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Abstract. We locate a family of small unitary representations of the orthogonal groups in the
theta correspondence for the dual pairs

`

Sp(2n, R),O(p, q)
´

, identifying them as double stable
range lifts of the trivial representation of O(n). We simultaneously study the corresponding lifts
of the determinant character, and show that the two lifts are irreducible constituents of unipotent
derived functor modules on the “edge” of the weakly fair range.

1. introduction

Consider a sequence of reductive dual pairs (G1, G2), (G2, G3), (G3, G4), . . . , (Gk, Gk+1). An old
idea is that under suitable hypotheses one should obtain interesting small unitary representations
of Gk by beginning with interesting small unitary representations of G1 and performing a sequence
of iterated theta lifts. In particular, one could begin with the simplest unitary representations
of G1, the one-dimensional ones. This framework of iterated theta-lifting then provides a way to
organize unitary representations of classical groups. It is natural to ask to what extent theta lifting
preserves finer invariants of unitary representations. Questions of this sort have been studied by
many authors. The best results of this kind are due to Howe and Li ([19]) and characterize low-rank
unitary representations; see also Przebinda’s paper [26] for other successes. Our interest here is
somewhat more qualitative: suppose that π and π′ are two closely related unitary representations
of G1 — for instance, suppose π and π′ differ by tensoring with a character of G1 — then how are
their iterated lifts related? This is often very difficult to make explicit. The purpose of this paper is
to establish some results in this direction. The virtue of their formulation is that they immediately
suggest generalizations.

We work with the following sequence of pairs: (O(s, 0), Sp(2m,R)) , (Sp(2m,R),O(2m, r)) with
s ≤ m ≤ r/2; these latter inequalities correspond to the stable range. Given a representation π
of O(s, 0), we let θ2(π) denote the corresponding double lift to O(2m, r). (Because of the covers
involved, this notation is imprecise but adequate for the introduction; more complete details are
given in Section 2.2.) Let 1s and dets denote the trivial and determinant representations of O(s, 0).
Our first result (Theorem 1.2) identifies the double lift θ2(1s) as the special unipotent representation
π′

s introduced by Knapp in [13] and [14] and studied further in [29]. We remark that a study of all
double lifts of compact groups has recently been completed by Loke and Nishiyama-Zhu. We return
to this below.

Before stating the theorem, we recall the definition of the representations of [14]. Let G be the
identity component SOe(2m, r) and assume m ≤ r/2. Write g for the complexified Lie algebra of G
and τ for the complexified Cartan involution. Let l =

[
2m+r

2

]
, the rank of g. Fix an integer s ≥ 0

whose parity matches that of r. (This latter condition may be dropped if we pass to the nonlinear
cover of G, but since those groups do not arise in the theta correspondence we impose the parity
condition.) Consider a τ -stable parabolic subalgebra q = l ⊕ u in g whose Levi factor corresponds to
the subgroup

L = U(m, 0) × SOe(0, r) ⊂ G.

Both authors were partially supported by NSF grant DMS-0532088. The second author was also partially supported
by NSF grant DMS-0300106.
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Let Cλs
be the one-dimensional representation of L which is the (−l+ s

2 )th power of the determinant
representation on the U(m, 0) factor of L and trivial on the SO factor, and consider the derived
functor module

(1.1) πs = Aq(λs).

Our notation follows that of [15]; in particular there is a ρ-shift involved in the infinitesimal character.
The definition is arranged so that πs is in the weakly fair range whenever s ≥ m+1, and it turns out
(see [29]) that indeed πs is irreducible whenever s ≥ m. As soon as s < m, πs becomes reducible,
however, and we let π′

s denote the unique irreducible constituent of πs whose lowest K-type matches
the lowest K-type of πs; see Sections 2.6 and 2.7 for more precise details. (This construction is an
algebraic version of the kinds of analytic continuations first considered by Wallach in [36] and later
taken up by other authors, e.g. [5], [8].) Knapp proves that whenever 0 ≤ s1 < s2 ≤ m, π′

s1
is a

unitary representation whose Gelfand-Kirillov dimension is strictly less than that of π′

s2
. Thus for

s > m, the representation π′

s is a unitary cohomologically induced representation of the form Aq(λ).
But for s < m, π′

s is an interesting small unitary representation that is not obviously cohomologically
induced. These latter representations arise very naturally in the theta correspondence. (A minor
complication is that π′

s is defined as a representation of the identity component of O(2m, r) while it
is representations of the full orthogonal group that arise in the correspondence.)

Theorem 1.2. Fix integers s ≤ m ≤ r/2 so that the parity of r matches that of s. When restricted to
the identity component SOe(2m, r), the iterated lift of the trivial representation of O(s, 0) to Sp(2m,R)
to O(2m, r) contains the representation π′

s as a summand.

Because of some innocuous choices involved in defining the theta correspondence, Theorem 1.2
(and Proposition 1.3 below) are stated slightly imprecisely. See Section 2.2 and the statement of
Theorem 2.1 (and Proposition 2.2).

As we mentioned above, Loke and Nishiyama-Zhu have also recently studied double lifts of rep-
resentations of a compact group [20], [22], [23]. For instance, they give explicit formulas for the
restriction of such double lifts to a maximal compact subgroup, say K. Since such formulas are also
available for Knapp’s representations [29], Theorem 1.2 may be proved by combining [20], [23], and
[29]. But our interest here is somewhat different: we seek to identify certain double lifts as special
unipotent representations and interpret them in terms of cohomological induction. The virtue of this
formulation is that our results suggest generalization beyond double lifts from compact groups. Since
it is difficult to recognize singular derived functor modules from their K-spectrums, we develop an
alternative route to Theorem 1.2 based on the uniqueness statement given in Proposition 4.1. That
approach makes the relationship between the double lifts θ2(1s) and θ2(dets) more transparent. In
particular, it is closely connected to determining their Langlands parameters (which we do in Section
5).

We now discuss in more detail how the double lift θ2(dets) is related to θ2(1s). As we explain
in Section 4, this matter is eventually reduced (in the notation of Theorem 1.2) to the case of
s = m and r = 2m (or r = 2m + 1). In this case, π′

m = πm and π′

m+2 = πm+2; that is, the full
cohomologically induced representations πm and πm+2 are both irreducible. In fact, πm and πm+2

“straddle” the edge of the weakly fair range in the sense that πk for k ≥ m+ 1 is in the weakly fair
range, but πm is not. Moreover, πm and πm+2 are even more closely related in that they have the
same infinitesimal character, annihilator, and associated variety. (They are both special unipotent
representations attached to the same dual nilpotent orbit.) We have:

Proposition 1.3. Fix an integer m > 0 and let r = 2m if m is even and r = 2m + 1 if m is
odd. When restricted to SOe(2m, r), the iterated lift of the determinant representation of O(m, 0)
to Sp(2m,R) to O(2m, r) contains the representation π′

m+2. (Thus the representations θ2(1m) and

θ2(detm) straddle the edge of the weakly fair range in the sense described above.)
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As mentioned above, a general (but slightly more technical) statement analogous to Proposition 1.3
for s 6= m is given in Proposition 4.6. In more detail, we understand the relationship between θ2(1s)
and θ2(dets) by inducing them up to well-understood special unipotent representations of a larger
group. (The technique of understanding unipotent representations of a smaller group in terms of those
of a larger one is an old idea; for instance, it is one of the main tools in the inductive description of
the results of [3].) In the end, loosely speaking, one may say that for all s, θ2(1s) and θ2(dets) again
straddle the edge of the weakly fair range.

Acknowledgments. We thank Tony Knapp for several helpful correspondences.

2. explicit details concerning π′

s

In this section, we introduce some auxiliary notation and recall some properties of the represen-
tation π′

s defined in the introduction.

2.1. General notation. Throughout G will denote a reductive Lie group with Lie algebra g◦ and
complexification g. We let GC denote the connected complex adjoint group associated to g. Recall
that GC acts on the nilpotent cone in g with finitely many orbits; we let N denote the set of these
orbits. We fix a Cartan subalgebra h of g and let W denote the Weyl group of h in g. We let g∨

denote the complex dual Lie algebra; with h fixed, g∨ comes equipped with a Cartan subalgebra h∨

which is canonically isomorphic to h∗, the linear dual of h. We let N∨ denote orbits of G∨

C
(the

connected complex adjoint group defined by g∨) on the nilpotent cone in g∨.

