q, τ)))

=
∑
p∈Z+

(−1)p
( ∑
w∈WK

chT (Hp(n,Γ(X, I(Q, τ)))(wλ+ρ))
)

=
∑

w∈WK

( ∑
p∈Z+

(−1)p chT (Hp(n,Γ(X, I(Q, τ)))(wλ+ρ)

)
=

∑
w∈WK

(−1)
1
2 dim(g/k)−ℓ(w)+2ℓK(w)ewλ+ρ

= (−1)
1
2 dim(g/k)

∑
w∈WK

(−1)ℓ(w)ewλ+ρ

= (−1)
1
2 dim(g/k)

∑
w∈WK

(−1)ℓK(w)ewuλ+ρ

This finally implies the following result.
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Theorem 5.2. On the regular elements of the compact Cartan subgroup T0 the
character of the discrete series representation V = Γ(X, I(Q, τ)) is given by

ΘV |T ′
0
= (−1)

1
2 dim(g/k)

∑
w∈WK

(−1)ℓK(w)ewλ+ρ∏
α∈R+(1− eα)

.

5.3. Relation with Harish-Chandra parametrization. In this section, we re-
late the information from 5.2 with Harish-Chandra’s results on discrete series char-
acters.

In [11], Harish-Chandra introduced the Schwartz space C(G0) consisting of complex-
valued rapidly decreasing smooth functions on G0. It contains C

∞
0 (G0) as a dense

subspace. A distribution on G0 is tempered if it extends to a continuous linear
form on C(G0). We denote by Etemp(G0, θ) the subspace of E(G0, θ) consisting of
tempered invariant eigendistributions.

If G0 and K0 have the same rank, the set of regular elliptic elements E is open
in G0 and one can consider the restriction map from the space of invariant eigendis-
tributions on G0 to the space of invariant eigendistributions on E.

Harish-Chandra proved the following result:5

Theorem 5.3. Let θ be a W -orbit in h∗ consisting of regular real elements. Then
the restriction map to E is injective on Etemp(G0, θ).

Since the characters of discrete series are tempered invariant eigendistributions
[11, Lem. 76], they are completely determined by their restrictions to E. In partic-
ular, we have the following version of 5.2:

Theorem 5.4. The character of the discrete series representation V = Γ(X, I(Q, τ))
is the unique tempered invariant eigendistribution ch(V ) satisfying

ΘV |T ′
0
= (−1)

1
2 dim(g/k)

∑
w∈WK

(−1)ℓK(w)ewλ+ρ∏
α∈R+(1− eα)

This is equivalent to the Harish-Chandra formula for the characters of discrete
series [11, Theorem 16]. This establishes a precise connection between geometric
and Harish-Chandra parametrization of discrete series.

Moreover, this proves the existence of tempered invariant distributions Θλ in [9,
Thm. 3] which is the central result of that paper.

In addition, it implies that for any W -orbit θ in h∗ consisting of regular real
elements, the space of all tempered invariant eigendistributions on G0 is spanned
by characters of discrete series which are in M(Uθ).

6. Blattner Conjecture

As before, let G0 be a connected semisimple Lie group with finite center and
K0 its maximal compact subgroup. Also, we assume that the ranks of G0 and
K0 are equal, so G0 admits discrete series representations. The formula for the
multiplicity of a finite-dimensional irreducible representations of K0 in a discrete
series representation of G0 was conjectured by Robert Blattner. His conjecture was
proved by Hecht and Schmid in [16].6 We shall give a very simple proof of that
formula using the geometric realization of discrete series.

5An equivalent result was proven later by Atiyah and Schmid in [1] by different methods.
6Their proof assumes that the group G0 is linear. Our argument removes that condition.
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6.1. Filtration by normal degree. First we recall a natural filtration of a D-
module direct image for a closed immersion. Let Y be a smooth algebraic variety
and Z a closed smooth subvariety of Y . Denote by i : Z −→ Y the inclusion
morphism of Z into Y . Let TY (resp. TZ) be the tangent sheaf to Y (resp. Z).
Denote by i∗(TY ) the O-module inverse image of TY . Define the normal sheaf to
Z as NZ|Y = i∗(TY )/TZ . Moreover, we denote by ωY (resp. ωZ) the invertible
O-module of sections top degree differential forms on Y (resp. Z). Also, we put
ωZ|Y = i∗(ωY )⊗OZ

(ωZ)
−1.

