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Abstract. We use the geometry of characteristic cycles of Harish-Chandra modules for a real
semisimple Lie group GR to prove an upper triangularity relationship between two bases of each
special representations of a classical Weyl group. One basis consists of Goldie rank polynomials
attached to primitive ideals in the enveloping algebra of the complexified Lie algebra g; the other
consists of polynomials that measure the Euler characteristic of the restriction of an equivariant
line bundle on the flag variety for g to an irreducible component of the Springer fiber. While
these two bases are defined only using the structure of the complex Lie algebra g, the relationship

between them is closely tied to the real group GR. More precisely the order leading to the upper
triangularity result is a suborder of closure order for the orbits of the complexification of a maximal
compact subgroup of GR on the flag variety for g.

1. Introduction

The main result of this paper concerns a relationship between two natural bases of each special
representation of a Weyl group. One basis arises in the study of primitive ideals in enveloping
algebras, the other in the complex geometry of the Springer fiber. The relationship we uncover
originates in the geometry of characteristic cycles of Harish-Chandra modules. As we detail below,
it allows one to transport interesting information between the category of Harish-Chandra modules
and the category of highest weight modules.

Before turning to applications, we formulate our main result in more detail. Let g denote a complex
semisimple Lie algebra, let B denote its variety of Borel subalgebras, and fix a base point b1 = h1⊕n1.
(It would be more customary to call the basepoint simply b, but shortly b will denote an arbitrary
Borel subalgebra.) Let W denote the Weyl group of h1 in g, and write ρ ∈ h∗

1 for the half-sum of
the roots of h1 in b1. Let N ∗ denote the nilpotent cone in g∗, and fix a complex nilpotent coadjoint
orbit O. Consider the set Primρ(g,O) of two-sided ideals in the universal enveloping algebra U(g)
such that: (1) I is the annihilator of a simple U(g) module X (i.e. I is primitive); (2) I contains the
augmentation ideal in the center of U(g) (i.e. I has infinitesimal character ρ); and (3) with respect
to the degree filtration, the associated graded ideal grI in the symmetric algebra S(g) cuts out the
closure O of O (i.e. the associated variety of I is O). This set is nonempty if and only if O is special
[BV]. To each primitive ideal I in U(g) (and hence to each element of Primρ(g,O)), Joseph attaches
a harmonic homogeneous polynomial pI ∈ S(h∗

1), the so-called Goldie rank polynomial ([J2]); see
Section 2.2. Set

(1.1) Sp(O) := spanC{pI | I ∈ Primρ(g,O)}.

Joseph proves that the elements pI are independent, and that the above span of this basis is an
irreducible representation of W ; it is called the special representation of W parametrized by O.

Now we introduce another basis of Sp(O). Let T ∗B denote the cotangent bundle to B, and write
µ : T ∗B → N ∗ for the moment map. Concretely we may write T ∗B = {(b, ξ) | ξ ∈ (g/b)∗} and then
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µ maps a point (b, ξ) to ξ (or more precisely to the image of ξ in g∗ under the canonical inclusion
of (g/b)∗ in g∗). For ξ ∈ N ∗, let µ−1(ξ) denote the corresponding fiber, the so-called Springer
fiber. Spaltenstein established that µ−1(ξ) is equidimensional, and in particular that its irreducible
components all have the same dimension. Write Irr(µ−1(ξ)) for the set of irreducible components.
Now fix λ ∈ h∗

1 dominant and integral for the roots of h1 in b1, and let Cλ denote the corresponding
one-dimensional representation of B1. Consider the Borel-Weil line bundle Lλ := G ×B1

Cλ, and
for any subset Z ⊂ Irr(µ−1(ξ)), define qZ(λ) to be the Euler characteristic of Lλ restricted to Z.
The assignment λ 7→ qZ(λ) extends to a homogeneous polynomial qZ ∈ S(h1) sometimes called the
Joseph polynomial after its introduction in a different context in [J3]; see also [J4] and the references
therein, especially [R]. The polynomials qZ are not independent for trivial reasons. The component
group AG(ξ) of the centralizer of ξ in G clearly acts on Irr(µ−1(ξ)). (Here G may be taken to be
any complex connected Lie group with Lie algebra g; the action is insensitive to isogeny.) If Z and
Z ′ are actually irreducible components in the same AG(ξ) orbit, then qZ = qZ′ . In fact these are the
only dependence relations, however, and the polynomials qC as C ranges over AG(ξ)\Irr(µ−1(ξ)) are
independent. Moreover if we set O = G · ξ and assume this orbit is special, we have

Sp(O) = spanC{qC | C ∈ AG(ξ)\Irr(µ−1(ξ))}

with notation as in Equation (1.1). Our main problem of interest, first posed by Joseph, is to relate
the basis of qC ’s to the basis of the pI ’s.

Initially it was conjectured that (up to scaling) the two bases actually coincided [J3], and Melnikov
proved that is indeed the cases for sl(n,C) [Me]. Earlier Tanisaki provided examples (outside of Type
A of course) where they did not coincide [Ta]. He suggested the next possible alternative, namely
that there is an upper triangular relation between the two. McGovern proved this in all classical
cases [Mc3]. Our main result is a proof of this result under a technical (conjecturally superfluous)
hypothesis which we subsequently verify in many cases (including all classical types).

Theorem 1.2. Suppose O is a special nilpotent orbit in g∗ which satisfies Hypothesis (⋆). (This
condition is described explicitly below. It holds if g is classical and is conjectured to always hold; see
Section 5.) Fix ξ ∈ O. Then there is a bijection from

AG(ξ)\Irr(µ−1(ξ)) −→ Primρ(g,O)

and a total order on these sets so that the matrix relating the p- and q-bases is upper triangular.
More precisely, use the total order to enumerate AG(ξ)\Irr(µ−1(ξ)) as C1, . . . , Cd and let Ij denote
the image of Cj under the above bijection. Then there are positive numbers mij such that

qIi
=

∑

j≤i

mijpCj
.

The main technique of the current paper interprets the bijection, the total order, and the coef-
ficients using characteristic cycles of Harish-Chandra modules for real groups. (The more precise
Theorem 3.13 makes this clear.) Once Hypothesis (⋆) is absorbed, the proofs rely only on a simple
conceptual result of Chang [Ch] which, roughly speaking, says that computing leading term cycles
of Harish-Chandra modules is equivalent to relating the p- and q- basis. Since there are (easy) trian-
gularity results available for characteristic cycles one obtains the current theorem. As we remarked
above, McGovern has established the conclusion of Theorem 1.2 for all classical cases (without as-
suming Hypothesis (⋆)). However our proof of Theorem 1.2 is very different from McGovern’s: the
total order he provides (which is essentially combinatorial) bears no obvious relation to ours (which
is essentially geometric).

To discuss Hypothesis (⋆) we need some notation. Suppose GR is a real linear reductive Lie group
with Lie algebra gR. Let KR denote its maximal compact subgroup, and write K the corresponding
complexification. Let g denote complexification of gR, and let g = k⊕p denote the complexified Cartan
decomposition. K acts on B with a finite number of orbits. Given such an orbit, let T ∗

QB ⊂ T ∗B
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denote the conormal bundle to Q; concretely, it is easy to see that

T ∗
QB = {(b, ξ) | b ∈ Q and ξ ∈ (g/b + k)∗}

Thus the moment map image µ(T ∗
QB) is a subvariety of the nilpotent cone elements in (g/k)∗, which

we denote N ∗
p . (The notation reflects that the Killing form identifies the nilpotent cone in (g/k)∗

with the theInilpotent cone in p.) Note that µ(T ∗
QB) is transparently invariant under the action of

K, and since µ is proper and T ∗
QB is irreducible, µ(T ∗

QB) is irreducible as well1. Since there are

only a finite number of K orbits on N ∗
p , it follows that there exists such an orbit, say µ(Q), such

that µ(Q) is dense in µ(T ∗
QB). All such K orbits on N ∗

p arise in this way, and we partition K\B

accordingly by defining, for OK ∈ K\N ∗
p ,

µ−1(OK) = {Q ∈ K\B | µ(Q) = OK}.

Recall if O is a complex nilpotent orbit in g∗, then O ∩ (g/k)∗ (if nonempty) is an equidimensional
union of K orbits [KR], and of course all nilpotent K orbits on (g/k)∗ arise this way. We often
implicitly assume O ∩ (g/k)∗ is nonempty and write K\(O ∩ (g/k)∗) for the K orbits on O ∩ (g/k)∗.

We also need to recall some basic features of the geometry of the conormal bundle to an element
of µ−1(OK). Fix ξ ∈ OK , and define AK(ξ) to be the component group of the centralizer of ξ in
K. Because K is a subgroup of G, AK(ξ) maps to AG(ξ), and so the orbits of AG(ξ) on Irr(µ−1(ξ))
break into potentially smallerAK(ξ) orbits. This certainly happens and presents some minor technical
complications detailed in Definition 3.19 below. Now fix Q ∈ µ−1(OK). According to Proposition 2.7
below, T ∗

QB ∩ µ−1(ξ) is dense in an AK(ξ) orbit, say Z(Q), on Irr(µ−1(ξ)) and all such orbits may

be written uniquely as Z(Q) for Q ∈ K\B.

Finally we need to recall two representation-theoretic constructions. Given an irreducible Harish-
Chandra module X for GR, one may define an orbit supp◦(X) ∈ K\B by considering the support
of the appropriate localization of X (Definition 3.1). By replacing X by an associated graded object
and passing to its support, one defines the associated variety of X ; see Section 3. It transpires that
AV(X) is a finite union of closures of K orbits on N ∗

p . It follows easily from the definitions (see
Proposition 3.10) that µ(T ∗

supp
◦
(X)B) is contained in AV(X). Hypothesis (⋆) is designed so that this

inclusion is as close to an equality as possible, given that AV(X) is generally reducible.

Hypothesis (⋆). Assume for the purposes of the introduction that the AK(ξ) orbits and AG(ξ)
orbits on Irr(µ−1(ξ)) coincide; see Section 3.3 for the general case. A complex nilpotent orbit O for
g∗ is said to satisfy Hypothesis (⋆) if is there is a real group GR with complexified Lie algebra g

and an orbit OK of K on (O ∩ (g/k)∗) such that for all Q ∈ µ−1(OK), there exists an irreducible
Harish-Chandra module MQ for GR with trivial infinitesimal character with the property that:

(1) supp◦(MQ) = Q; and
(2) µ

(

T ∗
QB

)

is dense in an irreducible component of AV(MQ).

