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Abstract

An order parameter equation is derived for an optical paramet-
ric oscillator near the resonance detuning limit in two dimensions.
The parametric mixing between signal and pump fields with cavity
diffraction leads to a quintic, fourth-order evolution equation of the
Swift-Hohenberg type which supports the formation of cavity solitons,
plane waves, and periodic structures. The formation, interaction, and
stability of each of the nontrivial spatial structures is considered via
extensive numerical simulations. The spectral stability of these non-
trivial spatial structures are also investigated using Hill’s method. Sta-
ble optical structures are created which can be used as the basis for a
wide range of all-optical technologies.

*An undergraduate thesis submitted in partial fulfillment of the requirements for an
Applied and Computational Mathematical Sciences Honors Degree from the University of
Washington.
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1 INTRODUCTION

1 Introduction

Spatio-temporal dynamics in nonlinear systems are of general interest in the
physical, biological, and engineering sciences [1]. Specifically, the role of non-
linearity in generating novel applications and technological devices is of ever
growing importance. Many media studied in the optical sciences are capable
of supporting spatio-temporal electromagnetic structures which are often sta-
bilized by the interaction of spatial diffraction or temporal dispersion with the
material nonlinearity. Optical Parametric Oscillators are constructed with
quadratic nonlinear materials and are commonly used as tunable sources for
coherent radiation [2] and the generation of high power pulses [3]. Paramet-
ric mixing between signal and pump fields with cavity diffraction leads to
the formation of soliton-like structures referred to as cavity solitons or dis-
sipative solitons. Such structures, if stabilized, can be used as fundamental
components for all-optical devices and applications. Thus, understanding the
underlying dynamical aspects of these nontrivial electromagnetic structures
is paramount to technological considerations. We consider the formation
and stability of two-dimensional electromagnetic structures in an OPO sys-
tem near the resonance detuning limit. We find a wide variety of exact
solutions, including cavity solitons, which are indeed formed and stabilized
by the parametric mixing with diffraction.

This manuscript is outlined as follows: Sec. 2 gives a brief background to
nonlinear optics and the OPO near resonance detuning. Sec. 3 gives a brief,
yet comprehensive, derivation of the governing order parameter equation in
the near resonance limit using a multiple-scale analysis. Sec. 4, 5, and 6
consider exact solutions of the plane wave, hyperbolic secant, and periodic
Jacobi elliptic forms respectively. The exact solutions are explored and their
dynamics and stability investigated. The stability of solutions is explored in
Sec. 7. The paper is concluded in Sec. 8 with a brief summary of the paper
and comments on possible future work.
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DETUNING

2 The Optical Parametric Oscillator Near Res-
onance Detuning

The invention of the optical laser in the early 1960s made possible the gen-
eration of highly intense and coherent electromagnetic radiation. Shortly
thereafter, laser light incident on quadratic crystals was observed to induce
optical frequency conversion. This founded the field of nonlinear optics,
which is defined to be the study of the interaction between intense electro-
magnetic radiation with matter [16].

In conventional optics, the relationship between the electromagnetic field,
E(t), and the electric polarization, P(t), is given by a linear relationship,
P(t) = xE(t), where x is determined by physical properties of the (linear)
medium (known as the linear susceptibility). However, if the intensity of
the light is sufficiently large, light interacts with the medium resulting in a
changing polarization [17]. The mediums of interest in this manuscript are
those with a nonlinear polarization dominated by the second-order nonlin-
earity which are called quadratic materials.

In an Optical Parametric Oscillator (OPO), a quadratic material is placed
inside an optical resonator, a device composed of highly reflective mirrors
at either end of an optical cavity. These mirrors force the field, generated
by the second-order polarization, to repeatedly pass through the quadratic
material. The incident pump beam at frequency w, produces two fields: the
signal field and the idler field. The frequencies of these fields are related by
the equation

Wp = Ws + W (1)

where w; is the frequency of the signal field and w; is the frequency of the
idler field. The advantage of this configuration is the frequency of the signal
field (which is the desired field) can be tuned to any value less than the
frequency of the pump field [18]. This causes parametric devices to have
tuning ranges and efficiency unmatched by conventional laser sources. OPOs
should be able to generate radiation throughout interesting spectral regions
where conventional devices have failed. Despite the potential, the realization
of these devices has been difficult because the fundamental physics describing
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the system is not thoroughly understood. Thus, researchers have had a
difficult time tuning and stabilizing the OPO. Recent advances in both laser
sources and nonlinear-optical materials have increased interest in OPOs with
promise of high efficiency and extended operating parameters. Thus rapid
progress in optical parametric research has been made recently in theoretical
studies and modeling.