Let D be a twisted sheaf of differential operators on Y . Let Di be the corre-
sponding twisted sheaf of differential operators on Z [22]. Let i• be the sheaf direct
image functor and i∗ the O-module direct image functor. Then the D-module direct
image functor

i+(V) = i•(V ⊗Di DZ→Y )

is an exact functor from the category of right Di-modules into the category of right
D-modules. As explained in the Appendix to [14], one defines a natural filtration of
DZ→Y by left Di- and i−1OY -modules. By tensoring, we get a natural OY -module
filtration of i+(V) which we call the filtration by normal degree. The corresponding
graded module is

Gr i+(V) = i•(V ⊗OZ
S(NZ|Y )) = i∗(V ⊗OZ

S(NZ|Y ))

(here S(NZ|Y ) is the symmetric algebra of NZ|Y ). Since the opposite sheaf of
rings of D is also a sheaf of twisted differential operators, we can easily adapt this
construction to left D-modules as explained in [3]. Going to left modules contributes
a twist by ωZ|Y in above formula and we get that

Gr i+(V) = i∗(V ⊗OZ
ωZ|Y ⊗OZ

S(NZ|Y )).

6.2. Proof of Blattner formula. Let T0 be the Cartan subgroup of K0. Denote,
as before, by K and T the complexifications of K0 and T0. Denote by k and t the
Lie algebras of K and T .

Let Q be a closed K-orbit in the flag variety X of g. Let R be the root system
of (g, t) in t∗. We fix a set of positive roots R+

c of the system of compact roots Rc

in R. Then, by discussion in Section 3, for any closed K-orbit in the flag variety
X there exists a unique set of positive roots R+ in R such that R+

c = Rc ∩R+ and
the Borel subalgebra b spanned by t and root subspaces corresponding to roots in
R+ is in Q.

Let x be a point in Q corresponding to the Borel subalgebra b. The tangent
space Tx(X) at x to X is identified with n̄. This isomorphism identifies the tangent
space to the orbit Q at x with

⊕
α∈R+

c
g−α. This implies the following result.

Lemma 6.1. (i) The geometric fiber Tx(ωQ|X) of ωQ|X at x is isomorphic to
−2ρ+ 2ρc = −2ρn.

(ii) The geometric fiber of NQ|X is isomorphic to
⊕

α∈R+
n
g−α.

Let τ be an irreducible K-homogeneous connection on Q compatible with λ+ ρ.
If we consider the normal degree filtration of the standard Harish-Chandra sheaf
I(Q, τ), we get the short exact sequence

0 → Fp−1 I(Q, τ) → Fp I(Q, τ) → i•(ωQ|X ⊗OQ
τ ⊗OQ

Sp(NQ|X)) → 0.
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The last sheaf is an OX -module and by the Leray spectral sequence

Hp(X, i•(ωQ|X ⊗OQ
τ ⊗OQ

Sp(NQ|X))) = Hp(X, i∗(ωQ|X ⊗OQ
τ ⊗OQ

Sp(NQ|X)))

= Hp(Q,ωQ|X ⊗OQ
τ ⊗OQ

Sp(NQ|X))

since i is an affine morphism.
Clearly, we have τ = OQ(λ+ ρ). Moreover, by Lemma 6.1.(i), we have

ωQ|X ⊗OQ
τ ⊗OQ

Sp(NQ|X) = OQ(λ+ ρc − ρn)⊗OQ
Sp(NQ|X).

This K-equivariant coherent OQ-module has finite-dimensional cohomology, i.e.,
Hp(Q,ωQ|X ⊗OQ

τ ⊗OQ
Sp(NQ|X)) are finite-dimensional algebraic representations

of K for any p ∈ Z+. From the long exact sequence of cohomology associated
to the above short exact sequence, we conclude that Hq(X,Fp I(Q, τ)) are finite-
dimensional algebraic representations ofK. SinceK is reductive, all representations
in this long exact sequence are semisimple finite-dimensional algebraic representa-
tion of K.