We conjecture that the more general Hypothesis (⋆) of Section 3.3 always holds for any special
orbit O. (By the above remarks, if Hypothesis (⋆) holds, O must indeed be special.) This is clearly a
technical condition, but it doesn’t seem inaccessible to general techniques. We have been unable to
prove it in general however. Using less general techniques, we establish Hypothesis (⋆) for all special
orbits for all classical types, for G2, and for some cases in F4; see Section 5. (As explained there, the
Type D case is due to W. McGovern.)

In any event, we may now describe the bijection of Theorem 1.2. Retain the hypothesis of the
theorem. In Section 3 (see Theorem 3.13), we prove that the map

(1.3) AG(ξ) · Z(Q) 7→ Ann(MQ)

1Actually, if K is disconnected, then T ∗

Q
B and hence µ(T ∗

Q
B) need not be irreducible. But this complication is

harmless and we ignore it for the purposes of the introduction.
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is a bijection from

AG(ξ)\Irr(µ−1(ξ)) → Prim(g,O)ρ,

as in the theorem. Since we have assumed (for the purposes of the introduction) that the AK(ξ) and
AG(ξ) orbits coincide on Irr(µ−1(ξ)), the assignment Q ∈ µ−1(OK) to Z(Q) ∈ AG(ξ)\Irr(µ−1(ξ))
described above is a bijection. Now µ−1(OK) is a subset of K orbits on B and hence inherits the
partial order arising from the closure order. Hence AG(ξ)\Irr(µ−1(ξ)) inherits this partial order and,
according to the bijection in (1.3), so does Prim(g,O)ρ. Fix any total order compatible with this
partial order. This total order and the bijection of (1.3) are the ones that appear in Theorem 1.2.

The construction of this bijection is interesting for several reasons. Most obviously, the problem
of relating the p- and q- bases seems like a problem that involves only the complex semisimple Lie
algebra g, and yet the total order of the theorem is intimately related to the geometry of real groups.
A second key observation is that for a given complex orbit O, there may be several real groups GR,
or several K-orbits OK for which Hypothesis (⋆) holds. In extreme cases, for instance, by using two
different components OK one can get recover two total orders that are the exact opposite of each
other; the immediate conclusion is that the matrix in this case is actually diagonal. (Understanding
the family of partial orders obtained in this way on AG(ξ)\Irr(µ−1(ξ)) might be very enlightening.)
In Section 4 we interpret these phenomena as a means to transfer information about characteristic
cycles of Harish-Chandra modules between two different real forms of the same complex group; see
Remark 3.14. In Remark 5.47, we indicate how this transfer could be related to information about
the conjectural automorphic spectrum of a real group.

The theorem indicates the importance of Hypothesis (⋆). As remarked above it holds for any
special orbit O for a classical Lie algebra. Section 5 gives a complete status report, but for the
purposes of the introduction, we give one example. Suppose g = sp(2n,C) and fix O. Then O is
parametrized by a partition of 2n in which all odd parts occur an even number of times. Suppose also
that each even part 2ni occur an even number of times, say 2di. This latter condition is equivalent to
the existence of some p and q with p+ q = n such that if GR = Sp(p, q), then O∩ (g/k)∗ is nonempty.
In Theorem 5.2, we prove that Hypothesis (⋆) holds for O by choosing any irreducible component
of O ∩ (g/k)∗, and thus Theorem 1.2 applies. As we let p and q vary and the choice of irreducible
component OK , one obtains roughly 2

P

i
di possibilities satisfying Hypothesis (⋆). The partial orders

corresponding for to each different choice are wildly different (although the bijections they define are
the same). Piecing each of them together gives powerful information. See Section 5 for more details.

To conclude the introduction, it is worthwhile to detail the content of our techniques in the
special case of complex groups or, by the Bernstein-Gelfand-Gelfand-Enright-Joseph equivalence of
categories (e.g. [BB3]), the highest weight category. Fix a Borel subalgebra b1 ⊂ g, write B1 for the
corresponding complex group, and let L denote an irreducible (g, B1)-module with trivial infinitesimal
character. We may write L = L(wρ) in the standard parametrization, and recall the associated variety
AV(L) (e.g. [J3]); see Section 4 below. Write O = AV(Ann(L)), and fix ξ ∈ O. Then AV(L) is a
union of the closures of a subset of the irreducible components O1, . . . ,On of O∩(g/b1)

∗. Spaltenstein
([Sp]) attached to each Oi an orbit Zi of AG(ξ) on Irr(µ−1(ξ)) (Proposition 2.3). If we apply the
equivalence of categories between (g, B1)-modules and the category of Harish-Chandra bimodules for
the complex group G, and use the properties of characteristic cycles developed in Section 3, we may
conclude that

(1.4) AV(L) = O1 ∪ · · · ∪ Ok if and only if qAnn(L(w−1)ρ) =

k
∑

i−1

ci pZi
with each ci 6= 0.

This (given the computations of [H]) is the main result of [J3], and indeed the main motivation
for his definition of the p-basis. (We sketch a simple proof of (1.4) using the techniques of this
paper in Theorem 4.1 below.) Thus Theorem 1.2 implies that the geometry of characteristic cycles
of real groups has implications in the highest weight category. Earlier in [T3, Theorem 1.3], using
the computation of characteristic cycles of derived functor modules, we produced many new infinite
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families of highest weight modules with irreducible associated varieties, and different real forms gave
different families. The present ideas may be seen as a significant extension.

Acknowledgments. I thank W. McGovern for numerous helpful conversations as well as continued
encouragement during the course of this project. His paper [Mc3] was the inspiration for the current
paper. I thank him for allowing me to include Theorem 5.43 here. I also thank D. Miličić for helpful
conversations related to [Ch].

2. Background and Notation

2.1. General Notation. Let G be a complex reductive group. Let GR be a real form of G cor-
responding to a (complexified) Cartan involution θ. Let KR = Gθ

R
denote the maximal compact

subgroup of GR. Write gR for the Lie algebra of GR, g for that of G, and likewise kR and k. Let K
be the corresponding complex subgroup of G and write g = k ⊕ p for the Cartan decomposition with
respect to θ. Write N ∗ for the cone of nilpotents in g∗ and N ∗

p for N ∗ ∩ (g/k)∗. Let B denote the
variety of Borel subalgebras in g, and now revert to the more customary notation for a basepoint,
b = h ⊕ n, so that B = G/B. Let µ : T ∗B −→ N (g∗) denote the moment map for the G-action on
T ∗B. For ξ ∈ N ∗, write µ−1(ξ) for the inverse image of ξ under µ. Let W denote the Weyl group of
h in g.

Given a complex orbit O, we write K\(O ∩ (g/k)∗) for the set of K orbits on O ∩ (g/k)∗. When
this notation is used, we often implicitly assume O ∩ (g/k)∗ is nonempty.

Given ξ ∈ N ∗
p , we let AG(ξ) denote the component group of ZG(ξ), the centralizer of ξ in G,

and write AK(ξ) for the component group of ZK(ξ). The groups AG(ξ) are sensitive to the isogeny
class of G; but we will only study certain orbits of AG(ξ) which are insensitive to isogeny. (So, for
instance, we could assume with little loss of generality that G was adjoint.) In any event, the natural
inclusion

ZK(ξ) −→ ZG(ξ)

descends to a map

iξ : AK(ξ) −→ AG(ξ).

In general, iξ is neither injective nor surjective. (First examples: surjectivity fails for the nonzero
nilpotent orbit for Sp(1, 1); injectivity fails for any orbit in Sp(4,R) with Jordan form 22.) For an
algebraic variety Z, we let Irr(Z) denote the set of its components. Note that AG(ξ) and AK(ξ) act
on Irr(µ−1(ξ)), and, in particular, the orbits will coincide exactly when iξ is surjective.

Given Q ∈ K\B and an irreducible K-equivariant local system ψ supported on Q, we write
X(Q,ψ) for the Harish-Chandra module for GR with trivial infinitesimal character corresponding to
ψ via localization as in [Mi, Theorem H.5.3]. If ψ = 11, the trivial local system supported on Q, then
we often write X(Q) instead of X(Q, 11).

For w ∈ W , we write L(w) for the simple highest weight module for g with trivial infinitesimal
character parameterized by w. We adopt the standard convention so that L(e) is an irreducible
Verma module, while L(wo) is finite-dimensional (where wo is the long element of W ).

2.2. Primitive Ideals. Let Prim(U(g)) denote the set of primitive ideals in U(g)). For each element
I ∈ Prim(U(g)), let grI denote the ideal in S(g) obtained from the grading of I by degree in the
enveloping algebra. Define AV(I), the associated variety of I, to be the subvariety of g∗ cut out by
grI. It is well-known that AV(I) = O for some nilpotent orbit O ⊂ N ∗ [BB1].

It is easy to see that I contains a unique maximal ideal of the center of U(g). Write χ ∈ h∗

for the dominant weight parameterizing this ideal via the Harish-Chandra isomorphism and write
I ∈ Prim(U(g))χ. For any dominant integral λ ∈ h∗, write I(χ+λ) ∈ Prim(U(g))χ+λ for the primitive
ideal obtained from I using the translation functor from χ to χ + λ. Finally recall the Goldie rank
polynomial qI ∈ S(h) attached to I. This polynomial is characterized by the condition that its value
at χ+ λ is the Goldie rank of the primitive quotient U(g)/I(χ+ λ); see [J2].
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Primitive ideals with trivial infinitesimal character in type B, C, or D, are parametrized by standard
domino tableaux of special shape, where the notion of specialness depends on the type [G].

2.3. Fiber polynomials. Fix ξ ∈ N (g∗) and Z ⊂ Irr(µ−1(ξ)). Fix a Borel B and consider the
function, φZ say, which assigns to each antidominant character χ of B, the Euler characteristic of
the restriction of the Borel-Weil line bundle G×B Cχ to Z. All cohomology groups are in fact finite,
and thus φZ is an integer-valued function on the lattice of dominant weights in h∗. The following
result may be extracted from [J4].

Theorem 2.1. (1) The function φZ extends to a W -harmonic polynomial on h∗, which we de-
note pZ .

(2) If C,C′ ∈ Irr(µ−1(ξ)) are in the same AG(ξ) orbit, then pC = pC′ .
(3) The relations in (2) are the only dependence relations among the polynomials {pC | C ∈

Irr(µ−1(ξ))}. In particular, the the polynomials {pZ | Z ∈ AG(ξ)\Irr(µ−1(ξ))} are indepen-
dent. Moreover,

Span{pZ | Z ∈ AG(ξ)\Irr(µ−1(ξ))}

is W -invariant and isomorphic as a W-representation to Sp(G·ξ), the representation attached
to the trivial local system on G · ξ by the Springer correspondence.