The nondimensional parametric interaction of the signal and pump fields
in the two-dimensional, degenerate optical parametric oscillator subject to
diffraction, attenuation, and external pumping is given by [4, 5]

ou i
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5 ZV U+VU" — (1+iA)U (2a)
aa—‘t/ = %pVQV—UQ— (a+iA)V + S (2b)

where U(z,y,t) is the envelope of the signal field at frequency w, V (z, vy, t) is
the envelope of the incident pump field at frequency 2w, and V? = 92 + 85.
The system is pumped externally by the field S(z,y,t). The parameter p
measures the diffraction ratio between signal and pump fields while a de-
termines the pump-to-signal loss ratio. Detuning between the signal and
pump fields is measured by the parameters A; and As. The only known
analytic solutions to (2) are plane wave solutions [4] for which stability can
be determined explicitly. Although they are of general interest, the stabi-
lization of nontrivial spatial structure is the technologically relevant issue to
be considered here. Towards this aim, a variety of asymptotic and pertur-
bation methods have been developed to provide an analytic framework for
understanding the dynamics and formation of transverse spatial structures.

To characterize the dynamics of the OPO in a spatially extended system, it
is typical to derive an order parameter equation which governs the onset of
instability [1]. Such analytic methods have been applied extensively to OPOs
due to the underlying complexity of the governing evolution equations (2).
The simplified order parameter descriptions, given by Ginzburg-Landau or
Swift-Hohenberg equations, allow for significant analytic simplification and
insight into the physical mechanisms responsible for generating the patterns
and dynamics observed in simulations of the full governing OPO equations.
The literature describing such analytic and computational approximations is
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vast, but see, for instance, references [6]-[11] as particular examples of pat-
tern forming behavior in the OPO. Often, exact solutions can also be found
within the framework of these approximations which are amenable to linear
stability analysis, thus allowing for characterization of the dynamical prop-
erties of the solutions. Indeed, the prolific use of such approximations attest
to the importance and capability of such methods in producing physically
meaningful insight into the dynamics of the OPO.

We derive an order parameter equation of the OPO system in the resonantly
detuned limit: |As| < 1 and |A;| < 1. Specifically, we consider the onset of
instability which occurs for the trivial steady-state signal field solution

U=0 (3a)
S
V_7a+iA2' (3b)

It is well-known that this solution is unstable when a critical amount of
pumping is applied. The resulting spatial structures which arise after bifur-
cation is the focus of this paper. Specifically, the long-wavelength instability
generates a new, order parameter description similar to the Swift-Hohenberg
equation. Analytic solutions to this equation in one-dimension have been
studied extensively [12]. Here, the equation is explored in two-dimensions
with particular emphasis given to the construction of exact analytic solu-
tions and their stability.

3 Derivation of Order Parameter Equation

We consider the stability of the solution (3) to (OPOeq) with a slight perur-
bation to the solution:
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where 4 and © < 1. Inserting this into (3) gives the first order equations:

- [ - N
Uy = §V2u + P z’Azu — (1+1iA)a (ba)
5, = %pVZﬂ — (a +iAy)il. (5b)

Then denoting the Fourier Transform of % in both the z and y variables as
@ and taking the Fourier Transform of (5) yields:

(k2 + k)i + i— (1+1iA)d (6a)

i
2
b = —%p(kg +12)0 — (a+ i) (6b)

o+ 1A,

where k, and k, are the wavenumbers in the z and y directions respec-
tively. From (6) we can see that the the most unstable wavenumbers are
(kg, ky) = (0,0). Thus, neutral stability of the steady-state solution (3) oc-
curs when S, = (a + iA)(1 + iA;). When |S| > |S.|, the steady-state
solution is unstable. Furthermore, the instability is a long-wavelength insta-
bility since the dominant growth mode corresponds to the zero wavenumber.
This suggests the use of a multiple scale expansion to describe the long trans-
verse lengthscales involved in the instability. Additionally, a slow-time scale
is required to capture the growth near the bifurcation point. This suggests
defining the slow spatial and temporal scales [12]

T = ¢*t (7a)
E=ex (7b)
(=ey (7c)

where €2 = |S —S,| < 1. These slow scales are specifically defined to capture
the resonance detuning limit, i.e. |A;| < 1 and |Ay| < 1. When not near
resonance detuing, it is appropriate to define different slow scales which, for
instance, lead to the Ginzburg-Landau equation or a cubic-quintic diffusion
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equation [12]. Other scale balances exist as well which are largely covered in
the existing literature [6]-[11].