Let ν be a R+
c -antidominant weight and Fν the irreducible finite-dimensional

representation with lowest weight ν. By applying the functor HomK(Fν ,−) we get
again a long exact sequence of finite-dimensional vector spaces. Using the Euler
principle, we conclude that∑

q∈Z
(−1)q dimHomK(Fν , H

q(X,Fp I(Q, τ)))

=
∑
q∈Z

(−1)q dimHomK(Fν , H
q(X,Fp−1 I(Q, τ)))

+
∑
q∈Z

(−1)q dimHomK(Fν , H
q(Q,OQ(λ+ ρc − ρn)⊗OQ

Sp(NQ|X))).

The geometric fiber Tx(S
p(NQ|X)) is a representation of the stabilizer of x in K.

Since it is a Borel subgroup of K, by Lie’s theorem, there exists a finite filtration
of Tx(S

p(NQ|X)) by K-equivariant OQ-modules. By Lemma 6.1.(ii), the graded
OQ-module is the direct sum of OQ(λ+ ρc − ρn −κ) where κ is a sum of p positive
noncompact roots.

By induction on the length of this filtration, using again the Euler principle, we
conclude that∑

q∈Z
(−1)q dimHomK(Fν , H

q(Q,OQ(λ+ ρc − ρn)⊗OQ
Sp(NQ|X)))

=
∑
κ

∑
q∈Z

(−1)q dimHomK(Fν , H
q(Q,OQ(λ+ ρc − ρn − κ)))

where the sum goes over all sums κ of p noncompact positive roots.
By the Borel-Weil-Bott theorem, the cohomology of OQ(λ+ρc−ρn−κ) vanishes

if λ− ρn − κ is not regular with respect to Rc. Otherwise, if λ− ρn − κ is regular
and equal to w(ν−ρc), w ∈ WK , it follows that Hℓ(w)(Q,OQ(λ+ρc−ρn−κ)) = Fν

and other cohomologies vanish.
Let P be the function on h∗ defined in the following way: For any µ we set

P (µ) to be the number of ways one can represent µ as a non-negative integer linear
combination of the positive noncompact roots. Also, set Pp to be the function on
h∗ defined in the following way: For any µ, Pp(µ) is the number of ways one can
represent µ as a sum of p positive noncompact roots. Clearly, we have P =

∑∞
p=0 Pp.
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Therefore, we have∑
q∈Z

(−1)q dimHomK(Fν , H
q(Q,OQ(λ+ ρc − ρn)⊗OQ

Sp(NQ|X)))

=
∑

w∈WK

(−1)ℓ(w)Pp(λ− ρn − w(ν − ρc)).

By induction we see that∑
q∈Z

(−1)q dimHomK(Fν , H
q(X,Fp I(Q, τ))) =

p∑
s=0

∑
w∈WK

(−1)ℓ(w)Ps(λ−ρn−w(ν−ρc)).

Since cohomology commutes with direct limits, by taking the limit as p → ∞, we
get∑
q∈Z

(−1)q dimHomK(Fν , H
q(X, I(Q, τ))) =

∑
w∈WK

(−1)ℓ(w)P (λ− ρn − w(ν − ρc)).

Finally, since λ is antidominant, higher cohomologies of the standard Harish-
Chandra sheaf I(Q, τ) vanish and we see that

dimHomK(Fν ,Γ(X, I(Q, τ))) =
∑

w∈WK

(−1)ℓ(w)P (λ− ρn − w(ν − ρc)).

Theorem 6.2 (Hecht-Schmid). Let ν be an antidominant weight for the root system
Rc and Fν the finite-dimensional irreducible algebraic representation of K. Then
the multiplicity of the representation Fν in the restriction of the discrete series
representation V = Γ(X, I(Q, τ)) to K is equal to∑

w∈WK

(−1)ℓ(w)P (λ− ρn − w(ν − ρc)).