Remark 2.2. Joseph originally defined the pC in a different way; again see [J4].

2.4. Orbital varieties and the Springer fiber. We recall the following result of Spaltenstein. In
its statement, we fix a Borel B whose nilradical has Lie algebra n, write η for the projection of G
onto G/B, and πξ for the map G→ G · ξ defined by g 7→ g · ξ.

Proposition 2.3. Fix ξ ∈ O ∈ G\N (g∗). Then there is a bijection between Irr(O ∩ (g/b)∗) and
AG(ξ)\Irr(µ−1(ξ)). Given Z in the latter set, πξ(η

−1(Z)) meets a unique element O(Z) in the former
set densely, and the bijection maps Z to O(Z).

2.5. Conormal bundles. Given an orbit Q ∈ K\B, write T ∗
QB for the conormal bundle of Q in

T ∗B. As above, let µ : T ∗B −→ N (g∗) denote the moment map for the G-action on T ∗B. As
outlined in the introduction, the moment map image

(2.4) µ
(

T ∗
QB

)

is always the closure of a single K orbit on N ∗
p . To simplify notation as in the introduction,

(2.5) we write µ(Q) for the dense orbit of K in µ
(

T ∗
QB

)

.

For a given OK ∈ K\N ∗
p , define

(2.6) µ−1(OK) := {Q ∈ K\B | µ(Q) = OK}.

Fix any ξ ∈ OK , and recall the notation AK(ξ) for the component group of the centralizer of ξ in
K. I learned the following result from T. Springer.

Proposition 2.7 (e.g. [T2, Proposition 2.6.1]). Retain the above notation. Then

µ−1(ξ) ∩ T ∗
QB

is dense in a unique orbit, say Z(Q), of AK(ξ) on Irr(µ−1(ξ). The map

Q −→ Z(Q)

is a bijection between µ−1(OK) and AK(ξ)\Irr(µ−1(ξ)).
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2.6. Notation for fiber polynomials. Given Z ⊂ Irr(µ−1(ξ)), recall the fiber polynomial pZ of
Section 2.3. If Q ∈ K\B, we write pQ for pZ(Q) where Z(Q) = µ−1(ξ) ∩ T ∗

QB. If O is an irreducible

component of O∩(g/b)∗ and Z(O) ⊂ Irr(µ−1(ξ)) is the subset corresponding to O by Proposition 2.3,
we write pO for pZ(O).

3. characteristic cycles of harish-chandra modules

We follow the notation of Section 2.1 and fix a real linear reductive group GR with complexified
Lie algebra g and complexified Cartan decomposition g = k ⊕ p. Let D denote the sheaf of algebraic
differential operators on the flag variety B of g.

Fix a finite length (g,K) module X with trivial infinitesimal character. Since the enveloping
algebra U(g) acts by global differential operators on B, the localization X = D⊗U(g)X makes sense;
it is a (DB,K) module.

Definition 3.1. The support of a (g,K) module X with trivial infinitesimal character is defined to
be the support of the localization X . This is a K invariant subvariety of B. If X is irreducible, then
the support of X is the closure of a unique K orbit on X (e.g. [Mi, Lemma H.5.1]). We denote this
orbit by supp◦(X).

3.1. Characteristic varieties. We need a microlocalization of the support construction. Choose
a good K invariant filtration X j of X compatible with the degree filtration on D and pass to the
associated graded object grX . This is a (grD,K) module. Since the symbol calculus identifies grD
with functions on T ∗B, we may view grX as an (OT∗B,K) module where OT∗B denotes the structure
sheaf of T ∗B. Since X was assumed to have finite length (and hence to be finitely generated), it
follows that we may identify grX with a K-equivariant coherent sheaf on T ∗B. Define the charac-
teristic variety of X , denoted CV(X), to be the support of the sheaf grX . This is transparently a
K-equivariant subvariety of T ∗B, but since X is a special kind of D module (arising as the localization
of X), much more is true: there exists a subset cv(X) of K orbits on B such that

CV(X) =
⋃

Q∈cv(X)

T ∗
QB;

here cv(X) is a subset of K\X . See [Mi, Proposition H.3.6] for more details. It is also useful to
keep track of the rank of the sheaf grX along each irreducible component. The resulting invariant is
called the characteristic cycle and is denoted

CV(X) =
∑

Q∈cv(X)

mQT ∗
QB;

here each mQ is a positive integer. Both invariants are independent of the filtration initially cho-
sen. Clearly each construction is additive on short exact sequences and descends to the appropriate
Grothendieck group.

There is no effective algorithm known to compute cv(X). The following result provides some very
weak information; its proof is quite easy and follows from the considerations around [Mi, Proposition
H.3.6], for instance.

Proposition 3.2. Let X be the Harish-Chandra module with trivial infinitesimal character. Recall
its support (Definition 3.1). Then

(3.3) supp◦(X) ∈ cv(X) and msupp
◦
(X) = 1

and

(3.4) cv(X) ⊂ {Q ∈ K\B | Q ⊂ supp◦(X)}.
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Example 3.5. There is one important case where the computation of characteristic cycles is easy.
Suppose Q ∈ K\B is closed. Then there is only one K-equivariant local system supported on Q,
namely the trivial one. Recall the notation X(Q) = X(Q, 11) of Section 2.1. Then (3.3) and (3.4)
taken together imply that

(3.6) CV(X(Q)) = 1 · [T ∗
QB].

We may pursue this argument more generally by localizing on a partial flag variety. More precisely,
suppose there exists a θ-stable parabolic s of g. (The notation q would be more customary, but
the letter ‘q’ already has been taken.) Write S for the corresponding subgroup of G. Fix a Borel
subalgebra b ⊂ s and write B for the corresponding subgroup of S. Write π for the projection from
G/B to G/S. Suppose Q ∈ K\B is dense in the preimage of the (closed) orbit of s under K on G/Q.
Then X(Q) is a derived functor module of the form As (in the terminology of [VZ]). It follows that

(3.7) CV(X(Q)) = 1 · [T ∗
QB],

which generalizes (3.6). This will be important in Example 3.21 below.

We have assumed that X has trivial infinitesimal character. We could have just as easily worked
with any infinitesimal character that differed from the trivial one by a weight of a finite-dimensional
representation of g. In this setting, we localize using a sheaf of twisted differential operators on the
flag variety, and define CV(X) just as above.

Proposition 3.8. Assume for simplicity that GR is connected. Suppose X is an irreducible Harish-
Chandra module with trivial infinitesimal character. Choose a representative ρ of the infinitesimal
character, or equivalently a system of positive roots ∆+ for a fixed Cartan h in g. Suppose ν is a weight
of h that is integral and dominant for ∆+. Define the translation functor ψρ+ν

ρ from infinitesimal

character ρ to ν + ρ (e.g. [KnV, Equation 7.141]) and set X(ν) = ψρ+ν
ρ (X). Then

(3.9) CV(X) = CV(X(ν)).

(If GR is disconnected, the extra technical requirements needed to define translation functors are
treated in [KnV, Theorem 2.229]. Once the is done, the conclusion of (3.9) holds.)

3.2. Associated Varieties. The construction of the characteristic variety may be imitated without
localizing; see [V5]. One chooses a good K-invariant filtration Xj on X compatible with the degree
filtration on the enveloping algebra. The associated graded grX is a (grU(g),K) module. Of course
grU(g) = S(g), and since the filtration was chosen to be K-invariant, the action of S(g) factors to
S(g/k). Thus grX is a finitely generated (S(g/k),K) module, i.e. a K-equivariant coherent sheaf on
(g/k)∗. The associated variety of X , denoted AV(X), is defined to be the support of this sheaf. It is
a K-invariant subvariety of (g/k)∗, but again since X is a special kind of U(g) module (annihilated
by a central ideal of finite codimension) much more is true: there exists a subset av(X) of K orbits
on N(g/k)∗ such that

AV(X) =
⋃

OK∈av(X)

OK .

In fact, O := G · OK is well-defined independent of the choice of OK ∈ av(X) and, moreover, O
is dense in AV(Ann(X)). According to a theorem of Barbasch-Vogan, O is a special orbit. Again
we may keep track of the rank of the sheaf grX along each irreducible component and define the
associated cycle

AV(X) =
∑

OK∈av(X)

mOK
OK ,

where each mOK
is a positive integer. Again both AV(X) and AV(X) do not depend on the choice

of filtration.

There is a simple relationship between the sets cv(X) and av(X).
8



Proposition 3.10. Let X be a finite-length (g,K) module with trivial infinitesimal character. Let
µ denote the moment map T ∗B → g∗ and recall the notation of (2.4). Then µ(CV(X)) = AV(X);
that is

av(X) = {µ(Q) | Q ∈ cv(X)}.

Consequently, in the notation of Propositions 3.2 and 3.8,

AV(X) = AV(X(ν)).

The relationship between the multiplicities in CV(X) and AV(X) is more subtle however, as the
following result indicates must be the case.

Proposition 3.11 (e.g. proof of [V1, Corollary 4.4]). Retain the notation of Proposition 3.8. Fix
OK ∈ av(X). By Proposition 3.10, OK ∈ av(X(ν)), and so we may consider the assignment

ν 7→ mOK
(ν) := mOK

(X(ν)).

Then mOK
extends to a harmonic polynomial on h.

Roughly speaking, for suitably compatible choices of filtrations, grX is the pushforward of grX
via the moment map µ. So to compute the rank of grX along an irreducible component, we have
to compute the integral over the fiber of µ, weighted by the appropriate rank of grX . To make that
precise we need a little more notation. Given OK ∈ av(X), define (using the notation of (2.6) and
(2.5))

cv(X ;OK) := cv(X) ∩ µ−1(OK) = {Q ∈ cv(X) | µ(Q) = OK},

and write

CV(X ;OK) =
⋃

Q∈cv(X;OK)

T ∗
QB,

and

CV(X ;OK) =
∑

Q∈cv(X;OK)

mQT ∗
QB.

We call this the leading term of the characteristic cycle of X over OK . The pushforward argument
may be quantified precisely as follows.

Proposition 3.12 ([Ch, Corollary 2.5.6]). Retain the notation of Proposition 3.8, and fix any OK ∈
av(X) = av(X(ν)). Then

mOK
(ν) =

∑

Q∈cv(X;OK)

mQpQ(ν)

with notation as in Section 2.6.

An argument reproduced in Section 1.6 of [Ch] shows that the multiplicity polynomial in Proposi-
tion 3.12 is in fact proportional to the Goldie rank polynomial of the annihilator ofX . More precisely,
we have the following result.