The order parameter equation is derived by expanding about the steady-state
solution (3)

U = 0+eu(lg,0) (82)
S
= S+ (80)

where S — S, = €?c and c is a (complex) constant. This assumes that the
solution is within O(e?) of the bifurcation point.

Substituting (8) into (2) yields the asymptotic expressions

*

(14 iA)(u—u") =€ (%Ugg + %ucc +ou' + —T—uiA2> + €'ur (9a)
. 1
(a+iAg)v = —u® + —pe® (vee + vee) — €'vr (9b)

2

This exact expression is now simplified through various asymptotically valid
approximations. Specifically, a recursion method is used. Thus, from (9a) we
solve for u* on the left hand side of the equation as a function of e. From (9b)
we solve the left hand side of the equation for v as a function of €. These ex-
pressions can be substituted back into (9) to derive a new asymptotically valid
expression for (9a). Applying solvability conditions (Fredholm-Alternative
theorem [13]) results in the compatability equation

e 3 (V7 = )P =y o+ 0 +36u(Vu- Vi) + 26029+ O(€) = 0 (10)

where v = u(7, X,Y) is now a function of the scaled variables X = £/4/|As],
Y = (/v/|As], and 7 = T/(24/]As|). The Laplacian V* = 9% + 0%
and we define 0 = =28, w = |Ay|A1/(2€%), v = 2Bc + ¢* + w?/4, where
B =(a—A1Ay)/e® and § = £1 is the sign of Ay. This is a two-dimensional
generalization of the equation presented in reference [12]. It should be noted
that the three-dimensional governing equation for v = u(7, X, Y, Z) is equiv-
alent to (10) except clearly the Laplacian is read V2 = 0% + 02 + 0%.
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4 Plane Wave Solutions

The simplest form of solutions to consider are plane waves. In the one-
dimensional case, plane wave solutions of (2) can be found and their stability
determined [4]. Indeed, these are the only exact solutions known for constant
external pumping S(z,y,t). A modulated external pumping can generate a
broader class of exact solutions which take the form of fronts, pulses, and
periodic wavetrains [12]. The generation of such solutions requires accurate
control of the external pumping S(z,y,t) and are thus not considered here.

Plane wave solutions are found by letting
u(r,X,Y)=A. (11)

Inserting (11) into (10) gives A% — 0 A% + (w?/4 — v)A = 0. The quintic
equation for A results in five solution branches given by

A 0’\/ai\/022—w2+47,_\/0i 0?2 —w? + 4y . (12)

2

Figure 1 depicts the solutions branches as a function of the bifurcation pa-
rameter -y.

The linear stability of the plane wave solutions can be determined by peturb-
ing the plane wave about one of the five solution branches:

u(r, X,Y) = A+ i(r, X,Y) (13)

where % < 1. The resulting linear evolution equation for @ is
1
iy + Z(V2 — w)?i — yii — 30 A%l + A + 26 A°V2i = 0. (14)

The spectral stability is then determined by Fourier transforming (14) in both
X and Y. The resulting differential equation for the spatial wavenumbers is
given by

. _1 4 (W 2\ 12 W_Q_ _ 2 4|~ = N
iy = [ e (2 25A)kr (4 v —30A2 + 544 | a = F(k)a,
(15)
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where 4 is the two-dimensional Fourier transform, and k? = k% + k% is the
wavenumber in radial coordinates where k, and k, are the wavenumbers in
the X and Y direction respectively.