This is Blattner’s formula.

Appendix A. Cousin resolution

In this appendix, for the convenience of the reader, we prove the well-known
results about Cousin resolutions in D-module setting (for references, see [13], [26]).

A.1. Stratifications. Let X be a smooth algebraic variety7 over C. A subvariety
Y of X is affinely imbedded if for any affine open set U in X the set U ∩Y is affine.
Clearly, if Y is an affinely imbedded subvariety and U an open set in X, then Y ∩U
is affinely imbedded in U .

Closed subvarieties of X are affinely imbedded in X. Also, affine subvarieties are
affinely imbedded in X. The canonical inclusions of affinely imbedded subvarieties
are affine morphisms.

Let

X = F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ Fn ⊃ Fn+1 = ∅
be a decreasing filtration of X by closed algebraic subvarieties satisfying the fol-
lowing condition:

(S) Fp − Fp+1 is a nonempty smooth affinely imbedded subvariety of X of
dimension dimX − p for 0 ≤ p ≤ n.

7Our varieties do not have to be connected.
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Then we call (Fp; 0 ≤ p ≤ n + 1) a stratification of X of length n. We call the
smooth affinely imbedded subvariety Sp = Zp − Zp+1 the (dimX − p)-dimensional
stratum of X.

Let 0 ≤ q ≤ n and Xq = X − Fq+1. Then Xq is smooth subvariety of X and
(Fp − Fq+1; 0 ≤ p ≤ q + 1) is a stratification of Xq of length q.

A.2. Local cohomology. Let DX the sheaf of differential operators in X. Let Y
be a closed smooth subvariety of X. Let U = X − Y be the complement of Y . Let
i : Y −→ X and j : U −→ X be the canonical inclusions.

Denote by M(DX), M(DY ) and M(DU ) the corresponding categories of qua-
sicoherent D-modules; and by Db(DX), Db(DY ) and Db(DU ) the corresponding
derived categories. Then the direct image functor i+ : M(DY ) −→ M(DX) is
exact and lifts to an exact functor i+ : Db(DY ) −→ Db(DX). Also, the direct im-
age functor j+ : M(DU ) −→ M(DX) is the ordinary sheaf-theoretic direct image
functor j•, it is left exact and its derived functor is Rj• : Db(DU ) −→ Db(DX).

Let ΓY : M(DX) −→ M(DX) be the functor which associates to each quasico-
herent DX -module F the subsheaf of all local sections ΓY (F) with support in Y .
Let RΓY : Db(DX) −→ Db(DX) the corresponding functor of local cohomology.

Let F · be an object in Db(DX). Then we have the canonical distinguished
triangle

Rj•(F ·|U )

[1]

��
RΓY (F ·) // F ·

[[

by [4, VI.8.3]. In addition, we have

RΓY (F ·) = i+(Ri!(F ·)).

If m = dimX − dimY , we have

Rpi!(OX) =

{
0 for p ̸= m;

OY for p = m;

i.e.,

RΓY (D(OX)) = D(i+(OY ))[−m].

Specializing the above distinguished triangle for F · = D(OX) we get the distin-
guished triangle

Rj•(D(OU ))

[1]

||
D(i+(OY ))[−m] // D(OX)

^^
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Assume that Y is of codimension 1 in X; i.e., m = 1. Then, applying the cohomol-
ogy functor to this distinguished triangle, we get the long exact sequence:

· · · −→ 0 −→ OX −→ j•(OU ) −→ i+(OY ) −→ 0 −→ . . .

· · · −→ 0 −→ Rpj•(OU ) −→ 0 −→ . . . .

Therefore, we get the exact sequence

0 −→ OX −→ j•(OU ) −→ i+(OY ) −→ 0

and Rpj•(OY ) = 0 for p ≥ 1.
Analogously, if m > 1, we get that

Rpj•(OU ) =


OX for p = 0;

i+(OY ) for p = m− 1;

0 otherwise.

Hence, we proved the following result.