Theorem 3.13. Suppose X has integral infinitesimal character. Fix any OK ∈ av(X). Then there
is a nonzero constant c such that

qAnn(X) = c
∑

Q∈cv(X;OK)

mQpQ,

with notation as in Sections 2.2 and 2.6.
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Remark 3.14. It is important to note that the theorem holds for any OK ∈ av(X). Recall (Theorem
2.1) that the polynomials pQ are nearly independent. Thus Theorem 3.13 says (up to the slight
potential dependence of the pQ’s) that once one computes CV(X ;OK) for some OK ∈ av(X), then
one may transfer this computation to compute CV(X ;O′

K) for any other O′
K ∈ av(X).

But even more is true: since the expression of Goldie rank polynomials in terms of fiber polynomials
does not depend on the real form (apart from the minor complication posed by the difference between
AK(ξ) and AG(ξ) orbit on Irr(µ−1(ξ))), one may transfer the computation of leading term cycles
between two different real forms of the same complex group. This should have interesting and possibly
deep applications. Some are proposed in Remark 5.47.

Theorem 3.13 has additional significant philosophical import. It says that the information of the
annihilator of X is encoded in the leading term of the characteristic cycle of X over any irreducible
component of AV(X). This gives a geometric interpretation of the annihilator of a Harish-Chandra
module. (Such ideas were implicitly present in the context of Harish-Chandra bimodules in [BB3].)

We have assembled the set of tools to prove Theorem 1.2 in the case the orbits of AK(ξ) and
AG(ξ) coincide. In fact, we have the following more precise result.

Theorem 3.15. Fix a special orbit O and OK ∈ K\(O ∩ (g/k)∗). Assume the orbits of AK(ξ)
and AG(ξ) on Irr(µ−1(ξ) coincide. Suppose that Hypothesis (⋆) (described in the introduction) holds
for OK . Enumerate µ−1(OK) as Q1, . . . , Qd and the Harish-Chandra modules in Hypothesis (⋆) as
MQ1

, . . . ,MQd
.

(1) Recall the notation of Proposition 2.7; so µ−1(ξ) ∩ T ∗
Qi

B is dense in Z(Qi). The map

Ann(MQi
) 7−→ Z(Qi)

defines a bijection

(3.16) Prim(g,O)ρ := {I ∈ Prim(U(g))ρ | AV(I) = O} −→ AG(ξ)\Irr(µ−1(ξ)).

In particular, the primitive ideals Ann(MQi
) are distinct.

(2) Choose any total order on µ−1(OK) ⊂ K\B compatible with the closure order on K\B, and
reorder indices so that i < j implies Qi < Qj in this total order. Set Ii = Ann(MQi

)), let
d = dim(Sp(O)), and define a d× d matrix (Mij) by

qIj
=

∑

i

mijpQi
.

Then M is upper triangular.

Proof. Define the matrix M as indicated in part (2) of the theorem. Theorem (3.13) together with
Proposition 3.2 imply that the matrix is upper triangular with nonzero entries on the diagonal. (The
fact that the matrix is triangular follows from (3.4); the fact that the diagonal entries are nonzero
follows from (3.3).) This proves (2). It also proves that the Goldie rank polynomials of the various
primitive ideals Ij are independent. Hence the various primitive ideals Ij are distinct. This is the
last assertion of (1). The theory of Goldie rank polynomials mentioned in the introduction implies
that cardinality of Prim(g,O)ρ is d, and so the various Ij ’s exhaust Prim(g,O)ρ. Meanwhile, the
number of AG(ξ) orbits on Irr(µ−1(ξ)) is d by Theorem 2.1, and so the the two sets in (3.16) have
the same cardinality. Finally, the map of Part (1) is injective by Proposition 2.7. Hence it is bijective
and the theorem is proved. ˜

3.3. Hypothesis (⋆) and Theorem 1.2 in general. Theorem 3.15 and the discussion in the
introduction assumed that the AG(ξ) and AK(ξ) orbits on Irr(µ−1(ξ) coincided. In this section, we
treat the mild complications that present themselves if that is not the case.
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Fix Q ∈ µ−1(OK) (with notation as in (2.6)) and ξ ∈ OK . Recall from Proposition 2.7 that
T ∗

QB ∩ µ−1(ξ) is dense in an AK(ξ) orbit Z(Q) on Irr(µ−1(ξ)). The map

Φ : µ−1(OK) −→ AG(ξ)\irr(µ−1(ξ))(3.17)

Q −→ AG(ξ) · Z(Q)(3.18)

is surjective by Proposition 2.7 and the fact that each AG(ξ) orbit is a union of AK(ξ) orbits. Recall
that µ−1(O) is a partially ordered by the closure order on K\B. Here is the definition we need.

Definition 3.19. A subset µ−1(OK)′ ⊂ µ−1(OK) is said to be of minimal type if the map Φ of
(3.17) restricts to a bijection

µ−1(OK)′ −→ AG(ξ)\irr(µ−1(ξ))

Q −→ AG(ξ) · Z(Q)

and if, furthermore, whenever if Q′ ∈ µ−1(OK)′ and Q ∈ µ−1(OK) are such that Φ(Q) = Φ(Q′),
then Q′ ⊂ Q. Hence a subset µ−1(OK)′ of minimal type is constructed by picking an element Q′ out
of each fiber of Φ with the property that Q′ is minimal in the closure order restricted to the fiber.
Note that the cardinality of any subset of minimal type is simply that of AG(ξ)\Irr(µ−1(ξ)), the
dimension of Sp(O). Note also that it is obvious that if the AG(ξ) and AK(ξ) orbits on Irr(µ−1(ξ))
coincide, then the only subset of µ−1(OK) which is of minimal type if µ−1(OK) itself.

Here is the general version of Hypothesis (⋆); when the orbits of AK(ξ) and AG(ξ) coincide it
restricts to the version given in the introduction.

Hypothesis (⋆). A complex nilpotent orbit O for g∗ is said to satisfy Hypothesis (⋆) if is there is a
real group GR with complexified Lie algebra g, an irreducible component OK of K\(O ∩ (g/k)∗), and
a subset µ−1(OK)′ of µ−1(OK) of minimal type (Definition 3.19), such that for all Q ∈ µ−1(OK)′,
there exists a Harish-Chandra module MQ for GR with trivial infinitesimal character with the property
that:

(1) supp◦(MQ) = Q; and
(2) µ(T ∗

QB) is dense in an irreducible component of AV(MQ)).

The following is the more general version of Theorem 3.15. Its proof follows in exactly the same
way.

Theorem 3.20. Fix a special orbit O and OK ∈ K\(O ∩ (g/k)∗). Suppose that Hypothesis (⋆)
holds for OK and the subset µ−1(OK)′ of minimal type. Enumerate µ−1(OK)′ as Q1, . . . , Qd and the
Harish-Chandra modules in Hypothesis (⋆) as MQ1

, . . . ,MQd
.

(1) Then map

Ann(MQi
) 7−→ µ−1(ξ) ∩ T ∗

Qi
B

defines a bijection

Prim(g,O)ρ := {I ∈ Prim(U(g))ρ | AV(I) = O} −→ AG(ξ)\Irr(µ−1(ξ)).

In particular, the primitive ideals Ann(MQi
) are distinct.

(2) Choose any total order on µ−1(OK)′ ⊂ K\B compatible with the closure order on K\B, and
reorder indices so that i < j implies Qi < Qj in this total order. Set Ii = Ann(MQi

)), let
d = dim(Sp(O)), and define a d× d matrix (Mij) by

qIj
=

∑

i

mijpQi
.

Then M is upper triangular.
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Example 3.21. Recall Example 3.5 above. Fix OK and assume that OK is Richardson in the sense
of Definition 5.26 below. Write Q ∈ K\B for the orbit attached to s as in Example 3.5. Then, in
the notation of Section 2.1, X(Q) = As, and OK is dense in µ(T ∗

QB). Hence it follows MQ := X(Q)

satisfies conditions (1) and (2) of Hypothesis (⋆). This is the main trick we will use in verifying
Hypothesis (⋆) in Section 5: we start with a derived functor module where the verification of the
conditions of the hypothesis is easy, and then use that information to define other (not necessarily
derived functor) modules MQi

to fulfill the hypothesis.

4. Connection with highest weight modules

Fix a Borel subgroup B in G with Lie algebra b = h ⊕ n, and write W for the Weyl group of h in
g. Let ρ denote the half-sum of the positive roots of h in n. Consider the category of finite-length
(g, B) modules. The irreducible objects with trivial infinitesimal character are parametrized by W .
If w◦ denotes the long element in W , we arrange the parametrization so that L(w) is the unique
irreducible quotient of the Verma module M(w) := indg

b(Cww◦ρ−ρ).

We may easily transcribe the constructions of Section 3 from the category of (g,K) modules to
(g, B) modules: one need only replace K with B in the discussion. In this case we write

CV(L) =
⋃

w∈cv(L)

T ∗
wB CV(L) =

∑

w∈cv(L)

mwT ∗
wB.

Here cv(L) is a subset of B orbits on B; by the Bruhat decomposition, we identify B\B with W ,
and write T ∗

wB for the conormal bundle to the orbit parametrized by w. Analogously we write

AV(L) =
⋃

O∈av(L)

O AV(L) =
∑

O∈av(L)

mOO.

Let O denote the associated variety of Ann(L) (Section 2.2). Just as av(X) for an irreducible (g,K)
module consisted of K invariant Lagrangians of O∩(g/k)∗, av(L) consists of B invariant Lagrangians
in O ∩ (g/b)∗.

The following theorem is due to Joseph [J3]. His proof is algebraic in nature. A very simple
geometric proof using Theorem 3.13 is indicated below.

Theorem 4.1. Consider the simple (g, B) module L(w) with trivial infinitesimal character. Then

AV(L(w)) = O1 ∪ · · · ∪ Ok

if and only if there exist nonzero constants ci such that

qAnn(L(w−1)) =
∑

i

cipOi
,

with notation as in Sections 2.2 and 2.6.

Sketch. Let X(w) denote the irreducible Harish-Chandra module for the complex group G pa-
rameterized by w; this is a (g ⊕ g,∆(G)) module where ∆(G) denotes the diagonal copy of G in
G×G. It is an easy consequence of the geometric equivalence of categories between Harish-Chandra
modules for G and highest weight modules for g (e.g. Borho-Brylinski [BB3, Corollary 4.10]) that
AV(X(w)) = AV(Ann(L(w)) =: O. (Here we are being a little sloppy: AV(X(w)) is closure of a
nilpotent orbit of ∆(G) on (g⊕ g/∆(g))∗ where ∆(g) denotes the diagonal copy of g in g⊕ g, but we
simply identify O with a nilpotent orbit of G on N (g∗).) Moreover it is easy to check that

AnnU(g⊕g)(X(w)) = I(w−1) ⊗ U(g) + U(g) ⊗ I(w),

from which one concludes that the Goldie rank polynomial of Ann(X(w)) factors as

qAnn(X(w)) = qI(w−1)qI(w).