Let K denote the maximal compact subgroup of G and write g = k⊕p for the complexified Cartan
decomposition. Write KC for the complexification of K. Then KC acts with finitely many orbits on
the set of nilpotent elements in p. We denote this set of orbits by Np.

2.2. Notation for the theta correspondence. Suppose (G,G′) is a reductive dual pair in Sp(2n,R).

Let Mp(2n,R) denote the connected double cover of Sp(2n,R). Let G̃ and G̃′ denote the preimages

of G and G′ in Mp(2n,R). Let Irrgen(G̃) denote the set of equivalence classes of irreducible Harish-

Chandra modules for G̃ that do not factor to G and adopt similar notation for Irrgen(G̃
′). The theta

correspondence is a map

θ : Irrgen(G̃) −→ Irrgen(G̃
′) ∪ {0};

here if π ∈ Irrgen(G̃) does not occur in the correspondence we write θ(π) = 0. The map θ depends
on a choice of oscillator for Mp(2n,R).

It is often desirable to work directly with Harish-Chandra modules for G rather than genuine

representations of G̃. This is possible only if the cover G̃ splits. In that case, there exist genuine

characters of G̃. Fix one such η. Then tensoring with η provides a bijection between Irrgen(G̃) and
Irr(G).

We introduce some further notation in one special case. For s ≤ m ≤ r/2, consider the dual pairs

(O(s, 0), Sp(2m,R)) and (Sp(2m,R),O(2m, r)). The covers Õ(s, 0) and Õ(2m, r) both split, so fix
genuine characters η1 and η2 of them. Write

θ1 : Irrgen(Õ(s, 0)) −→ Irrgen(S̃p(2m,R)),

and

θ2 : Irrgen(S̃p(2m,R)) −→ Irrgen(Õ(2m, r)).

(The conditions that s ≤ m ≤ r/2, i.e. that each pair is in the stable range, dictates that all lifts are
nonzero.) Consider the following composition

Irr(O(s, 0)) −→ Irrgen(Õ(s, 0)) −→ Irrgen(S̃p(2m,R)) −→ Irrgen(Õ(2m, r)) −→ Irr(O(2m, r))

defined by

X −→ X ⊗ η1 −→ θ1(X ⊗ η1) −→ θ2 [θ1(X ⊗ η1)] −→ θ2 [θ1(X ⊗ η1)] ⊗ η2.
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We denote this composition by θ2. It depends on choices of η1, η2, and of the oscillators defining θ1
and θ2. We make the standard choices, i. e., those used, e. g., in [21], [1], [24], and the references

found in these papers. For η1 this means that it is the unique character of Õ(s, 0) which occurs
in the correspondence for every dual pair

(
O(s, 0), Sp(2k,R)

)
(for which O(s, 0) has the same cover

Õ(s, 0)). The possible choices for η2 differ by a character of O(2m, r); this choice does not affect the
restriction of a representation to the identity component SOe(2m, r).

With these choices in mind, we now restate Theorem 1.2 and Proposition 1.3 from the introduction.

Theorem 2.1. Retain the notation introduced above. Fix integers s ≤ m ≤ r/2 so that the parity of
r matches that of s. Then θ2(1s) restricted to SOe(2m, r) contains π′

s as a summand.

Proposition 2.2. Retain the notation introduced above. Fix an integer m > 0 and let r = 2m if
m is even and r = 2m+ 1 if m is odd. Then θ2(detm) restricted to SOe(2m, r) contains π′

m+2 as a
summand.

2.3. Primitive ideals: generalities. A two-sided ideal in the enveloping algebra U(g) is called
primitive if it is the annihilator of a simple U(g) module. Since each such simple module has an
infinitesimal character, i.e. is annihilated by a unique codimension-one ideal in the center Z(g), it
is clear that each primitive ideal also contains a unique codimension-one ideal in Z(g). Such ideals
are parametrized (via the Harish-Chandra isomorphism) by W orbits on h∗. Let Prim(g) denote the
set of primitive ideals in U(g) and Primχ(g) those with infinitesimal character χ ∈ h∗/W . Duflo
proved that Primχ(g) is finite and (in the inclusion partial order) contains a unique maximal element
Jmax(χ).

The associated variety AV(I) of I ∈ Prim(g) is defined as follows. The ideal I inherits a grading
from the obvious grading on U(g). The associated graded gr(I) is a two-sided ideal in gr(U(g)) = S(g).
Thus gr(I) cuts out a subvariety, denoted AV(I), of g∗ ≃ g. According to a well-known result of
Borho-Brylinski, AV(I) is the closure of a unique element of N .

2.4. Special unipotent representations. Given an orbit O∨ in N∨, we may construct a Jacobson-
Morozov triple {e∨, h∨, f∨} with e∨ ∈ O∨ and h∨ ∈ h∨. We define χ(O∨) = 1

2h
∨ ∈ h∨ ≃ h. Different

choices in this construction lead to at most a Weyl group translate of χ(O∨). Hence χ(O∨) is a
well-defined element of h∗/W , and thus defines an infinitesimal character. We write Jmax(O∨) for
the maximal ideal Jmax(χ(O∨)). Recall the Spaltenstein duality map

d : N −→ N∨,

as treated in the appendix to [2]. According to [2, Corollary A3],

AV(Jmax(O
∨) = d(O∨).

A Harish-Chandra module X for G is called integral special unipotent if there exists an orbit O∨ such
that χ(O∨) is integral and Ann(X) = Jmax(O∨) (with notation as in Section 2.3).

2.5. A family of nilpotent orbits. Suppose g = so(2l,C). (In applications below we will take
2l = 2m + r.) Then N is parametrized by partitions of 2l in which each even part occurs with
even multiplicity. (In the case where all even parts have even multiplicity, there is an additional
complication; it does not arise for us, however, and we ignore it.) Fix s even so that 2s ≤ 2m ≤ l.
We let O(s) denote the orbit parametrized as follows:

O(s) = 3s22m−2s12l−4m+s if (l, s) 6= (2m, 0)(2.3)

O(s) = 22m−2s−214 if (l, s) = (2m, 0);(2.4)

Next suppose g = so(2l+ 1,C). (In applications below we will take 2l + 1 = 2m+ r.) Then N is
again parametrized by partitions of 2l+ 1 in which each even part occurs with even multiplicity. Fix
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s odd so that 2s ≤ 2m ≤ l. We let O(s) denote the orbit parametrized as follows:

(2.5) O(s) = 3s22m−2s12l−4m+s+1.

2.6. Explicit details of the representation π′

s: even orthogonal groups. Fix integers s, m,
and l such that s is even, m ≤ l/2, and 0 ≤ s ≤ m. Recall the definition of π′

s given in the
introduction. In the notation of Sections 2.4 and 2.5, set O∨(s) = d(O(s)). The main result [29,
Theorem 1.1] shows that π′

s is special unipotent attached to O∨(s). More precisely,

(2.6) Ann(π′

s) = Jmax(O
∨(s)) and AV(π′

s) = O(s);

here we are using the notation of Section 2.3.

We recall the infinitesimal character νs of π′

s. In the usual coordinates we have,

(2.7) νs = χ(O∨(s)) = (

l−m︷ ︸︸ ︷
0, 1, . . . , l −m− 1,

m︷ ︸︸ ︷∣∣∣s
2
−m

∣∣∣ ,
∣∣∣s
2
−m+ 1

∣∣∣ , . . . ,
∣∣∣s
2
− 1

∣∣∣).

(The use of νs to represent both an infinitesimal character and a particular representative causes no
confusion in practice.) Notice νs is integral since s is even.