Stability of the plane waves is determined by the sign of F(k,). Specifically,
for F(k,) > 0 for any k,, the solution is unstable. Stability is achieved for
F(k.) < 0 for all values of k,. Note that F(k,) depends upon the param-
eters v,0,w and J. Of practical interest is the maximum value of F(k,).
For unstable solutions, this determines the dominant growth rate of a given
instability. This maximum can be determined from dF(k,)/dk, = 0 so that

ky [kZ — (40A% —w)] = 0. (16)

The extremal values occur then at kF = 0 or £k} = +v/45A? —w. For k! to
have values which are nonzero, 46A? > w. Thus only three values of k* need
to be considered in determining the stability of the five branches of solutions.
The growth rate at k; = 0 is given by

w2

F(kr)=F(@0)=- (Z —y—30A*+ 5A4) : (17)

Likewise, the growth rate for both nonzero k, is
F(k}) = F(£V46A2 — w) = v + (30 — 20w) A% — A*. (18)

For a specific branch of solution (12), the growth rate and stability properties
can be calculated. For instance, consideration of the A = 0 branch of solution
results in instability for 7 > w?/4 when w > 0 and instability for v > 0 when
w < 0 (see Fig. 1(C) and (D)).

Although this provides a general analytic framework to determine stability,
the dependence of (12) and (15) on the sign and value of the three parameters
(v,0,w,d) prevents a simple overall description. Therefore, the remainder of
this section limits the parameter space by considering the specific case of
o = w = 1. The stability is then determined as a function of the bifurcation
parameter v for 6 = +1. Figure 1 summarizes these results. For § = 1,
all nonzero solutions are unstable. The zero solution itself is stable for v €
(—o00,1/4). Note that for |A| > 1/2, it can be explicitly found that (18) gives
the maximal growth rate of F(k}) = 1/4 (see Fig. 1(A)). For |A| < 1/2, the
zero mode (17) dominates the instability (see Fig. 1(B)). In contrast, the
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Figure 1: The left hand figure shows the branches of plane wave solutions
(12) as a function of the bifurcation parameter v for o = w = 1. The right
hand figure shows F(k,) for § = £1 for various values along the branches of
solutions: (A), (B), (C), and (D). For point (A), the largest growth mode
results in a modulational instability (18) for § = 1. The remaining curves
F(k,) have a maximum at k, = 0 as given by (17). For (B) and (D), this
leads to a long-wavelength instability whereas solutions are stable along (C).

d = —1 case gives (17) as the maximal growth rate. This is now stable for
the top branch of solutions (see Fig. 1(A)). Instability of the middle branch
remains unchanged (see Fig. 1(B)).

To further illustrate the dynamial behavior, (10) is numerically integrated.
Figure 2 demonstrates the convergence of a wide range of plane wave solutions
to the stable top branch or zero branch of solutions for 6 = —1. Convergence
to the exact solution is rapid with the convergence rate determined from
the value of F(0). The stable two-dimensional evolution is shown in Fig. 3.
Note the rapid convergence to the final value of A = 0.97 when using v = 0.2.
The instability of the § = 1 case is demonstatred in Fig. 4 for v = 0.2. Note
the onset of a modulational instability which is consistent with the analytic
prediction of (18) being the dominant growth mode.

11
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Figure 2: Two-dimensional numerical simulations which confirm that various
initial plane waves converge to the analytically predicted values of Fig. 1. For
the specific values considered, § = —1, 0 = w = 1, and v = .2, the initial
conditions converge to A = £.97 or A = 0.

5 Localized Solutions: Light Bullets

One of the fundamentally important solutions to any nonlinear optical sys-
tem is localized solutions. Indeed, the stabilization of such structures is of
paramount importance from an applications standpoint. Often such localized
solutions act as the optical bits and are the building blocks for all-optical sig-
nal processing and switching applications. In two-dimensions, exact solutions
of this form are rarely found. However, the evolution equation (10) admits
such solutions for § = 1. Their construction is accomplished by assuming the
steady-state form

u(r, X,Y) = Asech(BX)sech(BY). (19)
Inserting (19) into (10) gives for § =1
A* = B* or A’=6B (20a)
w = +2¢/y—- Bt (20b)
o = (B?/A%) (w—4B*+34%) . (20c)

Cynlindrical symmetry is the key aspect of generating such solutions. The
bifurcation parameter in this case is chosen to be 7 [12]. Thus given values
of v and B, the remaining parameters are fixed.