Let T ∗
x (B × B) denote the conormal bundle to Q(x), the ∆(G) orbit on B × B parameterized by x.

(InformallyQ(x) consists of flags in relative position x.) Suppose x ∈ W such that µ(T ∗
x (B×B)) = O,
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and fix ξ ∈ O. Proposition 2.7 attaches an orbit ∆(AG(ξ)) · (Cl, Cr) ∈ ∆(AG(ξ))\Irr(µ−1(ξ) ×
µ−1(ξ)) to Q(x); here ∆(AG(ξ)) denotes the diagonal copy of ∆(AG(ξ)) in AG(ξ) × AG(ξ). Write
Zl(x) = AG(ξ) · Cl ∈ AG(ξ)\Irr(µ−1(ξ)) and similarly for Zr(x). From the geometric equivalence of
categories, one deduces that O ∈ av(L(w)) if and only if there exists Q(x) ∈ cv(X(w);O) such that
Zl(x) corresponds to O in the bijection of Proposition 2.3; after some unraveling, this follows, for
instance, from [BB3, Theorem 4.8(a)]. According to Theorem 3.13 and the factorization of qAnn(X(w))

mentioned above, we conclude Q(x) ∈ cv(X(w);O) if and only if the expression of qI(w−1) in the

basis {pZ | Z ∈ AG(ξ)\Irr(µ−1(ξ))} contains pZl(x) with nonzero coefficient. The last two sentences
then give the conclusion of the theorem. ˜

Using Theorem 3.13, we can thus transfer information between the Harish-Chandra category and
the highest weight category.

Corollary 4.2. Fix a special nilpotent orbit O, a real form GR for G, and OK ∈ K\(O ∩ (g/k)∗).
Suppose

(1) X is a Harish-Chandra module for GR with trivial infinitesimal character such that OK ∈
av(X); and

(2) L(w) is a simple highest weight module for g with trivial infinitesimal character such that
Ann(L(w−1)) = Ann(X).

Fix Q ∈ µ−1(OK) (notation as in Section 2.5), and let O(Q) denote the orbital variety corresponding
to AG(ξ) · (µ−1(ξ) ∩ T ∗

QB) (Propositions 2.3 and 2.7). Then

Q ∈ cv(X ;OK) =⇒ O(Q) ∈ av(L).

If we further assume that the AK(ξ) and AG(ξ) orbits on Irr(µ−1(ξ)) coincide (so the assignment
Q 7→ O(Q) is bijective by Propositions 2.3 and 2.7), then

Q ∈ cv(X ;OK) ⇐⇒ O(Q) ∈ av(L).

Proof. According to Theorem 3.13, Q ∈ cv(X,OK) implies pQ appears with nonzero coefficient
in the expression of qAnn(X) in terms of fiber polynomials. Since we have assumed Ann(X) =

Ann(L(w−1)), Theorem 4.1 implies that the condition of the previous sentence implies O(Q) ∈ av(L).
If AK(ξ)\Irr(µ−1(ξ)) = AG(ξ)\Irr(µ−1(ξ)), then Theorem 2.1(2) implies pQ 6= pQ′ for Q 6= Q′ in
µ−1(OK). This gives the final conclusion of the theorem. ˜

Notice that Corollary 4.2 quantifies how difficult it is to compute leading terms cycles of a Harish-
Chandra module X . Roughly speaking one must compute the annihilator and associated variety of
X and then the associated variety of a single simple highest weight module.

Remark 4.3. It seems likely that the statement of Corollary 4.2 can be be deduced from a general
functorial relationship between Harish-Chandra modules and highest weight modules. We would like
to return to this elsewhere.

5. Hypothesis (⋆)

The purpose of this section is to place Hypothesis (⋆) (given in Section 3.3) in a broader context,
as well as establish it in all classical cases.

So fix notation as in Hypothesis (⋆). Fix GR such that O ∩ (g/k)∗ is nonempty and fix OK and
Q ∈ µ−1(OK). Then it is essentially obvious that we may find a virtual Harish Chandra module MQ

satisfying the conditions of Hypothesis (⋆) for OK . This is easy to arrange since the characteristic
cycle construction is additive: we start with any MQ supported on Q and subtract off appropriate
Harish-Chandra modules. The techniques of Section 3 then related an algebraic basis of multiplicity
polynomials of the virtual Harish-Chandra modules MQ to the geometric basis arising in the Springer
fiber. The change of basis matrix is upper triangular because of Proposition 3.2. As explained in
Section 2, if MQ is irreducible — that is, if Hypothesis (⋆) holds — then the multiplicity polynomial
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is a Goldie rank polynomial, and hence we obtain Theorem 1.2. It seems very likely that that
the appropriate virtual representations may be chosen so that their multiplicity polynomials are in
fact proportional to Goldie rank polynomials. If this is the case, Theorem 1.2 would hold without
Hypothesis (⋆). But we have been unable to see that the virtual Harish-Chandra modules may be
chosen so that their multiplicity polynomials are in fact of the form pI . Thus we are left with proving
Hypothesis (⋆).

We begin with a discussion of Type A. Given [Me], this is less interesting from the point of view
of Tanisaki’s conjecture since [Me] already established that the matrix in Theorem 1.2 is in fact
diagonal. Nonetheless the type case A is worthwhile to understand. For instance, using the real
group U(p, q) one may recover the main results of [Me]. The case of U(p, q) will also be important
in the proof of Theorem 5.32. The following is taken from [T1, Theorem 5.6]; as explained there, for
GL(n,C) the result follows by combining work of Steinberg [St] and Joseph [J1].

Theorem 5.1. Suppose GR = GL(n,C),GL(n,H) or U(p, q). (In these cases all A-group orbits on
irreducible components of the Springer fiber are singletons.) If X is an irreducible Harish-Chandra
module for GR with trivial infinitesimal character, then

µ(T ∗
supp

◦
(X)B) = AV(X).

Consequently if O is any orbit such that O∩(g/k)∗ is nonempty, and OK ∈ K\(O∩(g/k)∗), Hypothesis
(⋆) may be verified for OK by taking, for each Q ∈ µ−1(OK), MQ to be any (in fact, the unique)

irreducible Harish-Chandra module with trivial infinitesimal character supported on Q.

By contrast [T1, Remark 8.9] essentially provides an orbit Q for GL(n,R) for which there is no
Harish-Chandra module MQ satisfying the requirements (1) and (2) of the hypothesis. This indicates
the subtle nature of matters.

For the groups Sp(p, q) and SO∗(2n), the situation is very similar to that of Theorem 5.1.

Theorem 5.2. Suppose GR = Sp(p, q) or SO∗(2n). (For these groups, the orbits of AK(ξ) on
Irr(µ−1(ξ)) are singletons, while those of AG(ξ) are typically larger.) Suppose X is an irreducible
Harish-Chandra module with trivial infinitesimal character. Then

(5.3) µ(T ∗
supp

◦
(X)B) = AV(X).

Consequently if O is complex nilpotent orbit for g such that O ∩ (g/k)∗ is nonempty, OK ∈ K\(O ∩
(g/k)∗), and µ−1(OK)′ is any subset of µ−1(OK) of minimal type, then Hypothesis (⋆) may be verified
for OK by taking, for each Q ∈ µ−1(OK)′, MQ to be any (in fact, the unique) irreducible Harish-

Chandra module supported on Q.

Proof. The proof is a rather elaborate counting argument using Theorems 6 and 10 from [Mc2].
Given a Harish-Chandra module X for GR, let C(X) denote the cell of Harish-Chandra modules
containing X (e.g. [Mc2, Section 1]). Write G for the complexification of GR. For the groups in
question, all Cartan subgroups are connected. So the only K-equivariant local system supported on
a fixed orbit Q ∈ K\B is the trivial one. As in notation of Section 2.1, we set X(Q) = X(Q, 11).

The first ingredient we need is the inclusion

(5.4) G · µ(Q) ⊂ AV(Ann(X(Q)));

here µ(Q) is defined as in (2.4). The conclusion of (5.4) follows from (3.3), Proposition 3.10, and the
well-known fact (e.g. [V5, Theorem 8.4]) that

(5.5) G · AV(X) = AV(Ann(X)).

Now fix Q ∈ K\B, set OK = µ(Q) (Notation (2.4)), and fix ξ ∈ OK . By imitating the explicit
centralizer calculations given in [CM, Section 6.1], one quickly concludes that the image of AK(ξ) in
AG(ξ) is trivial. Hence by Proposition 2.7,

(5.6) #µ−1(OK) = #Irr(µ−1(ξ)),
14



with notation as in Section 2.5. On the other hand, set C(Q) = C(X(Q)), the cell containing X(Q).
In the terminology of [Mc2], C(Q) is Springer in the sense that the cell affords the same Weyl group
representations as the representation on the top homology of the entire Springer fiber; see Theorems
6 and 10 of [Mc2]. This implies that

(5.7) #C(Q) = #Irr(µ−1(ξ)),

and so

(5.8) #C(Q) = #µ−1(OK).

Let N denote this number. Set O = G ·OK . For the groups in question, it follows from the partition
classification (see Remark 5.25 below) that O is special. Enumerate the orbits of K on O∩ (g/k)∗ as
O1

K , . . . ,O
k
K . Since

(5.9) µ−1(O) := {Q | G · µ(Q) = O} = µ−1(O1
K) ∪ · · · ∪ µ−1(Ok

K),

Equation (5.6) implies

(5.10) #{Q | G · µ(Q) = O} = kN.

One the other hand, consider the set of Harish-Chandra modules

{X | AV(Ann(X)) = O}.

From general principles, this set is a union of cells, say C1, . . . , Cl, each of whose corresponding
representation contains the special representation Sp(O); moreover, each cells whose corresponding
representation contains Sp(O) is among the Ci. McGovern proves that each cell contains Sp(O)
exactly once ([Mc2, Theorem 1]). Meanwhile, it is not difficult to compute the multiplicity of Sp(O) in
the full coherent continuation representation on the Grothendieck group of Harish-Chandra modules
with trivial infinitesimal character. This is done in Theorems 6 and 10 of [Mc2], and the multiplicity
turns out to be exactly k = #K\(O ∩ (g/k)∗). Combining the last few sentences implies that k = l.
Consequently, {X | AV(Ann(X)) = O} is a union of k cells, each of size N (by (5.8)), and we
conclude from (5.10) that

(5.11) #{Q | G · µ(Q) = O} = #{X | AV(Ann(X)) = O} = kN.