Finally we recall the lowestK-type of π′

s. Retain the notation of the introduction and, in particular,

let λs denote the differential of the character det−l+
s
2 ⊗ 1 of LR. Our hypotheses guarantee that

(2.8) Λs = λs + 2ρ(u ∩ p) = (l − 2m+ s
2 , . . . , l − 2m+ s

2 ; 0, . . . , 0)

is dominant, and hence parametrizes (cf. Section 2.9) the lowest K-type in πs. Therefore, by defini-
tion, Λs is the lowest K-type of π′

s

2.7. Explicit details of the representation π′

s: odd orthogonal groups. Fix integers s, m,
and l such that s is odd, m ≤ l/2, and 0 ≤ s ≤ m. In the notation of Section 2.5 and 2.4, set
O∨(s) = d(O(s)). Again [29, Theorem 1.1] shows that π′

s is special unipotent attached to O(s), and
the conclusions of Equation (2.6) again hold. We recall the infinitesimal character νs of π′

s. In the
usual coordinates we have,

(2.9) νs = χ(O∨(s)) = (| − 1 + s
2 |, | − 2 + s

2 |, . . . , | −m+ s
2 |; l −m− 1

2 , l −m− 3
2 , . . . ,

1
2 ).

Notice νs is integral since s is odd.

Finally we recall the lowest K-type of πs and π′

s. It is parametrized (cf. Section 2.9) by

(2.10) Λs = λs + 2ρ(u ∩ p) = (l − 2m+ 1 +
1

2
(s− 1), . . . , l− 2m+ 1 +

1

2
(s− 1); 0, . . . , 0).

2.8. Two auxiliary representations. The discussion in Sections 2.6 and 2.7 made use of the fact
that m ≤ l/2. We now relax that condition and assume only that m ≤ l. The definition πs of
Equation (1.1) still makes sense. The module πs is in the weakly fair range if and only if s ≥ m+ 1.
Now take s = m or m + 2 and assume m has the same parity as l. So πm and πm+2 “straddle”
the weakly fair range as discussed in the introduction. It is easy to check that they have the same
infinitesimal character and associated variety. In fact, the methods of [29] show that πm and πm+2

are both irreducible and special unipotent attached to O∨(m) where O∨(m) = d(O(m)) and O(m)
is defined by the explicit partitions given in Section 2.5 (which still make sense even though m is
now only assumed to be weakly less than l). Notice also that the equations defining Λm and Λm+2

in (2.8) and (2.10) still give a dominant K-type.
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2.9. Representations of O(p, q) and SOe(p, q), and K-types. If p and q are positive integers, let
p0 = [p

2 ] and q0 = [ q
2 ]. We list the irreducible representations of O(p) by parameters µ = (µ0; ǫ), where

µ0 = (a1, a2, . . . , ap0
) with the ai non-increasing non-negative integers, and ǫ = ±1, as described in

§2.2 of [24]. The O(n)-type parametrized by (µ0;−ǫ) is obtained from that given by (µ0; ǫ) by
tensoring with the determinant character, and the parameters (µ0; ǫ) and (µ0;−ǫ) correspond to the
same representations of O(p) if and only if p is even and ap0

> 0. In this case, the restriction to SO(p)
is the sum of two representations with highest weights µ0 and (a1, a2, . . . , ap0−1,−ap0

), respectively.
In all other cases, the restriction to SO(p) is irreducible and has highest weight µ0. A K-type for
O(p, q) can be specified by a parameter of the form (a1, a2, . . . , ap0

; ǫ)⊗(b1, . . . , bq0
; η) with the ai and

bi non-decreasing non-negative integers, and ǫ, η = ±1. In many cases in this paper, the signs (ǫ, η)
may be chosen to be (+1,+1); in that case we will often omit them and simply write the K-type by
giving its highest weight (a1, a2, . . . , ap0

; b1, . . . , bq0
).

The irreducible admissible representations of O(p, q) may be obtained by induction from irre-
ducible admissible representations of the identity component SOe(p, q); since SOe(p, q) has index
four in O(p, q), the resulting induced representation can have one, two, or four irreducible sum-
mands, resulting in four, two, or one non-equivalent irreducible admissible representations of O(p, q)
containing a given representation of SOe(p, q) as a summand in its restriction. (Two such represen-
tations differ by tensoring with one of the one-dimensional representations of O(p, q); see §3.2 of [24]
for more details.) For our representations π′

s, we are typically in the intermediate situation: there
are two non-equivalent representations of O(2m, r) (distinguished by signs as indicated in §5), each
having two summands when restricted to the identity component, one of which is π′

s. The second
summand is a representation of SOe(2m, r) whose lowest K-type is obtained from Λs by changing
the sign of the mth entry. Only one of the two representations of O(2m, r) occurs as a stable range
theta lift.

3. The Correspondence and K-Types

We start by recalling the correspondence of K-types in the space of joint harmonics H for the dual

pairs
(
Sp(2n,R),O(p, q)

)
[10]. We identify K-types for S̃p(2n,R) (i. e., irreducible representations

of Ũ(n)) with their highest weights, and K-types for O(p, q) as described in §2.9. Recall that each
K-type µ which occurs in the Fock space F of the oscillator representation has associated to it a
degree (the minimum degree of polynomials in the µ-isotypic subspace), and that if π and π′ are

representations of G̃ and G̃′, respectively, which correspond to each other, then each K-type for G̃

which is of minimal degree in π will occur in H and correspond to a K-type for G̃′ of minimal degree
in π′. Since for a given choice of n, Sp(2n,R) is a member of many dual pairs, we refer to the degree

of a K-type σ for S̃p(2n,R) for the dual pair
(
Sp(2n,R),O(p, q)

)
as the (p, q)-degree of σ. As we will

see below in Proposition 3.1, the degree of a K-type for Sp(2n,R) depends on the difference p − q
only, and the degree of a K-type for O(p, q) is independent of n. However, it depends not only on
the highest weight but also on the signs. Consequently, two K-types with the same highest weight
but different signs may have different degrees.

Proposition 3.1. Let p, q, and n be non-negative integers, p0 = [p
2 ], and q0 = [ q

2 ]. The correspon-

dence of K-types in the space of joint harmonics H for the dual pair
(
Sp(2n,R),O(p, q)

)
is given as

follows.

(1) Let

(3.2) µ = (a1, a2, . . . , ax, 0, . . . , 0; ǫ) ⊗ (b1, b2, . . . , by, 0, . . . , 0; η)

be a K-type for O(p, q), with ax > 0 and by > 0. Then µ occurs in H if and only if

n ≥ x+ 1−ǫ
2 (p− 2x) + 1−η

2 (q − 2y) + y. In that case, µ corresponds to
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(3.3)
(

p−q
2 , p−q

2 , . . . , p−q
2

)
+ (a1, . . . , ax, 1, . . . , 1︸ ︷︷ ︸

1−ǫ

2
(p−2x)

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
1−η

2
(q−2y)

,−by, . . . ,−b1).

(2) If a K-type µ for O(p, q) as in (3.2) occurs in the Fock space, then the degree of µ is

(3.4)

x∑

i=1

ai +

y∑

i=1

bi +
1 − ǫ

2
(p− 2x) +

1 − η

2
(q − 2y).

For a K-type for S̃p(2n,R) ξ which occurs in F , write

(3.5) ξ =
(

p−q
2 , p−q

2 , . . . , p−q
2

)
+ (a1, a2, . . . , an).

Then the (p, q)-degree of ξ is
∑n

i=1 |ai|.

Proof. This is well known and follows easily from the results of [16] and [10]. ˜

In many cases it turns out that the lowest K-type of a representation which occurs in the cor-
respondence turns out to have minimal degree in the above sense. This is true in particular for a
representation of the member of the dual pair which has greater rank.

Proposition 3.6. Let p, q, and n be non-negative integers, and suppose π and π′ are genuine

irreducible admissible representations of S̃p(2n,R) and Õ(p, q) which correspond to each other in the
correspondence for the dual pair

(
Sp(2n,R),O(p, q)

)
.

(1) If p+ q ≤ 2n+ 1 then every lowest K-type of π is of minimal (p, q)-degree in π.
(2) Let 2n + 1 ≤ p + q, and let Λ0 be the highest weight of a lowest K-type of π′. Then there

exists a lowest K-type Λ of π′ with highest weight Λ0 such that Λ is of minimal degree in π′.