In one-dimension, the paramter v controls the level of linear growth and gen-
erates instabilities for v > 1/4. Stable solutions only exist in the parameter

12
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Figure 3: Evolution of two-dimensional plane wave with added white-noise
for ) = —1 and v = 0.2. The noise is quickly attenuated as the solution
converges to its analytic steady-state solution (12). Here 0 = w = 1 so that
the stable steady-state branch is depicted in Fig. 1(A).

regime v € [0,1/4). Likewise, the only stable solutions of the form (19) are
found for v in a small range near zero. The precise value of v for which
the solution destabilizes can be calculated through numerical simulations or
a numerical linear stability analysis. Figure 5 shows the evolution of initial
conditions which settle to the analytically predicted solutions (19) and (20).
In Fig. 5, the initial condition is the exact solution on the branch A% = 6B?
with a small amount of initial white-noise and with v = 0.1 and B = 0.25.
The white-noise immediately is attenuated and the evolution remains on the
exact solution, indicating stability. The stability of this branch of solutions
can be more clearly seen in Fig. 6 where a variety of initial A values are
considered for initial conditions of the form (19). The resulting maximum
amplitude is plotted as a function of 7 and shows the distinct convergence of
initial data to the A%2 = 6 B2 branch of solutions for sufficiently high values of
A. For |A| < 0.3, the solutions are attenuated to zero whereas for |[A| > 0.7
the the two-dimensional light bullets are destabilized.

A variety of interesting phenomena can occur if the solution (19) is desta-
bilized. The parameter space for inducing instability is large and depends
upon the values of 7, w, A, B and o chosen. In this large parameter space,
we fix our parameters and typically vary the value of =, i.e. as in the one-
dimensional case, 7y is our bifurcation parameter. But as demonstrated in the
preceding paragraph, the initial amplitude can destabilize the solution above

13
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Figure 4: Evolution of two-dimensional plane wave with added white-noise

for § =1 and v = 0.2. The noise quickly seeds the modulational instability
predicted by (18) and illustrated in Fig. 1(A). Here we take 0 = w = 1.

Figure 5: Stable evolution of initial conditions (19) and (20) seeded by white-
noise. Here v = 0.1 and B = 0.25 with A% = 6B
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Time (1)
Figure 6: Convergence of initial data given by (19) to stable A?> = 6B?
solution of Fig. 5. Below A ~ 0.3 the trivial solution is an attractor whereas

for values of above A = 0.7, the solution is unstable and evolves to a structure
similar to Figs. 7 and 8.

L2

20 0
-20

20 Oy Y 20 Oy

Figure 7: Onset of instability which generates a modulated rim structure on
the localized solution. Here we choose w = 0.5, A =1, and A? = 6B2.
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Figure 8: Onset of instability which generates a rim structure on the localized
solution which propagates radially outward. Here we choose w =1, A =1,
and A? = 6B2

a critical threshold value. In Figs. 7-9, the typical instabilities observed in
numerical simulations are considered. These simulations represent qualita-
tively different instability mechanisms which arise from (10) starting with
solutions of the type (19). Figure 7 demonstrates the onset of instability
which occurs near the peak of the pulse. The pulse peak first flattens and
then forms a modulated rim structure which continues to evolve. Figure 8
shows the formation of a localized structure which has a definite rim struc-
ture without modulations. In this case, the circular structure continues to
expand while keeping the internal amplitude constant. Of greatest interest
is Fig. 9 which evolves by first generating concentric rings which evolve into
localized, steady-state solutions of alternating signed amplitude. The genera-
tion of pulses continues to the boundary at which point a radially-symmetric,
quasi-periodic, steady-state pattern is obtained. This stabilization of a col-
lection of localized solutions is further exhibited in Fig. 10 which begins with
the initial condition u(x,y,0) = sech(x + y) + sech(z — y) and evolves into
a steady-state pattern of localized solutions. The interaction between pulses
is critical for stabilizing the configuration.

The stable solutions of the form (19) and demonstrated in Fig. 5 can poten-
tially act as optical bits in technological applications. For all-optical devices,
switching and control of such structures is of critical importance. Thus, the
pulse-to-pulse interaction between such bits is important to characterize. We
consider the interaction of two stable localized bits of the form (19) with (20).
For one case, the bits are assumed to be in-phase so that the amplitudes are

16
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Y -15 45

Figure 9: Instability of localized initial condition of the form (19) which
evolves by first generating concentric rings which evolve into a pattern of
localized, steady-state solutions of the form (19) with alternating signed am-
plitude. The generation of pulses continues to the boundary at which point
a radially-symmetric, quasi-periodic, steady-state pattern is obtained.