Lemma A.1. Let m = dimX − dimY . Then:

(i) If m = 1, we have the exact sequence

0 −→ OX −→ j•(OU ) −→ i+(OY ) −→ 0

and Rpj•(OU ) = 0 for p > 0.
(ii) If m > 1, we have

Rpj•(OU ) =


OX for p = 0;

i+(OY ) for p = m− 1;

0 otherwise.

A.3. Cousin resolution. LetX be a smooth algebraic variety with a stratification
(Fp; 0 ≤ p ≤ n+ 1). Denote by ip : Sp −→ X, 0 ≤ p ≤ n, the canonical inclusions
of strata into X.

Theorem A.2. There exist a canonical exact sequence

0 → OX → i0,+(OS0) → i1,+(OS1) → · · · → in,+(OSn) → 0.

Therefore, the complex

· · · → 0 → i0,+(OS0
) → i1,+(OS1

) → · · · → in,+(OSn
) → 0 → . . .

is a resolution of OX in M(DX). This resolution is called the Cousin resolution of
OX .

We prove the theorem by induction in n. If n = 1, we have F0 = X and F1 = Y
is a smooth closed subvariety in X. Moreover, S0 = X − Y = U and S1 = Y .
Therefore, the Cousin resolution reduces to Lemma A.1.(i).

Assume that n > 1 and that the statement holds for n − 1. Let U = Xn−1

and denote by j : U −→ X the natural inclusion. Then (Fp − Fn; 0 ≤ p ≤ n)
define a stratification of U . Denote by jp : Sp −→ U the natural inclusions. By the
induction assumption, we have the exact sequence

0 → OU → j0,+(OS0
) → j1,+(OS1

) → · · · → jn−1,+(OSn−1
) → 0 .

Therefore, we have a quasiisomorphism of D(OU ) into the complex

· · · → 0 → j0,+(OS0) → j1,+(OS1) → · · · → jn−1,+(OSn−1) → 0 → . . . .
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By our assumption jp : Sp −→ U and ip : Sp −→ X are affine morphisms. There-
fore, the functors jp,+ : M(DSp) −→ M(DU ) and ip,+ : M(DSp) −→ M(DX) are
exact. Since Rj• ◦ jp,+ = ip,+, it follows that the modules jp,+(V) are acyclic for
j• for any DSp

-module V. Therefore, by acting on the above complex by j•, we get
the complex

· · · → 0 → i0,+(OS0) → i1,+(OS1) → · · · → in−1,+(OSn−1) → 0 → . . .

which computes Rj•(D(OU )). Since U = X − Sn, by Lemma A.1.(ii), the ker-
nel of the morphism i0,+(OS0) → i1,+(OS1) has to be OX , and the cokernel of
the morphism in−2,+(OSn−2) → in−1,+(OSn−1) has to be in,+(OSn). This clearly
establishes the induction step.

A.4. Variants. In the main text we use the “twisted” versions of Theorem A.2.
First, let L be an invertible OX -module on X and DL the sheaf of differential

operators on L. By tensoring by L, we get immediately the following version of
Theorem A.2.

Theorem A.3. There exist a canonical exact sequence

0 → L → i0,+(i
∗
0(L)) → i1,+(i

∗
1(L)) → · · · → in,+(i

∗
n(L)) → 0

in M(DL).

Finally, let Y be a smooth closed subvariety of X. Denote by i : Y −→ X
the canonical inclusion and by Di the twisted sheaf of differential operators on Y
induced by the twisted sheaf of differential operators D on X [22, 1.1]. Let L be
an invertible OY -module on Y . Assume that D is the twisted sheaf of differential
operators on X such that Di = DL.

Let (Fp; 0 ≤ p ≤ n + 1) be a stratification of Y . Denote by ip : Si −→ X and
kp : Sp −→ Y the natural inclusions of strata Sp, 0 ≤ p ≤ n, into X (resp. Y ).
Then, applying the Kashiwara equivalence of categories to closed immersion i, from
Theorem A.3 we get the following result.

Theorem A.4. There exist a canonical exact sequence

0 → i+(L) → i0,+(k
∗
0(L)) → i1,+(k

∗
1(L)) → · · · → in,+(k

∗
n(L)) → 0

in M(D).
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