Proof. For the case p + q even this is Corollary 37 of [24]. If p + q = 2n + 1 this follows from
Corollary 5.2 of [1]. (In fact, here all lowest K-types of π′ are of minimal degree in π′.) If p + q is
odd and p+ q < 2n+ 1 let k = 1

2 (2n+ 1− p− q) so that (p+ k) + (q+ k) = 2n+ 1. We know by the
persistence principle (due to Kudla; this also follows from the induction principle, Theorem 8.4 of [1])
that π occurs in the correspondence for the dual pair

(
Sp(2n,R), O(p+ k, q+ k)

)
, so that the lowest

K-types of π are of minimal (p+k, q+k)-degree. Since the (p, q)-degree and the (p+k, q+k)-degree

of a K-type for S̃p(2n,R) coincide, the lowest K-types of π are of minimal degree for the original
dual pair. The case p+ q > 2n+ 1 is analogous. ˜

Now we compute lowest K-types for our double stable range lifts; they turn out to be unique up
to signs. (The conclusion of Proposition 3.7 may be extracted from the techniques and results of [22]
or [20]. We give an alternative approach.)

Proposition 3.7. Let p, q, m, and r be non-negative integers such that p + q ≤ m ≤ r
2 . Let χ be

either the trivial or determinant representation of O(p, q). Recall from Section 2.2 the maps

θ : Irr(O(p, q)) −→ Irrgen(S̃p(2m,R))

and

θ′ : Irrgen(S̃p(2m,R)) −→ Irr(O(2m, r)),

and set π = θ(χ) and π′ = θ′(π).
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(1) If χ = 11 then the K-types of π are precisely those of the form

(3.8)

(
p− q

2
, . . . ,

p− q

2

)
+ (a1, a2, . . . , ap, 0, . . . , 0,−bq, . . . ,−b1),

where ai and bi are non-negative even integers for all i, and each K-type occurs with multi-
plicity one.

(2) If χ = 11, let a = p−q+r
2 −m. Then π′ has a lowest K-type Λ, unique up to signs, given by

(3.9) Λ =





(a, a, . . . , a, 0, . . . , 0︸ ︷︷ ︸
q

; 0, . . . , 0) if a ≥ 0 and even;

(a, a, . . . , a, 1, . . . , 1︸ ︷︷ ︸
q

; 0, . . . , 0) if a > 0 and odd;

(0, . . . , 0;−a, . . . ,−a︸ ︷︷ ︸
m−p

, 0, . . . , 0) if a ≤ 0 and even;

(0, . . . , 0;−a, . . . ,−a︸ ︷︷ ︸
m−p

, 1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0) if a < 0 and odd.

(3) If χ = det then the K-types of π are precisely those of the form (3.8) with ai and bi positive
odd integers for all i, and each K-type occurs with multiplicity one.

(4) If χ = det, let a = p−q+r
2 −m. Then π′ has a lowest K-type Λ, unique up to signs, given by

(3.10) Λ =





(1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0; 1, . . . , 1︸ ︷︷ ︸
q

, 0, . . . , 0) if a = 0 ;

(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p

, a, . . . , a, 0, . . . , 0︸ ︷︷ ︸
q

; 0, . . . , 0) if a > 0 and odd;

(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p

, a, . . . , a, 1, . . . , 1︸ ︷︷ ︸
q

; 0, . . . , 0) if a > 0 and even;

(0, . . . , 0;−a+ 1, . . . ,−a+ 1︸ ︷︷ ︸
q

,−a, . . . ,−a︸ ︷︷ ︸
m−p−q

, 0, . . . , 0) if a < 0 and odd;

(0, . . . , 0;−a+ 1, . . . ,−a+ 1︸ ︷︷ ︸
q

,−a, . . . ,−a︸ ︷︷ ︸
m−p−q

, 1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0) if a < 0 and even.

Proof. The first part of the proposition is Proposition 2.1, together with Corollary 2.7(c), of [17].
For (2), let

(3.11) σ =
(

p−q
2 , . . . , p−q

2

)
+ (a1, a2, . . . , ap, 0, . . . , 0,−bq, . . . ,−b1),

be a K-type of π. Then

(3.12) σ =
(

2m−r
2 , . . . , 2m−r

2

)
+ (a+ a1, . . . , a+ ap, a, . . . , a, a− bq, . . . , a− b1),

and the (2m, r)-degree of σ is

(3.13) d =

p∑

i=1

|a+ ai| +

q∑

i=1

|a− bq| + (m− p− q)|a|.

Suppose a is even. Then the degree of σ is minimized if ai = 0 and bi = a for all i if a ≥ 0, and
by choosing ai = −a and bi = 0 for all i if a is negative. So π has a unique K-type σ0 of minimal
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(2m, r)-degree. The K-type Λ corresponding to σ0 in the space of joint harmonics for the dual pair(
Sp(2m,R), O(2m, r)

)
(see Proposition 3.1) must then be a lowest K-type of π′, unique up to signs,

by Proposition 3.6.

If a is odd then π has more than one K-type of minimal (2m, r)-degree: for a < 0 choose bi = 0
for all i, and ai = −a + 1 or −a − 1 in such a way that the resulting weight is dominant. The
corresponding K-types for O(2m, r) are then those of the form

(3.14) Λk,t =
(
1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0;−a, . . . ,−a︸ ︷︷ ︸
m−p

, 1, . . . , 1︸ ︷︷ ︸
t

, 0, . . . , 0
)

with k + t = p. By Proposition 3.6, the lowest K-types of π′ are precisely those Λk,t for which the
Vogan-norm ([33] Definition 5.4.18) of Λk,t,

(3.15) ||Λk,t|| =< Λk,t + 2ρc,Λk,t + 2ρc >

is minimal. Since the quantity < Λk,t,Λk,t > only depends on k+t = p, we can minimize the quantity
nk,t = 1

2

(
||Λk,t||− < 2ρc, 2ρc > − < Λk,t,Λk,t >

)
instead. If n = [ r

2 ] then 2ρc = (2m − 2, 2m −
4, . . . , 2, 0; r − 2, r − 4, . . . , r − 2n). So

(3.16) nk,t =

k∑

i=1

(2m− 2i) +

m−p∑

i=1

(−a)(r − 2i) +

t∑

i=1

(r − 2m+ 2p− 2i).

The second sum is independent of k and t, and it is clear that nk,t will be minimized by k = p, t = 0
if 2m ≤ r− 2m+2p, and by k = 0, t = p if 2m ≥ r− 2m+2p. It remains to show that we must have
4m > r+2p. We know that a = p−q+r

2 −m < 0, so p− q+ r < 2m, Moreover, we have assumed that
p + q ≤ m, so we get 2p + r < 3m ≤ 4m, and we are done with this case. The case a > 0 is much
easier and left to the reader.

Part (3) is Proposition 2.4 of [18], together with Proposition 2.1 of [11], and part (4) can be easily
obtained using (3) and an argument similar to the one used for the case χ = 11. We omit the details.

˜

We conclude by introducing some additional notation. Fix integers s ≤ m ≤ r/2 so that the
parities of s and r match. Recall the double lift θ2 of Section 2.2 and assume that the choices
made defining θ2 match those in Proposition 3.7. Consider the set of highest weights of lowest K-
types of the restriction of θ2(1s) to SOe(2m, r). In terms of the parametrization of Section 2.9, this
set contains a unique highest weight (possibly occurring with multiplicity greater than one) whose
coordinates are all nonnegative. Call the corresponding lowest K-type “positive”. Then set
(3.17)
Λs = the K-type that occurs as a “positive” lowest K-type in the restriction of θ2(1s) to SOe(2m, r)

and
(3.18)
Λ′

s = the K-type that occurs as a “positive” lowest K-type in the restriction of θ2(dets) to SOe(2m, r).

Explicit formulas for them are given in Proposition 3.7. Notice that Λs has already been defined in
Sections 2.6 and 2.7. Using Proposition 3.7, it is easy to check that the two definitions coincide.