As we have remarked above, all Cartan subgroups for the groups in question are connected, so the
map Q 7→ X(Q) is a bijection, and we may recast (5.11) as

(5.12) #{Q | G · µ(Q) = O} = #{Q | AV(Ann(X(Q))) = O} = kN.

This equality will be important below.

We now seek to establish (for the groups in question) that equality actually holds in (5.4); that
is, we now show

(5.13) G · µ(Q) = AV(Ann(X(Q))).

Suppose (5.13) fails. Let Q denote an orbit for which

(5.14) G · µ(Q) ( AV(Ann(X(Q))).

Assume µ(Q) has minimal dimension among all orbits for which the failure (5.14) holds. By assump-
tion,

S1 := {Q′ | G · µ(Q′) = G · µ(Q)}

is not contained in

S2 := {Q′ | AV(Ann(X(Q′))) = G · µ(Q)}

since Q is contained in the former set but not the latter. But we have seen (in (5.12)) that S1 and
S2 have the same size. Thus there must exist an element Q′′ ∈ S2 such that Q′′ /∈ S1. Since Q′′ is in
S2,

G · µ(Q) = AV(Ann(X(Q′′))).
15



Combined with (5.4) we conclude

(5.15) G · µ(Q′′) ⊂ AV(Ann(X(Q′′))) = G · µ(Q).

Since Q′′ does not belong to S1, we conclude that

(5.16) G · µ(Q′′) is properly contained in AV(Ann(X(Q′′))) = G · µ(Q).

But now (5.15) and (5.16) contradict the assumption that µ(Q) had minimal dimension among all
orbit for which the failure (5.14) holds. This contradiction thus establishes (5.13).

We now turn to proving the first assertion of the theorem. Fix O so that K\(O ∩ (g/k)∗) =
{O1

K , . . . ,O
k
K} is nonempty. Define µ−1(O) as in (5.9). Now (5.5) and (5.13) imply that for any Q,

(5.17) µ(Q) is dense in an irreducible component of AV(X(Q)),

in the notation of Section 3.2. Now choose Q1 of minimal dimension in µ−1(O). We claim that
indeed

(5.18) AV(X(Q1)) = µ(Q1).

Suppose Q′
1 is an element of cv(X(Q1)) not equal to Q1. Then by Proposition 3.2, Q′

1 ( Q1. Since
Q1 has minimal dimension in µ−1(O), Q′

1 /∈ µ−1(O). Now Proposition 3.10 implies (5.18).

Let C1 denote the cell containing X(Q1). Since the associated varieties of two elements in the

same cell are the same (e.g. the proof of [BB1, Lemma 4.1]), it follows that AV(X) = µ(Q1) for all
X ∈ C1, and indeed

C1 ⊂ {X(Q) | µ(Q) = µ(Q1)}.

But in fact (5.8) implies that this inclusion must be an equality,

(5.19) C1 = {X(Q) | µ(Q) = µ(Q1)}.

Write O1 be the dense orbit in µ(Q1). Combining (5.18) and (5.19) with the fact that associated
varieties are constant on cells, we obtain

(5.20) C1 = {X | AV(X) = O1}

or after unwinding the notation

(5.21) for all X ∈ C1, AV(X) = µ(T ∗
supp

◦
(X)B)),

the conclusion of the theorem for the cell C1.

Next choose Q2 of minimal dimension in

µ−1(O) \ µ−1(O1).

Let X2 = X(Q2) and write C2 for the cell containing it. Arguing as in (5.17) we conclude that µ(Q2)
is an irreducible component of AV(X2) and arguing as in (5.18), we conclude that the only other

possible irreducible component of AV(X2) is µ(Q1). Hence

C2 ⊂ {X(Q) | µ(Q) ∈ {µ(Q1), µ(Q2)}} ,

and (5.19) then implies that

C2 ⊂ C1 ∪ {X(Q) | µ(Q) = µ(Q2)} .

Since cells are disjoint, we conclude

C2 = {X(Q) | µ(Q) = µ(Q2)} .

Thus we may argue as in (5.20) and (5.21) to conclude

(5.22) C2 = {X | AV(X) = O2}

or after unwinding the notation

(5.23) for all X ∈ C2,AV(X) = µ(T ∗
supp

◦
(X)B)),

the conclusion of the theorem for the cell C1.
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Clearly we may continue in the this way and establish the analogs of (5.21) and (5.23) for any cell.
Thus the first assertion of the theorem follows. The final assertion follows easily from the former. ˜

Though it isn’t relevant to Hypothesis (⋆), we isolate the following interesting consequence of the
above proof.

Corollary 5.24. Let GR = Sp(p, q) or SO∗(2n) and retain the notation introduced at the beginning
of the proof of Theorem 5.2. Fix OK ∈ K\N ∗

p . Then the set of irreducible Harish-Chandra modules

X with trivial infinitesimal character such that AV(X) = OK is a cell of Harish-Chandra modules.
Moreover, all cells arise in this way. In particular, if X is an irreducible Harish-Chandra module for
GR with integral infinitesimal character, the associated variety of X is irreducible.

Proof. The first two assertions follow from the general analogs of (5.20) and (5.22) established by
the preceding proof. The final assertion is obvious for trivial infinitesimal character, and the general
integral case follows from the final assertion of Proposition 3.10. ˜

Remark 5.25. We make the hypothesis that O∩ (g/k)∗ be nonempty in Theorem 5.2 more explicit.
As remarked in the introduction, nilpotent orbits for G = Sp(2n,C) are parametrized by partitions
of n in which odd parts occur with even multiplicities. Fix such a partition λ, and write O for the
corresponding nilpotent orbit. Then there exists a real form Sp(p, q) of G such that O ∩ (g/k)∗ is
nonempty if and only if every part of λ occurs with even multiplicity. (In this case O is automatically
special since an orbit is special if it corresponds to a partition in which the number of even parts
between consecutive odd part or greater than the largest odd part is even.) Meanwhile nilpotent
orbits for O(2n,C) are parametrized by partitions of 2n in which even parts have even multiplicity.
Fix such a partition λ and let O for the corresponding orbit. Fix p arising from the real form SO∗(2n).
Then O ∩ (g/k)∗ if and only if each part of λ occurs with even multiplicity. (Again this implies O is
special.)

In view of Remark 5.25, Theorem 5.2 falls short of verifying Hypothesis (⋆) for all orbits O in
types C and D. We now sketch a complete treatment of types B, C, and D using the groups SO(p, q)
and Sp(2n,R). (The Type D case is due to W. McGovern.) As alluded to in Example 3.21, we need
the following definition.

Definition 5.26. Fix GR and the notation of Section 2.1. An orbit OK ∈ K\(O ∩ (g/k)∗) is called
Richardson if there exists a θ-stable parabolic s = l ⊕ u such that OK is dense in K · u. (If GR is a
complex group, this latter condition reduces to the usual notion of complex Richardson orbits defined,
for example, in [CM, Section 7.1].) As explained in the introduction of [T3], if OK is Richardson,
then G · OK is automatically special.

We need to make this definition explicit for applications. We begin with GR = Sp(2n,R). Fix
O parametrized by a partition λ as in Remark 5.25. Then, according to [CM, Theorem 9.3.5], the
elements of K\(O∩ (g/k)∗) are parametrized by diagrams obtained by filling the boxes of λ (viewed
as a Young diagram) with plus and minus signs so as to alternate across rows and so that the number
of plus signs which begin rows of each odd length 2k + 1 coincides with the number of minus signs
that begin rows of length 2k+1, modulo the equivalence of interchanging rows of equal length. Hence
O ∩ (g/k)∗ is always nonempty.

Proposition 5.27 ([T3, Corollary 4.2]). Let GR = Sp(2n,R). Fix a complex special orbit O. Con-
sider OK ∈ K\(O ∩ (g/k)∗) parametrized, as described above, by a signed diagram λ±. Fix a chunk
of even rows between consecutive odd rows or greater than the largest odd row and enumerate the
distinct parts of this chunk as 2k1, . . . , 2kr. Then the orbit OK is Richardson (Definition 5.26) if
and only if the following two conditions are satisfied for each such maximal chunk of even rows

(1) Each row of length 2ki begins with the same sign εi; and
17



(2) There is a fixed sign ε (depending on the chunk of even rows being considered) such that

εi = ε(−1)ki .

Note that for any special orbit O, there exists an element of K\(O ∩ (g/k)∗) which is Richardson.

It is perhaps useful to give a slightly less combinatorial interpretation of the explicit Richardson
condition appearing in the proposition. Fix an arbitrary orbit OK parametrized by λ±, and let
Z(OK) denote the centralized in K of a point of OK . (So Z(OK) is well-defined up to isomorphism.)
The group Z(OK) factors as a direct product indexed by the distinct parts of the underlying partition
λ. Suppose d is such a part that occurs with multiplicity m. If m = 2l + 1 is odd, then the part d
contributes a factor O(l, l + 1) to Z(OK). If m = 2k is odd, write k+ (resp. k−) for the number of
plus (resp. minus) signs at the beginning of rows of length 2k in λ±. Then the part m contributes
a factor Sp(k+, k−) to the centralizer Z(OK). Hence, part (1) of the Richardson condition is that
the centralizer of an element of OK is, in an appropriate sense, as compact as possible; part (2) is a
requirement on the signatures of the compact factors of the centralizer.

We will ultimately verify Hypothesis (⋆) for orbits OK which are a special kind of Richardson
orbit. Here is the definition we need.

Definition 5.28. LetGR = Sp(2n,R). Fix a complex special orbit O. Consider OK ∈ K\(O∩(g/k)∗)
parametrized, as described above, by a signed diagram λ±. The orbit is called relevant if it is
Richardson (Definition 5.26 and Proposition 5.27) and additionally if λ has only even parts, the
condition of Proposition 5.27 applies to the chunk consisting of all its even parts. (This latter
condition is of course a strengthening of the Richardson one.) Note that for any special orbit O,
there exists an element of K\(O ∩ (g/k)∗) which is relevant.

Once again, one may provide a slightly more intrinsic definition of relevant by translating it into
a condition on the compact part of the centralized of a point in OK .

We need the analogous definitions for the groups GR = O(p, q). (The combinatorics of the full
(disconnected) orthogonal group, as usual, is slightly simpler, though we could easily work with
SO(p, q) or its identity component instead.) This time complex nilpotent orbits for g are parametrized
by partitions λ is which every even part occurs an even number of times. If p+ q is odd (resp. even),
an orbit is special if its corresponding partition has an even number of odd parts between consecutive
even parts and an odd (resp. even) number of odd parts greater than the largest even part.