17



5 LOCALIZED SOLUTIONS: LIGHT BULLETS

Y -10 1o Y

Figure 10: Formation of a stable collection of localized solutions beginning
with the initial condition u(z, y, 0) = sech(z+y)+sech(z—y). The interaction
between pulses is critical for stabilizing the configuration.
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both of the same sign. In the second case, the bits are out-of-phase so that
the amplitudes are of opposite sign. Thus a nodal separation exists between
them. The nodal separation is of critical importance for stability consid-
erations [14]. Figures 11 (in-phase) and 12 (out-of-phase) demonstrate the
interaction dynamics of the optical bits for these two cases. The in-phase
solutions quickly coalesce and form an oblong version of Fig. 8. For long
times, the structure evolves into a circularly symmetric shape. In contrast,
the out-of-phase solutions are stable, robust, and ideal for applications. For
possible logical bit operations, one may be interested in using a control pulse
to switch or alter the state of the system. Thus we consider the interaction of
three pulses, one of which is of opposite magnitude. The interaction of three
pulses evolves towards the canonical two pulse interaction case. Specifically,
the two same signed pulses slowly coalesce to form a single pulse much as
in Fig. 11. The formation of a new single pulse occurs midway between the
pulses. What then remains is a steady state solution exhibited in Fig. 12.
Figure 13 exhibits this phenomena for two different configurations. The first
configuration (Fig. 13a) begins with the stable configuration of Fig. 12 and
perturbs it with a third localized pulse. The configuration destabilizes as the
two positive pulses begin to coalesce. The second configuration (Fig. 13b)
begins with the unstable configuration of Fig. 11 and perturbs it with a
third, opposite signed localized pulse. The configuration again destabilizes
as the two positive pulses begin to coalesce. For both of these cases, the
coalescence is a slow process which eventually leads back to the stable con-
figuration Fig. 12.

6 Periodic Solutions

The ability of the system (10) to stabilize localized structures is critical for
applications. The interaction dynamics between such structures is also of im-
portance for all-optical switching and logic operations. The previous section
clearly shows that the system supports stable, interacting localized struc-
tures. To generalize this further, we attempt to construct periodic solutions
of (10). This is motivated by the large number of periodic solutions found
in the one-dimensional case [12]. Candidates for such solutions are the Ja-
cobi elliptic functions [15] which are generalizations of both the hyperbolic
functions (sechX and tanhX') and the sinusoidal functions (cos X and sin X).

19
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v 35 55 O B\ 35 g 0, By a5 g 0, 35

Figure 11: Interaction of two localized solutions (19) of the same sign. With-
out a nodal separation between them, the pulses are in-phase and are unsta-
ble. Specifically, the pulses begin to coalesce into a single localized solution.

35 35 ‘ 35
X Y -35 35 OX Y -35 35 OX

Y -35 35 0

Figure 12: Interaction of two localized solutions (19) of opposite sign. With
a nodal separation between them, the pulses are out-of-phase and are stable.

We begin by considering solutions of the form
u(r, X,Y) = Aen(BX, k)en(BY k) , (21)

where £ is the elliptic modulus. The Jacobi elliptic cn (X, k) solution becomes
cos(X) for £ = 0 and a series of well-separated sech X solutions of alternating
positive and negative amplitudes for £ — 1. Plugging (21) into (10) results
in a system which cannot be solved exactly. However, along the lines X =0
and Y = 0 and with § = 1, a solution can be found explicitly. Since (21)
is periodic in X and Y, this result also holds along lines an integer period
distance away from X = 0 and Y = 0. Thus, we can find an analytic
representation of the solutions at every (X,Y) = (nP,mP) where P is the

20
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10 10
Yy -0 40 0 ¥ A8 40 50 y (10 40

0 10
Figure 13: Interaction of three pulses for two different configurations. The
first configuration (a) begins with the stable configuration of Fig. 12 per-
turbed by a third localized pulse. The configuration destabilizes as the two
positive pulses begin to coalesce. The second configuration (b) begins with
the unstable configuration of Fig. 11 perturbed by a third, opposite sign lo-
calized pulse. This configuration also begins to coalesce. For both of these
cases, the coalescence is a slow process which eventually leads back to the
stable configuration Fig. 12.
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Figure 14: Evolution of (21) with (22) to a steady-state solution with & = 0.9,
A =1, w=1, and starting on the A2 = 632 branch.