4. Characterizing certain unipotent representations by their lowest K types:

proof of Theorem 1.2 and Proposition 1.3

As alluded to in the introduction, the following is the key uniqueness result we need. It allows
us to identify our special unipotent representations of interest by simply computing their associated
varieties, infinitesimal characters, and lowest K-types.
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Proposition 4.1. Recall the notation of Sections 2.6 and 2.7, as well as that of Equations (3.17)
and (3.18). There is a unique special unipotent representation of SOe(2m, r) attached to O∨(s) with
lowest K-type Λs. Similarly if s 6= 0 there is a unique special unipotent representation attached to
O∨(s) with lowest K-type Λ′

s.

Remark 4.2. The proof is rather technical, and we defer it to Section 5. Recall (from the discussion in
Section 2.4 for instance) that a representation is a special unipotent representation if it has the right
infinitesimal character and size. So the proposition roughly says that the infinitesimal character, size,
and lowest K-types characterize certain representations uniquely. For many of the representations
appearing in the proposition, the infinitesimal character and lowest K-types are enough to guarantee
unicity; but there are some for which this is not enough and the further consideration of size must
also be invoked.

As we shall see, the proof also extends to another case which will be important for us. Retain
the relaxed setting of Section 2.8. Then πm is the unique special unipotent representation attached
to O∨(m) with lowest K-type Λm. Likewise πm+2 is the unique special unipotent representation
attached to O∨(m) with lowest K type Λm+2. ˜

The next proposition says that the iterated lifts θ2(1s) and θ2(dets) from O(s, 0) to Sp(2m,R) to
O(2m, r) contain the unique representations of Proposition 4.1.

Proposition 4.3. Fix integers s ≤ m ≤ r/2 so that the parity of s coincides with that of r. The
double lift θ2(1s) of the trivial representation lifted from O(s) to Sp(2m,R) and then to O(2m, r)
restricted to SOe(2m, r) contains the unique special unipotent representation of SOe(2m, r) attached
to O∨(s) with lowest K-type Λs. Similarly if s 6= 0 the restriction of the double lift θ2(dets) of
the determinant representation contains the unique special unipotent representation of SOe(2m, r)
attached to O∨(s) with lowest K-type Λ′

s.

Proof. That Λs and Λ′

s are the indicated lowest K-types follows from the definitions of Equations
(3.17) and (3.18). So all that remains to show is that the two double lifts are special unipotent
attached to O∨(s). Using the correspondence of infinitesimal characters ([27]), it is easy to check that
the two double lifts have the required infinitesimal character νs given in Sections 2.6 and 2.7. Hence
it remains to verify only that the dense orbit (say Os) in the associated variety of the annihilator of
the double lifts is indeed O(s). Since there are no representations with infinitesimal character νs with
smaller associated variety (as follows from the general theory of special unipotent representations),
it enough to show that that Os ⊂ O(s). Now the paper [26] gives an explicit upper bound on Os

in terms of certain moment map images. That upper bound can be computed explicitly and shown
to coincide with O(s). (Computations of this sort are explained very carefully in [31].) The proof is
complete. ˜

The main results of the introduction are now simple corollaries.

Proof of Theorem 1.2. As explained in Sections 2.6 and 2.7, [29] shows that π′

s is special unipotent
attached to O(s) with lowest K-type Λs. So the theorem follows from Propositions 4.1 and 4.3.

Proof of Proposition 1.3. In the setting of Proposition 1.3, [29] shows that πm and πm+2 are
special unipotent representations attached to O∨(m) with respective lowest K-types Λm and Λ′

m. So
the current proposition follows from Propositions 4.1 and 4.3. ˜

We now explain how to extend Proposition 1.3 to a more general setting. The idea, as mentioned
in the introduction, is to induce θ2(1s) and θ2(dets) to special unipotent representations of a larger
group G′ that we can quickly recognize in terms of cohomological induction. The subtlety is to
arrange the induction so that we indeed obtain (nonzero) special unipotent representations of G′.
Here are the details.
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Again fix integers s ≤ m ≤ r/2 so that the parity of s matches that of r. Consider the restrictions
to SOe(2m, r), say θ2e(1s) and θ2e(dets), of the double lifts θ2(1s) and θ2(dets) which contain the
respective lowest K-types Λs and Λ′

s. Let G′ = SOe(4m − 2s, r) and maintain the notation of
Section 2.1 with the addition of primes as appropriate. Let q′ = l′ ⊕ u′ be a τ ′-stable parabolic of g′

so that l′ ∩ l̄′ corresponds to
L′ = U(m− s, 0) × SOe(2m, r).

Suppose that u′ corresponds to a choice of positive roots so that the roots corresponding to the
U(m− s, 0) factor appear before those in the SO factor. Consider the (l′, L′ ∩K ′) module

detk ⊗ θ2e(1s),

where
k = −l + [s/2],

and [s/2] is the greatest integer less than s/2. One may verify that detk ⊗ θ2e(1s) is in the weakly
fair range for q ([15, Definition 0.35]). Let S be the middle degree dim(u′ ∩ k′), and finally consider
the derived functor module

(4.4) Γ1 = RS
q′(detk ⊗ θ2e(1s)).

Again we follow the normalization of [15] (and the notation of [33]) so that there is a ρ-shift in the
infinitesimal character of Γ1. Using the explicit formula for the lowest K-type Λs of θ2e(1s) given

above, it is simple to check that the highest weight of the lowest K-type of detk ⊗ θ2e(1s) shifted by
2ρ(u′ ∩ p′) is still dominant and hence parametrizes the lowest K-type of Γ1 (which, in particular, is
thus nonzero). It seems likely that the methods of [35] could be applied to show that Γ1 is irreducible.
To be on the safe side, let Γ′

1 denote the lowest K-type constituent of Γ1. Similarly put

(4.5) Γdet = RS
q′(detk ⊗ θ2e(dets)),

and let Γ′

det denote its lowest K-type constituent. (Again it is likely that Γ′

det = Γdet.)

The following generalization of Proposition 1.3 states that the modules Γ′

1
and Γ′

det induced from
the double lifts of the trivial and determinant representation are special unipotent Aq(λ) modules
that straddle the weakly fair range.

Proposition 4.6. Fix integers s ≤ m ≤ r/2 so that the parity of r matches that of s. Set
G′ = SOe(4m − 2s, r). Consider the representations Γ′

1
and Γ′

det of G′ defined around Equations
(4.4) and (4.5) above as cohomologically induced from the iterated lifts of the trivial and determinant
representation of O(s, 0) to Sp(2m,R) to O(2m, r). Next recall the special unipotent representations
π4m−2s and π4m−2s+2 of G′ attached to O∨(4m− 2s) discussed in Section 2.8. (These are cohomo-
logically induced modules that straddle the edge of weakly fair range.) Then

Γ′

1
= π4m−2s,

and
Γ′

det = π4m−2s+2.

In particular, when s = m we recover Proposition 1.3.

Proof. We first show Γ′

1
= π4m−2s. In the discussion around the definition of Γ′

1
, we mentioned that

its lowest K-type is the lowest K-type of detk ⊗ θ2e(1s) shifted by 2ρ(u′ ∩ p′). It is easy to check that
it matches the lowest K-type Λ4m−2s of π4m−2s described explicitly in Equation (2.8). As mentioned
in Section 2.8, π4m−2s is special unipotent attached to O∨(4m − 2s). By the unicity discussed in
Remark 4.2, it remains only to show that Γ′

1
is special unipotent attached to O∨(4m− 2s). It’s easy

to check that the infinitesimal character of Γ′

1
matches that attached to O∨(4m− 2s). So, just as in

the proof of Proposition 1.3, it suffices to check that the dense orbit in the associated variety of the
annihilator of Γ′

1
, say O, matches O(4m−2s). Using the main results of [30], it is not difficult in fact

to compute the associated variety of Γ′

1
given the computation of the associated variety of θ2e(1s),

which is known by combining Theorem 1.2 (identifying θ2e(1s) as a Knapp representation) and [29]
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(computing the associated variety of Knapp representations). One finds that indeed the associated
variety of Γ′

1
is a component of O ∩ p′. So indeed O = O(4m− 2s). Thus Γ′

1
= π4m−2s.