Fix O corresponding to λ. Then, according to [CM, Theorem 9.3.4], the elements ofK\(O∩(g/k)∗)
are parametrized by diagrams obtained by filling the boxes of λ (viewed as a Young diagram) with
p plus and and q minus signs so as to alternate across rows and so that the number of plus signs
which begin rows of each even length 2k coincides with the number of minus signs that begin rows of
length 2k, modulo the equivalence of interchanging rows of equal length. Hence, for the split groups
O(n, n+ 1) and O(n, n), O ∩ (g/k)∗ is always nonempty.

Proposition 5.29 ([T3, Corollary 7.2]). Let GR = O(p, q). Fix a complex special orbit O. Consider
OK ∈ K\(O ∩ (g/k)∗) parametrized, as described above, by a signed diagram λ±. Fix a maximal
chunk of odd rows between consecutive even parts, and enumerate the distinct parts of this chunk as
2k1 + 1, . . . , 2kr + 1. The orbit OK is Richardson (Definition 5.26) if and only if the following two
conditions are satisfied for each maximal chunk of odd rows

(1) Each row of length 2ki + 1 begins with the same sign εi; and
(2) There is a fixed sign ε (depending on the chunk of odd rows being considered) such that

εi = ε(−1)ki .

Note that for the split groups O(n, n + 1) and O(n, n), given any special orbit O, there exists an
element of K\(O ∩ (g/k)∗) which is Richardson.
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Once again, the definition translates into a condition on the compact part of the centralizer. We
omit the details.

Definition 5.30. Let GR = O(p, q). Fix a complex special orbit O. Consider OK ∈ K\(O∩ (g/k)∗)
parametrized, as described above, by a signed diagram λ±. The orbit OK is called relevant if it
is Richardson (Definition 5.26 and Proposition 5.29) and additionally if λ has only odd parts, the
condition of Proposition 5.29 applies to the chunk consisting of all its odd parts. Note that for any
special orbit O such that O∩ (g/k)∗ is nonempty (which is always the case is GR is split), there exists
an element of K\(O ∩ (g/k)∗) which is relevant.

Now fix G′
R

= SO(p, q) and a complex special orbit O′ for g′. An orbit O′
K ∈ K ′\(O′ ∩ (g′/k′)∗)

is called relevant for SO(p, q) if and only if K · O′
K is a relevant orbit for O(p, q).

The next result simplifies matters slightly for the groups Sp(2n,R) and O(p, q).

Lemma 5.31. Let GR = Sp(2n,R) or O(p, q) and fix a nilpotent element ξ ∈ (g/k)∗. Then the
natural map

AK(ξ) −→ AG(ξ)

is always surjective. In particular, the orbits of AK(ξ) and AG(ξ) on Irr(µ−1(ξ)) coincide.

Proof. This may be verified by a direct computation of centralizers along the lines of [CM, Chapter
6]. We omit the details. ˜

Theorem 5.32. Let GR = Sp(2n,R) or SO(p, q) with p + q odd. Fix a complex special orbit O
such that O ∩ (g/k)∗ is nonempty. (This is always the case if GR is split.) Fix a relevant orbit
OK ∈ \(O ∩ (g/k)∗) (Definitions 5.28 and 5.30); as remarked above, if O∩ (g/k)∗ is nonempty, then
such a relevant orbit exists. For any Q ∈ µ−1(OK), write (as in Section 2.1) X(Q) for the irreducible
Harish-Chandra module attached to the trivial local system on Q; so, in particular, supp◦(X(Q)) = Q.
Then

µ(T ∗
QB) = AV(X(Q)) = OK .

Thus Hypothesis (⋆) may be verified by taking MQ = X(Q) for each Q ∈ µ−1(OK).

Remark 5.33. Example 3.5.2 in [T2] shows that the relevant hypothesis on OK is necessary in
general.

Remark 5.34. As the proof below shows, each module MQ appearing in the statement of the
theorem lies in the same Harish-Chandra cell as a module of the form As for a θ-stable parabolic
s = l ⊕ u where OK is dense in K · u.

Sketch of Theorem 5.32. Lemma 5.31 simplifies notation somewhat, e.g. µ−1(OK) is the only
subset of minimal type appearing in Hypothesis (⋆), and #µ−1(OK) coincides with the dimension of
Sp(O) (by Proposition 2.7). We will prove the theorem for Sp(2n,R). The modifications necessary
for SO(p, q) are straightforward.

Fix O and choose OK ∈ K\(O∩(g/k)∗) relevant. Since OK is relevant, it is Richardson, and there
exists a θ-stable s = l⊕u with OK dense in K ·u. Let Q ∈ K\B be the orbit attached to s according
to Example 3.5. Example 3.21 shows that we may take MQ := X(Q) = As to satisfy conditions (1)
and (2) of (⋆) for the orbit Q.

We will define the other modules MQi
by applying a sequence of operators of the form Tαβ to

MQ = X(Q). These operators are introduced in [V2, Section 3] on the level of primitive ideals, and
their definitions easily extend to Harish-Chandra modules using [V3, Theorem 3.10]. See also [G],
[Mc1], [Mc2], [GV] for further details. Their domains and ranges may be specified using the Borho-
Jantzen-Duflo τ -invariant ([V3, Definition 3.3],[G]), which is defined for Harish-Chandra modules or
primitive ideals with trivial infinitesimal character. They are single-valued (resp. potentially double
valued) if α and β have equal (resp. unequal) length. If Y ∈ Tαβ(X) andX and Y are Harish-Chandra
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modules, then X and Y belong to the same cell and hence, as mentioned in the proof of Theorem
5.2, AV(X) = AV(Y ). In the course of verifying Hypothesis (⋆) for the modules MQi

we will also
calculate the annihilators and associated varieties of these modules, using algorithms introduced in
[T2, Section 3].

Set MQ = X(Q), the derived functor module fixed above. Suppose T = Tαk,βk
◦ · · · ◦ Tα1β1

is
a sequence of Tαβ operators so that T(MQ) is defined. Write I(Q) for the set of primitive ideals
obtained as annihilators of elements in T(MQ). Suppose that

(5.35) ∀ I ∈ I(Q) there exists Q1 ∈ µ−1(OK) s.t. Ann(X(Q1)) = I and MQ1
:= X(Q1) ∈ T(MQ)

with notation as in Section 2.1. Then since supp◦(MQ1
) = Q1 and since (as we remarked above)

T preserves associated varieties (so that AV(MQ1
) = AV(MQ) = OK), it follows that MQ1

satisfies
conditions (1) and (2) of (⋆) for the orbit Q1. If we can make the corresponding conclusion for all
well-defined sequences T, then it follows that Hypothesis (⋆) holds for OK : it follows from general
principles that the collection of modules MQ1

obtained from all such sequences T correspond to a
submodule of the special representation Sp(O); since Sp(O) is irreducible, the submodule must be all
of Sp(O); and, finally, since #µ−1(OK) coincides with the dimension of Sp(O) (as mentioned above),
it follows that conditions (1) and (2) in (⋆) hold for every orbit in µ−1(OK) and hence Hypothesis
(⋆) holds. The remaining assertions in the theorem are then obvious.

Thus our task is to establish (5.35) for every possible sequence T. Clearly by induction it suffices
to do this for a single operator Tαβ. More precisely, if Q ∈ µ−1(OK) is an orbit for which X(Q)
satisfies condition (2) of (⋆), write Iαβ(Q) for the (one or two element) set of primitive ideals obtained
as annihilators of elements of Tαβ(X(Q)) (when defined). Then we are to show
(5.36)

∀ I ∈ Iαβ(Q), there exists Q1 ∈ µ−1(OK) s.t. Ann(X(Q1)) = I and MQ1
:= X(Q1) ∈ Tαβ(MQ),

for each Tαβ for which Tαβ(MQ) is defined. (Here Q now denotes an arbitrary element of µ−1(OK),
not the orbit corresponding to As.)

We need to recall the computation of moment map images of conormal bundles given in [T2]. For
this we need the group G′

R
= U(n, n). Adopt the usual notation for G′

R
with the appropriate addition

of primes; for instance, we will consider B′, the flag variety for g′ ≃ gl(2n,C)), with moment map
µ′. Embed GR in G′

R
in the obvious way. Fix a Cartan involution θ′ for G′

R
and let θ denote its

restriction to GR, a Cartan involution for GR. Then K is a subgroup of K ′. Fix a Cartan subalgebra
h′ for g′ and let h = h′ ∩ g; this is a Cartan subalgebra for g.

Since K is a subgroup of K ′, to each orbit Q ∈ K\B, we may consider the well-defined orbit

Q′ := K ′ ·Q ∈ K ′\B′.

The (injective) mapQ 7→ Q′ is computed explicitly in [T3, Section 2.11]. In addition, [T2, Proposition
3.3.1] implies that

(5.37) K ′ · µ(Q) = µ′(Q′),

with notation as in (2.5).

Suppose α is a short root for h in g. There are two roots, say α′
1 and α′

2, for h′ in g′ which coincide
with α when restricted to h. Meanwhile, if γ is a long root of h in g, there is a unique root, say
γ′, of h′ in g′ which restricts to γ. In terms of the obvious notation for standard coordinates, if
α = ei − ei+1 (with 1 ≤ i ≤ n− 1), then α′

1 = e′i − e′i+1 and α′
2 = e′2n−i − e′2n+1−i; and if γ = 2ei,

then γ′ = e′i − e′2n+1−i.

Fix a system of positive roots for h′ in g′. This restricts to a system of positive roots for h in g.
Suppose α is a short simple root for h in g. We want to investigate the conditions under which

(5.38) α ∈ τ(X(Q)) if and only if α′
1, α

′
2 ∈ τ(X(Q′)).