Figure 15: Evolution of (21) with (22) to a steady-state solution with k& =
0.99, A =1, w = 1, and starting on the A? = 682 branch. The higher value
of elliptic modulus £, in comparison with Fig. 14, leads to an instability

which generates a new steady-state structure with similar features to Figs. 7
and 8.
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period of en(BX, k) and n, m are integers. Specifically we find

A? = k*B* or A?=6k’B? (22a)
(K*(6 4+ 2k?)B* + 2A* — (7 + 4k?) A’ B® + wk?B?) | A* (22b)
v = W?/A+ (1 -4k = 2k")B* + w(1 — k*)B? — A* + (3 + 4k*) A* B2c)

Although this is not an exact solution for all X and Y, it holds along a
periodic lattice. Numerically integrating (10) with the initial condition (21)
can quickly settle to a steady-state solution which is perturbatively close
to that constructed. Figure 14 demonstrates this evolution. And as with
previous localized solutions, (21) can destabilize and form structures observed
previously. For instance, Fig. 15 demonstrates a similar structure to that of
Fig. 7. The only difference between Figs. 14 and 15 is the value of the elliptic
modulus k£ which is £ = 0.9 and k£ = 0.99 respectively. Note that even when
destabilized the resulting pulse-to-pulse interaction holds the lattice structure
together.

We next consider solutions of the form

u(r,X,Y) = Adn(BX, k)dn(BY, k), (23)

where again k is the elliptic modulus. The Jacobi elliptic dn(X, k) solution
becomes unity for £ = 0 and a series of well-separated sechX solutions of
same signed amplitudes for £ — 1. Plugging (23) into (10) results in system
which cannot be solved exactly. However, as before an analytic representation
of the solutions at every lattice point (X,Y) = (nP,mP) can be found. This
gives

A? = B* or A*=6B? (24a)
= ((2+6k*)B*+2A" — (Tk* + 4)A’B* + wB?)/A* (24b)

v = w4 — (2+4k* — kY)B* —w(1 — k*)B? — A* + (3k* + 4) A’ B24c)

As before, this is not an exact solution for all X and Y, but it holds along a
periodic lattice for § = 1. Numerically integrating (10) with the initial con-

dition (23) shows the solution decays to the plane wave solutions considered
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6 PERIODIC SOLUTIONS

Y 09 30

Figure 16: Evolution of (23) with (24) to the steady-state plane wave solution
with £ = 099, A = 1, w = 1, and starting on the A = B branch. The
decay rate to the plane wave solution is strongly dependent upon the elliptic
modulus k, i.e. for £ — 0, the decay is much more rapid.

earlier. The decay rate to the plane wave is determined by the elliptic mod-
ulus k, i.e. for £ — 1 the decay is significantly more rapid than for £ — 0.
Figure 16 demonstrates the instability of the dn(X, k) solution.

The remaining Jacobi elliptic function, sn(X, k), does not allow for the con-
struction of exact solutions along periodic lattice lines as before. The sn(X, k)
solution becomes sin X for £ = 0 and a series of well-separated tanhX front
solutions as k — 1. Regardless, we can still numerically integrate (10) with
the initial conditions

u(r, X,Y) = Asn(BX, k)sn(BY, k), (25)

where A, B, and k are now chosen independently. One choice is to pick these
values according to those given by (22) or (24). Figure 17 depicts the conver-
gence of the initial condition (25) with (24) to a steady-state solution. This
again demonstrates the stabilizing influence of pulse-to-pulse interactions
in the OPO cavity. An example of more complicated steady-state, spatial
structure is illustrated in Fig. 18. Regardless, the pulse-to-pulse interaction
preserves the stability of the periodic structure.
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6 PERIODIC SOLUTIONS

Figure 17: Evolution of (25) using (22) to a steady-state solution with k& =
0.9, A = 0.6, w = 0.5, and starting on the A = B branch. The solution
quickly settles to localized solutions which have nodal separation.

Figure 18: Evolution of (25) using (22) to a steady-state solution with
k=099, A =1, w =1, and starting on the A?> = 6B% branch. The so-
lution quickly settles to localized solutions which have nodal separation and
nontrivial spatial structure resembling Figs. 7 and 8.
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7 STABILITY OF SOLUTIONS

7 Stability of Solutions

Having obtained non-trivial localized solutions to Eq (10), we wish to deter-
mine analytically if these solutions are stable. For the plane wave solutions
(Sec. 4), it was reasonably easy to analytically determine the stability using
a Fourier transform. This is an unreasonable approach for other solutions
such as the localized solutions: (19) and (20).