The proof that Γ′

det = π4m−2s+2 follows in nearly the identical way. (A mild complication is that
we have yet to compute the associated variety of θ2e(dets). It coincides with that of θ2e(1s), but we
omit the details of that calculation here.) ˜

5. Langlands parameters and the proof of Proposition 4.1

In this section we prove Proposition 4.1. The Langlands parameters of the double lifts θ2(1s) and
θ2(dets) are given in Theorem 5.33.

We start by defining representations π11 and πdet of O(2m, r) which will turn out to be the double
theta lifts of the trivial and determinant representations of O(s, 0), respectively, by giving their
Langlands parameters.

We use the notation established in [24]; following Vogan’s version of the Langlands Classification
[34], a set of Langlands parameters of an irreducible admissible representation π of O(p, q) consists of a
Levi subgroupMA ∼= O(p−2t−k, q−2t−k)×GL(2,R)t×GL(1,R)k of O(p, q) and data (λ,Ψ, µ, ν, ǫ, κ)
with (λ,Ψ) the Harish-Chandra parameter and system of positive roots determining a limit of discrete
series ρ of O(p− 2t− k, q− 2t− k), µ ∈ Zt and ν ∈ Ct determining a relative limit of discrete series τ
of GL(2,R)t, and the pair (ǫ, κ) with ǫ ∈ {±1}k and κ ∈ Ck determining a character χ of GL(1,R)k.
(The group MA is of course implied by the other data.) The representation π = π(λ,Ψ, µ, ν, ǫ, κ) is

then an irreducible quotient of an induced representation Ind
O(p,q)
MAN (ρ⊗ τ ⊗ χ⊗ 11), with P = MAN

chosen such that certain positivity conditions are satisfied. Since O(p, q) is disconnected, there may
be more than one such irreducible quotient which can be distinguished by signs (see §3.2 of [24]).
Here, we will always mean the representation with all signs positive, so we omit them.

Let m, r, and s be integers as before, i. e., m ≥ 1, r ≥ 2m, 0 ≤ s ≤ m, and s ≡ r(mod 2). We
define π11 to be the representation of O(2m, r) with the following Langlands parameters:

(1) If r = 2m and s = 0 then π11 is the spherical representation with MA ∼= GL(1,R)2m, given by
π11 = π(0, ∅, 0, 0, ǫ, κ), where ǫ = (1, . . . , 1) and κ = ν0. (Here ν0 is the infinitesimal character
of π′

0 as in (2.7).)
(2) If r ≥ 2m+ s let π11 = π(λd,Ψ, µ, ν, 0, 0) with MA ∼= O(0, r − 2m) × GL(2,R)m,

(5.1) λd =
(r

2
−m− 1,

r

2
−m− 2, . . . , 1, 0

)
or λd =

(
r

2
−m− 1,

r

2
−m− 2, . . . ,

3

2
,
1

2

)

depending on whether r is even or odd,

µ =

(
r + s

2
−m− 1,

r + s

2
−m− 1, . . . ,

r + s

2
−m− 1

)
,

ν =

(
r − s

2
+m− 1,

r − s

2
+m− 3, . . . ,

r − s

2
−m+ 3,

r − s

2
−m+ 1

)
,

(5.2)

and Ψ is the positive root system (uniquely) determined by λd.
(3) If r ≤ 2m+ s, and r > 2m or s > 0 (so that we are not in the first case) we distinguish two

cases, depending on the parity of r−s
2 +m.

If r−s
2 + m is even then π11 = π(λd,Ψ, µ, ν, 0, 0) with MA ∼= O(m − r−s

2 , r+s
2 − m) ×

GL(2,R)
r−s

4
+ m

2 ,

λd =

(
s

2
− 1,

s

2
− 2, . . . ,

r + s

4
−
m

2
;
r + s

4
−
m

2
− 1,

r + s

4
−
m

2
− 2, . . . , 1, 0

)
or

λd =

(
s

2
− 1,

s

2
− 2, . . . ,

r + s

4
−
m

2
;
r + s

4
−
m

2
− 1,

r + s

4
−
m

2
− 2, . . . ,

3

2
,
1

2

)(5.3)
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depending on whether r is even or odd,

µ =

(
r + s

2
−m− 1,

r + s

2
−m− 1, . . . ,

r + s

2
−m− 1

)
,

ν =

(
r − s

2
+m− 1,

r − s

2
+m− 3, . . . , 3, 1

)
,

(5.4)

and Ψ is the positive root system (uniquely) determined by λd.
If r−s

2 +m is odd then π11 = π(λd,Ψ, µ, ν, 0, 0) with MA ∼= O(m− r−s
2 +1, r+s

2 −m+1)×

GL(2,R)
r−s

4
+ m

2
−

1
2 ,

λd =

(
s

2
− 1,

s

2
− 2, . . . ,

r + s

4
−
m

2
−

1

2
;
r + s

4
−
m

2
−

1

2
,
r + s

4
−
m

2
−

3

2
, . . . , 1, 0

)
or

λd =

(
s

2
− 1,

s

2
− 2, . . . ,

r + s

4
−
m

2
−

1

2
;
r + s

4
−
m

2
−

1

2
,
r + s

4
−
m

2
−

3

2
, . . . ,

3

2
,
1

2

)(5.5)

depending on whether r is even or odd,

µ =

(
r + s

2
−m− 1,

r + s

2
−m− 1, . . . ,

r + s

2
−m− 1

)
,

ν =

(
r − s

2
+m− 1,

r − s

2
+m− 3, . . . , 4, 2

)
,

(5.6)

and Ψ is chosen so that the corresponding limit of discrete series of O(m− r−s
2 +1, r+s

2 −m+1)
is holomorphic.

Now assume s ≥ 1. We define πdet to be the representation of O(2m, r) with the following
Langlands parameters:

(1) If r ≥ 2m+ s+ 2 let πdet = π(λd,Ψ, µ, ν, 0, 0) with MA, λd, and Ψ as in the corresponding
case for π11,

µ =

(
r + s

2
−m, . . . ,

r + s

2
−m

︸ ︷︷ ︸
s entries

,
r + s

2
−m− 1, . . . ,

r + s

2
−m− 1

︸ ︷︷ ︸
m−s entries

)
,

and

ν =

(
r + 3s

2
−m− 2,

r + 3s

2
−m− 4, . . . ,

r − s

2
−m,

r − s

2
+m− 1,

r − s

2
+m− 3, . . . ,

r − s

2
−m+ 2s+ 1

)
.

(5.7)

(2) If r ≤ 2m+ s+ 2, we once again distinguish two cases, depending on the parity of r−s
2 +m.

If r−s
2 +m is odd then πdet = π(λd,Ψ, µ, ν, 0, 0) with MA ∼= O(m − r−s

2 + 1, r+s
2 −m +

1) × GL(2,R)
r−s

4
+ m

2
−

1
2 ,

λd =

(
s

2
,
s

2
− 1, . . . ,

r + s

4
−
m

2
+

1

2
;
r + s

4
−
m

2
−

1

2
,
r + s

4
−
m

2
−

3

2
, . . . , 1, 0

)
or

λd =

(
s

2
,
s

2
− 1, . . . ,

r + s

4
−
m

2
+

1

2
;
r + s

4
−
m

2
−

1

2
,
r + s

4
−
m

2
−

3

2
, . . . ,

3

2
,
1

2

)(5.8)
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depending on whether r is even or odd,