Using the explicit calculation of Q 7→ Q′, the calculations of τ -invariants for U(p, q) in [G′, Section
1.13], and the analogous calculations for Sp(2n,R), it is easy to see this is always the case except
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in one family of cases. It can happen that α is a noncompact imaginary root for X(Q) (and hence
not in the τ -invariant of X(Q)), while both α′

i are complex roots for X(Q′) with θ′(α′
i) < 0 (and

so they are both in the τ invariant of X(Q′)). As a matter of terminology (for the purposes of
this proof), we say that α is an exceptional noncompact imaginary root. The first case where such
a root appears is in the rank-two group Sp(4,R) with Q the unique orbit attached to the Cartan
subgroups attached to C× which does not support a derived functor module. (This orbit has complex
dimension three.) Then the short simple root in exceptional noncompact. In this case µ(Q) is the
unique nilpotent orbit corresponding to the partition 4 = 2+2 which is not relevant. It may happen,
however, in higher rank examples that we may encounter an exceptional noncompact imaginary root
α for X(Q) while µ(Q) is still relevant. But the following always holds: if α is a simple exceptional
noncompact root for X(Q) and β is a simple root adjacent to α such that β ∈ τ(X(Q)), then µ(Q)
is not relevant. To prove this, one needs to make a detailed analysis of the combinatorial algorithm
computing µ(Q) given in [T2, Section 3]. We omit this analysis. The conclusion is that if OK is
relevant, Q ∈ µ−1(OK), and α is short, then (5.38) holds: whenever α is not exceptional noncompact
imaginary; and whenever α is exceptional noncompact imaginary so that there is a short adjacent
simple root β ∈ τ(X(Q)).

Now suppose γ is a long simple root. A similar analysis as discussed in the previous paragraph
allows one to conclude that

(5.39) γ ∈ τ(X(Q)) if and only if γ′ ∈ τ(X(Q′)),

with no additional restrictions on Q.

The previous two paragraphs imply that if Q ∈ µ−1(OK) with OK relevant, then X(Q) is in the
domain of an operator of the form Tαβ with α and β short if and only if X(Q′) is in the domain of
the operators Tα′

1
,β′

1
and Tα′

2
,β′

2
. Meanwhile X(Q) is in the domain of Tαγ with γ long if and only if

X(Q′) is in the domain of each Tα′

i
γ′ . Fix an orbit Q ∈ µ−1(OK) so that X(Q) satisfies condition (2)

of (⋆). Suppose α and β are two short simple roots for h in g that together span a root system of type
A2. Fix Q ∈ K\B and suppose X(Q) is in the domain of Tαβ. Using the computations in the proof
of [V3, Theorem 3.10] distilled in [G′, Definition 1.14.1], and the fact that the relevant hypothesis
rules out the exception remarked upon above, one deduces that there exists an orbit Q1 so that

Tαβ(X(Q)) = X(Q1).

Recall that the previous paragraph implies that X(Q′) is in the domain of Tα′

1
,β′

1
and Tα′

2
,β′

2
, since

the roots involved in the two sets of operators are orthogonal, we can consider the composition of
the two applied to X(Q′). (The result is independent of the order the composition is taken.) Again
using the computation in [V3, Theorem 3.10], and the explicit computation of the map Q 7→ Q′, we
deduce

X(Q′
1) = Tα′

1
,β′

1
◦ Tα′

2
,β′

2
(X(Q′)).

It now follows from (5.37) and Theorem 5.1 (for U(n, n)) that indeed Q1 ∈ µ−1(OK). Hence we
have verified (5.36) whenever T is a single operator Tαβ with α and β short (and Iαβ(Q) necessarily
consists of one element).

We now turn to verifying (5.36) for an unequal-length operator. So let α be a short simple root
and let γ be a long simple roots that together span a root system of type C2. Fix Q ∈ µ−1(OK)
and, as usual, assume OK is relevant. It transpires that the relevant hypothesis rules out that case
that α is exceptional noncompact imaginary (in the terminology introduced above). This follows by
exactly the same kind of detailed analysis of the combinatorial algorithm computing µ(Q) given in
[T2, Section 3] that we needed above. We omit further details.

Assume now that X(Q) is in the domain of Tαγ . Let S1 denote Tαγ(X(Q)). This set has one
or two elements, each of which is in the domain of Tαγ . Let S2 be the set obtained by applying
Tαγ to each element of S1; again S2 has one or two elements, and X(Q) is always contained in S2.
Let S = S1 ∪ S2. (More abstractly, S is the smallest subset of Harish-Chandra modules with trivial
infinitesimal character containing X(Q) consisting of modules in the domain of Tαγ that is actually
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closed under application of Tαγ .) A relatively short case-by-case analysis shows that S always has
three elements and, moreover, since we have assumed that α is not exceptional noncompact imaginary,
each element of S is of the form X(Q◦) for some orbit Q◦. Hence we may write

S = {X(Qi), X(Qii), X(Qiii)}.

The case-by-case analysis mentioned above in fact implies that we may arrange the notation so that
Tαγ(X(Qi)) = X(Qii), Tαγ(X(Qiii)) = X(Qii), and

Tαγ(X(Qii)) = {X(Qi), X(Qiii)}.

We next implement (to the extent possible) the technique used to treat the equal-length operator
situation. A case-by-case analysis shows that that technique always applies to show that either

(5.40) µ(Qii) = µ(Qi) or µ(Qii) = µ(Qiii).

More precisely, we can show that there is a well-defined composition, say T′, of equal-length operators
for U(n, n) so that either

T′(X(Q′
ii)) = X(Q′

i) or T′(X(Q′
ii)) = X(Q′

iii).

Arguing as above, this implies (5.40). After further relabeling we now assume the first case holds,
namely

(5.41) µ(Qii) = µ(Qi).

Recall that we are assuming that X(Q) satisfies condition (⋆) for the orbit Q ∈ µ−1(OK) and we are
trying to establish (5.36). There are three cases to consider: Q = Qi, Q = Qii, or Q = Qiii. In all
cases, we now argue that (5.36) is ultimately reduced to proving

(5.42) if Ann(X(Qi)) 6= Ann(X(Qiii)), then µ(Qi) = µ(Qiii).

To see this, first assume Q = Qi. Then (5.41) says that (5.36) holds whenever Ann(X(Qi)) =
Ann(X(Qiii)); hence we are reduced to (5.42). Next assume Q = Qii. Then (5.41) again says that
(5.36) holds whenever Ann(X(Qi)) = Ann(X(Qiii)); hence we are again reduced to (5.42). Finally
assume Q = Qiii. If µ(Qi) 6= µ(Qiii), a case-by-case analysis with the algorithm of [T2, Section 3]
shows that µ(Qiii) ( µ(Qi). Hence the GK-dimension of X(Qi) (which is weakly greater than the
dimension of µ(Qi)) is strictly greater than the dimension of µ(Qiii) which, by the assumption that
Q = Qiii satisfies condition (2) of (⋆), is the GK-dimension of X(Qiii). Hence the GK-dimension
of X(Qi) is strictly greater than that of X(Qiii). But this contradicts the fact that X(Qi) can be
obtained from applying the (GK-dimension preserving) operator Tαγ successively to X(Qiii). This
contradiction shows that if Q = Qiii, then indeed µ(Qi) = µ(Qiii) and (5.36) holds automatically.
Hence we really are reduced to (5.42) and we may assume Q = Qi or Qii. By (5.41), part (2) of (⋆)
holds for Qi if and only if it holds for Qii. So indeed we may assume it holds for both of them.

Retain the setting of (5.42) and assume that Q = Qii. Recall (as mentioned in Section 2.2) that
primitive ideals with trivial infinitesimal character in type C are in bijection to standard domino
tableaux with special shape. Moreover there there is an action of Tαγ on domino tableaux satisfying
the appropriate condition compatible with this bijection [G]. Then the domino tableaux attached by
[T2, Section 3] to Qi and Qiii, which parametrize the annihilators of X(Qi) and X(Qiii), differ by
moving through a single closed cycle in the sense of [G]. The construction of [T2, Section 3] then
guarantees that Qi and Qiii lie in the same fiber of µ, as desired.

˜

Theorem 5.43 (McGovern). The conclusion of Theorem 5.32 holds for the orthogonal groups
SO(p, q) with p+ q even.
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Sketch. The argument leading to Theorem 5.32 applies in type D with appropriate (and sometimes
rather intricate) modifications. One needs to replace the unequal-length operators Tαγ appearing in
the proof of Theorem 5.32 with the the more complicated ones TD and SD defined in [Mc1] using
the main results in [GV]. By making further explicit calculations, one rules out a longer list of
case-by-case exceptions that arise. We omit the details. ˜

Remark 5.44. For Sp(2n,R) and SO(p, q), the proofs of Theorems 5.32 and 5.43 provide an effective
way to compute the annihilator (and associated variety) of each Harish-Chandra module of the form
X(Q) for Q ∈ µ−1(OK) and OK relevant. As McGovern has pointed out, this provides the as-of-yet
most complete computation of annihilators and associated varieties for these groups. Because the
unitary group U(n, n) (all of whose Cartan subgroups are connected) is used in the proofs, one cannot
conclude much about computing annihilators of modules of the form X(Q,ψ) with ψ nontrivial. Such
nontrivial local systems present serious complications, and the problem of computing annihilators
for all representations of Sp(2n,R) and SO(p, q) remains open. (Garfinkle has suggested that she has
made progress on this problem.)

Remark 5.45. Since Theorems 5.32 and 5.43 verify Hypothesis (⋆) for all complex special orbits
in types B, C, and D, it may seem that Theorem 5.2 is superfluous. But this in not the case. For
the kinds of complex orbits that appear in Theorem 5.2 (see Remark 5.25), the ordering giving the
triangularity of the matrix in Theorem 3.20 provided by using Sp(p, q) or SO∗(2n) can be wildly
different from the ordering provided by using Sp(2n,R) or SO(p, q). The orderings, which originate
in the closure order for the orbits of two different reductive groups on the same flag variety, in fact
bear no resemblance to each other whatsoever. This is a somewhat mysterious feature of our results.

Remark 5.46. For G2 and the complex orbits relevant for the rank one form of F4, the hypothesis
is easy to verify. We omit the details.

Remark 5.47. The main results of [ABV], especially Chapter 26, provide an algorithm to define a
set of Arthur packets whose union conjecturally exhausts the automorphic spectrum of a group GR

arising as the real points of a connected reductive algebraic group defined over R. (The automorphic
spectrum consists of those (unitary) representation that appear in L2(Γ\GR) for a congruence sub-
group Γ of GR.) The algorithm depends on the computation of CV(X) for Harish-Chandra modules
X with trivial infinitesimal character, and as we mentioned in Section 3, there is no known effective
way to compute these characteristic cycles. The main results of this paper give restrictions on the
leading terms of such cycles. While these results are far from definitive, they lead to highly nontrivial
conclusions in examples. Using [ABV], such conclusions should have applications to computing the
smallest representations in an Arthur packet. (Because the duality of [V4] is involved in the definition
of such packets, the computation of leading term cycles — the “largest” piece of the characteristic cy-
cle — corresponds to information about the smallest representations in an Arthur packet. For many
interesting packets (such as unipotent packets) all representations have the same size.) Remark 3.14
is particularly intriguing since it suggests a potential relationship between the computation of Arthur
packets for different real forms of the same complex group. It would be interesting to make this more
explicit.
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