We proceed similarly as in the plane wave case, intuitively asking what is
the reaction of the system to a small perturbation of an equilibrium solu-
tion? If the perturbed solution returns to the equilibrium solution, than the
solution is said to be stable. If the perturbed solution wanders away from
the equilibrium solution, than the solution is said to be unstable. Formally,
an equilibrium solution U(z) of a dynamical system @ = X (u) is spectrally
stable if the spectrum of the linear operator obtained by linearizing X (u)
around U(z) has no strictly real part [19].

Linearizing the governing equation (10) about U(7, X,Y) = u(X,Y)+ev(r, X, Y)
where u(X,Y) is an equilibrium solution gives:

v = Lu(X,Y)]v+ O(e) (26)

where

1
L= —(Z(V2—w)2—7—30u2+u4+35(Vu-Vu)+4(5uV2u+2(5u2V2+6(5u(u$8w+uy8y))
(27)

Notice that (26), (27) reduce to (14) for the case of constant equilibrium
solution: u(X,Y) = A. Since the right hand side of (26) is independent of
T, separation of variables

v(1,X,Y) = w(X,Y)e (28)
results in the leading order eigenvalue problem:
Llu(X, V)w(X,Y) = \w(X,Y) (29)
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8 CONCLUSIONS

From the above definition of spectral stability it is clear that if (29) is satisfied
for Re(\) > 0 than the solution u(X,Y") is unstable. There are two methods
for determining the spectrum of linear operators with periodic coefficients
such as L[u(X,Y)]: finite difference methods and the Floquet-Fourier-Hill
method [19]. After only partial success at computing the linear spectra using
the finite difference method, we implement Hill’s method. Hill’s method
can be used to compute the spectra for linearized operators with periodic
coefficients. The advantages of Hill’'s method over the finite difference method
are given in full in [19] but are summarized as follows:

e Hill’s method relies on Fourier series and is thus spectrally accurate.

e The use of Floquet theory in Hill’s method gives a more uniform ap-
proximation of the components of the spectrum rather than isolated
elements of it.

e The matrices used in the QR algorithm for the computation of eigen-
values are typically much smaller than for the finite difference methods
considerably reducing the time needed to compute spectra.

As a check on our implementation of Hill’s method we again consider the
stability of the plane wave solutions found in Section 4. Figure 19 gives the
approximation via Hill’s method to the linearized spectrum expanded about
the constant solution (11) for the same parameter values considered in the
stability analysis in Fig. 1. It is found that the stability obtained via Hill’s
method agrees with that found in Fig. 1 obtained using Fourier Transforms.

The implementation of Hill’s method to study the stability of localized so-
lutions is sufficiently more complicated that it will not be considered here.
However it is clear that this is the method that would be best used to com-
pute the stability of the linearized spectrum expanded about the localized
solution of hyperbolic secant form (19) with (20).

8 Conclusions

We have considered the formation and stability of two-dimensional electro-
magnetic structures in an OPO system near the resonance detuning limit. We
found exact solutions for a wide variety of two-dimensional patterns, includ-
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Figure 19: An approximation to the linearized spectrum about the constant
solution (11) obtained via Hill’s method. The parameter values for the four
solutions (A), (B), (C), and (D) correspond to that in Fig. 1 for 6 = —1.
The stability of each solution agrees with that found in Fig. 1.
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8 CONCLUSIONS

ing cavity solitons, which are indeed formed and stabilized by the parametric
mixing with diffraction. The stabilization of such structures is of paramount
importance from an applications standpoint. Such localized solutions could
serve as optical bits and their interaction dynamics the building blocks for
all-optical signal processing and switching applications. The stabilization of
such nontrivial spatial structures was considered via extensive numerical sim-
ulations and the framework for analytically examining the spectral stability
of these structures using Hill’s method was discussed. The work considered
here suggests some promising results concerning the possible technological
uses of the OPO operating near the resonance detuning limit.

The governing equation (10) considered in this manuscript can be easily
extended to three dimensions as briefly discussed in Section 3. Localized
solutions similar to the form (19) exist and as in the two-dimensional case,
it is probable that these solutions are stable in some parameter regions.
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