µ =

(
r + s

2
−m, . . . ,

r + s

2
−m

︸ ︷︷ ︸
r+3s

4
−

m

2
−

1
2

entries

,
r + s

2
−m− 1, . . . ,

r + s

2
−m− 1

︸ ︷︷ ︸
m−s entries

)
,

ν =

(
r + 3s

2
−m− 2,

r + 3s

2
−m− 4, . . . , 3, 1,

r − s

2
+m− 1,

r − s

2
+m− 3, . . . ,

r − s

2
−m+ 2s+ 1

)
,

(5.9)

and Ψ is the positive root system (uniquely) determined by λd.
If r−s

2 +m is even then πdet = π(λd,Ψ, µ, ν, 0, 0) with MA ∼= O(m− r−s
2 + 2, r+s

2 −m+

2) × GL(2,R)
r−s

4
+ m

2
−1,

λd =

(
s

2
,
s

2
− 1, . . . ,

r + s

4
−
m

2
;
r + s

4
−
m

2
,
r + s

4
−
m

2
− 1, . . . , 1, 0

)
or

λd =

(
s

2
,
s

2
− 1, . . . ,

r + s

4
−
m

2
;
r + s

4
−
m

2
,
r + s

4
−
m

2
− 1, . . . ,

3

2
,
1

2

)(5.10)

depending on whether r is even or odd,

µ =

(
r + s

2
−m, . . . ,

r + s

2
−m

︸ ︷︷ ︸
r+3s

4
−

m

2
−1 entries

,
r + s

2
−m− 1, . . . ,

r + s

2
−m− 1

︸ ︷︷ ︸
m−s entries

)
,

ν =

(
r + 3s

2
−m− 2,

r + 3s

2
−m− 4, . . . , 4, 2,

r − s

2
+m− 1,

r − s

2
+m− 3, . . . ,

r − s

2
−m+ 2s+ 1

)
,

(5.11)

and Ψ is chosen so that the corresponding limit of discrete series of O(m− r−s
2 +1, r+s

2 −m+1)
is holomorphic.

Recall the SO(2m)×SO(r)-types Λs and Λ′

s defined in (3.17) and (3.18). We use the same notation
(Λs and Λ′

s) for the unique O(2m)×O(r)-types with positive signs containing Λs and Λ′

s respectively
in their restrictions to SO(2m) × SO(r).

Proposition 5.12. Let m, r, s, π11 and πdet be as above. Then π11 and πdet both have infinitesimal
character νs (see (2.7)), π11 has lowest K-type Λs, and πdet has lowest K-type Λ′

s.

Proof. This amounts to a case-by-case calculation using the theory of [33] and [15] as described in
detail and explicitly in §3.2 of [24] for r even (the odd case is very similar). If π = π(λd,Ψ, µ, ν, ǫ, κ)
with MA ∼= O(2m− 2t− k, r− 2t− k)×GL(2,R)t ×GL(1,R)k, write p = [m− t− k

2 ], q = [ r−2t−k
2 ],

λd = (a1, . . . , ap; b1, . . . , bq), µ = (µ1, . . . , µt), ν = (n1, . . . , nt), and κ = (κ1, . . . , κk). Then the
infinitesimal character of π is given by

(5.13) γ =

(
a1, . . . , ap, b1, . . . , bq,

µ1 + n1

2
, . . . ,

µt + nt

2
,
µ1 − n1

2
, . . . ,

µt − nt

2
, κ1, . . . , κk

)
.

To compute the lowest K-types of π, one assigns to π the Vogan parameter λa, an element of t∗

which is essentially the discrete part of the infinitesimal character, as follows: the parameter λa is
the element of t∗ which is dominant with respect to a fixed positive system of compact roots and
conjugate by the compact Weyl group to
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(5.14)

(
a1, . . . , ap,

µ1

2
, . . . ,

µt

2
, 0, . . . , 0︸ ︷︷ ︸

m−t−p

; b1, . . . , bq,
µ1

2
, . . . ,

µt

2
, 0, . . . , 0︸ ︷︷ ︸

[
r
2 ]−t−q

)
;

the lowest K-types are then of the form

(5.15) λa + ρ(u ∩ p) − ρ(u ∩ k) + δL,

where q = l ⊕ u is the theta stable parabolic subalgebra of g determined by λa, ρ(u ∩ p) and ρ(u ∩ k)
are one half the sum of the positive noncompact and compact roots in u, respectively, and δL is the
highest weight of a fine K-type for L, a subgroup of O(2m, r) corresponding to l. The allowed choices
for δL are determined by Ψ and ǫ (see Proposition 10 of [24]).

We omit the detailed calculation, but illustrate using an example below.

˜

Example 5.16. Let m = s = 2 and r = 6. Then π11 has Langlands parameters MA ∼= O(0, 2) ×
GL(2,R)2, λd = (0), µ = (1, 1), and ν = (3, 1) (using either case (2) or (3)). So λa = (1

2 ,
1
2 ; 1

2 ,
1
2 , 0).

We have the infinitesimal character of π11 given by

(5.17)

(
1

2
+

3

2
,
1

2
+

1

2
,
1

2
−

3

2
,
1

2
−

1

2
, 0

)
= (2, 1,−1, 0, 0),

which is Weyl group conjugate to ν2. The lowest K-type is of the form

λa + ρ(u ∩ p) − ρ(u ∩ k) + δL

=

(
1

2
,
1

2
;
1

2
,
1

2
, 0

)
+ (2, 2; 1, 1, 0)−

(
1

2
,
1

2
;
3

2
,
3

2
, 0

)
+ (0, 0; 0, 0, 0)

=(2, 2; 0, 0, 0) = Λ2.

(5.18)

For πdet we have MA ∼= O(2, 4) × GL(2,R), λd = (1; 1, 0), µ = (2) and ν = (2) (using case (2)).
So λa = (1, 1; 1, 1, 0), and the infinitesimal character is

(5.19) (1 + 1, 1, 1 − 1, 1, 0) = (2, 1, 0, 1, 0) ∼
W
ν2.

The lowest K-type is

λa + ρ(u ∩ p) − ρ(u ∩ k) + δL

= (1, 1; 1, 1, 0) + (2, 2; 1, 1, 0)−

(
1

2
,
1

2
;
3

2
,
3

2
, 0

)
+

(
1

2
,
1

2
;−

1

2
,−

1

2
, 0

)

=(3, 3; 0, 0, 0) = Λ′

2.

(5.20)

Here the fine K-type δL is uniquely determined by Ψ which is such that the resulting limit of discrete
series on O(2, 4) is holomorphic.

We show below that in many cases, including most cases for π11 and the case s = m for πdet,
this representation is uniquely determined by its lowest K-type and infinitesimal character. This
then implies that the representation is indeed the double lift of the appropriate character of O(0, s),
and in the case of π11, that it is the unique representation (with positive signs) of O(2m, r) having
the Knapp representation π′

s as a summand in its restriction to the identity component SOe(2m, r).
Moreover, π′

s is then uniquely determined be its lowest K-type and infinitesimal character. In [13],
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Knapp conjectured that this should typically be the case for the representations π′

s, and he gives a
conjectural method for determining the Langlands parameters, which Friedman [6] proves to yield
the correct parameters.

Proposition 5.21. Let m, r, s, π11 and πdet be as above.

(1) If r+s
2 −m 6= 1 then π11 is the unique irreducible admissible representation of O(2m, r) with

infinitesimal character νs and lowest K-type Λs.
(2) If s = m then πdet is the unique irreducible admissible representation of O(2m, r) with infin-

itesimal character νs and lowest K-type Λ′

s.

Proof. The spherical case r+s
2 −m = 0 for π11 follows from the well-known fact that any spherical

representation of O(p, q) is determined by its infinitesimal character. For π11 and the case r+s
2 −m ≥ 2

or πdet with m = s, one computes the Vogan parameter λa associated to Λs (or Λ′

s) (see §5.3 of [33]),
which essentially determines the Levi factor MA and the discrete part λd, µ of the parameters.
Then one checks that there is only one parameter ν giving the given infinitesimal character, and the
root system Ψ is then determined by the given unique lowest K-type. We give some details of the
argument for π11 and the case r ≤ 2m+ s with r−s

2 +m and r = 2n even, and leave the remaining
cases to the reader.

We have

(5.22) Λs =

(
r + s

2
−m,

r + s

2
−m, . . . ,

r + s

2
−m; 0, . . . , 0

)
,

so if ρc is one half the sum of the positive compact roots, then

(5.23) Λs + 2ρc =

(
r + s

2
+m− 2,

r + s

2
+m− 4, . . . , r + 2, r

︸ ︷︷ ︸
m

2
−

r−s

4

, r − 2, r − 4, . . . ,
r + s

2
−m

︸ ︷︷ ︸
m

2
+ r−s

4

;

r − 2, r − 4, . . . ,
r + s

2
−m

︸ ︷︷ ︸
m

2
+ r−s

4

,
r + s

2
−m− 2, . . . , 2, 0

)
.

We may choose ρ (so that Λs + 2ρc is dominant) to be

(5.24)

ρ =

(
r

2
+m− 1,

r

2
+m− 2, . . . ,

3r − s

4
+
m

2︸ ︷︷ ︸
m

2
−

r−s

4

,
3r − 2

4
+
m

2
− 1,

3r − 2

4
+
m

2
− 3, . . . ,

r + 2

4
−
m

2
+ 1

︸ ︷︷ ︸
m

2
+ r−s

4

;

3r − 2

4
+
m

2
− 2,

3r − 2

4
+
m

2
− 4, . . . ,

r + 2

4
−
m

2︸ ︷︷ ︸
m

2
+ r−s

4

,
r + 2

4
−
m

2
− 1,

r + 2

4
−
m

2
− 2, . . . , 1, 0

)
,

so that
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(5.25) Λs + 2ρc − ρ =

(
s

2
− 1,

s

2
− 2, . . . ,

r + s

4
−
m

2
,
r + s

4
−
m

2
− 1, . . . ,

r + s

4
−
m

2
− 1

︸ ︷︷ ︸
m

2
+ r−s

4

;

r + s

4
−
m

2
, . . . ,

r + s

4
−
m

2︸ ︷︷ ︸
m

2
+ r−s

4

,
r + s

4
−
m

2
− 1,

r + s

4
−
m

2
− 2, . . . , 1, 0

)
.

Projection onto the dominant (w. r. t. ρ) Weyl chamber yields

(5.26) λa =

(
s

2
− 1,

s

2
− 2, . . . ,

r + s

4
−
m

2
,
r + s

4
−
m

2
−

1

2
, . . . ,

r + s

4
−
m

2
−

1

2︸ ︷︷ ︸
m

2
+ r−s

4

;

r + s

4
−
m

2
−

1

2
, . . . ,

r + s

4
−
m

2
−

1

2︸ ︷︷ ︸
m

2
+ r−s

4

,
r + s

4
−
m

2
− 1,

r + s

4
−
m

2
− 2, . . . , 1, 0

)
.

All entries of λa that occur only once will be entries of the Harish-Chandra parameter λd, and
since r+s

4 − m
2 − 1

2 > 0, the Levi factor MA will be of the form

(5.27) MA ∼= O(2m− 2t, r − 2t) × GL(2,R)t

for some 0 ≤ t ≤ m
2 + r−s

4 .

Recall that the infinitesimal character (up to Weyl group action) is

(5.28) νs =

(
s

2
− 1,

s

2
− 2, . . . ,

r + s

4
−
m

2
,
r + s

4
−
m

2
− 1, . . . ,

s

2
−m;

r

2
− 1,

r

2
− 2, . . . ,

r + s

4
−
m

2
,
r + s

4
−
m

2
− 1, . . . , 1, 0

)
.

Since νs does not contain r+s
4 − m

2 − 1
2 as an entry, it can not be an entry in λd, so we must have

t = m
2 + r−s

4 and

(5.29) λd =

(
s

2
− 1,

s

2
− 2, . . . ,

r + s

4
−
m

2
;
r + s

4
−
m

2
− 1,

r + s

4
−
m

2
− 2, . . . , 1, 0

)
.

A relative limit of discrete series of GL(2,R)t parametrized by a pair (µ, ν) with µ = (µ1, . . . , µt) ∈(
Z+

)t
and ν = (n1, . . . , nt) ∈ Ct has infinitesimal character 1

2 (µ1+n1, . . . , µt+nt,−µ1+n1, . . . ,−µ1+
nt). In order to account for the remaining entries ( r

2 −1, r
2 −2, . . . , 1, 0,−1, . . . , s

2 −m) of νs, we must

have µ = ( r+s
2 −m−1, r+s

2 −m−1, . . . , r+s
2 −m−1) and ν = ( r+s

2 +m−1, r+s
2 +m−3, . . . , 3, 1). (Note

that changing the sign on an entry of ν does not change the equivalence class of the corresponding
representation of O(2m, r).) ˜

To illustrate how Proposition 5.21 fails in the other cases, we look at three examples; the first
example deals with the ambiguities in Langlands parameters for representations with lowest K-type
Λs when r+s

2 − m = 1, the other two look at representations which have the same infinitesimal
character and lowest K-type as πdet.
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Example 5.30. Let m = 3, s = 2, and r = 6, and consider π11, a representation of O(6, 6) with
lowest K-type Λ2 = (1, 1, 1; 0, 0, 0) (a fine K-type) and infinitesimal character ν2 = (2, 2, 1, 1, 0, 0).
The Langlands parameters are given by MA ∼= O(2, 2) × GL(2,R)2, λd = (0; 0), Ψ = {e1 ± f1},
µ = (0, 0), and ν = (4, 2). Notice that the associated Vogan parameter λa = (0, 0, 0; 0, 0, 0), so
L = O(6, 6), ρ(u ∩ p) and ρ(u ∩ k) are zero as well, and any representation containing Λ2 as a lowest
K-type must be a constituent of a principal series representation. The full principal series will have
a second lowest K-type (0, 0, 0; 1, 1, 1). The particular principal series which has π11 as a constituent
is obtained by inducing the character given by ǫ = (1, 1, 1,−1,−1,−1) and κ = (0, 1, 2, 0, 1, 2) on
MAN = GL(1,R)6 · N to O(6, 6) (this is the character mapping (r1, r2, r3, r4, r5, r6) ∈ (R×)6 to
|r2||r3|2sign(r4)sign(r5)|r5|sign(r6)|r6|2). The constituent containing the other lowest K-type has
Langlands parameters which differ from those of π11 only by the choice of positive roots Ψ (the
corresponding limit of discrete series is antiholomorphic). We can get other representations with
these lowest K-types and the same infinitesimal character by matching the entries of κ with the
entries of ǫ in different ways. In this way (and eliminating duplications by ensuring that the nonparity
condition F-2 of [34] is satisfied) we get precisely three pairwise inequivalent irreducible admissible
representations of O(6, 6) with unique lowest K-type Λ2 and infinitesimal character ν2, namely π11,
π(λd,Ψ, 0, 0, ǫ

′, κ′) with MA ∼= O(2, 2) × GL(1,R)4, ǫ′ = (1, 1,−1,−1) and κ′ = (2, 2, 1, 1), and
π(λd,Ψ, 0, 0, ǫ

′, κ′′) with MA as for the previous representation, and κ′′ = (1, 1, 2, 2).

Once we assume that our Levi factor is MA ∼= O(2, 2) × GL(2,R)2, the remaining parameters
are uniquely determined, and this is the only type of ambiguity which occurs for the Langlands
parameters of representations which have the same infinitesimal character and lowest K-type as π11.

Example 5.31. An ambiguity similar to the one dealt with in Example 5.30 occurs with πdet when
Λ′

s is small, i. e., of the form (2, . . . , 2, 1, . . . , 1; 0, . . . , 0). Let s = 2, m = 3, and r = 6 as before.
Then Λ′

2 = (2, 2, 1; 0, 0, 0), ν2 = (2, 2, 1, 1, 0, 0), and the Langlands parameters of πdet are given by
MA ∼= O(2, 2)× GL(2,R)2, λd = (1; 0), µ = (1, 0), and ν = (1, 4). The Vogan parameter is given by
λa = (1, 1

2 , 0; 1
2 , 0, 0), so there are two more irreducible admissible representations with this lowest

K-type and infinitesimal character, namely with MA ∼= O(2, 2)×GL(2,R)×GL(1,R)2, λd as above,
µ = (1), ν = (3), ǫ = (1,−1), and κ = (2, 0) or (0, 2).

Example 5.32. If Λ′

s is not small as in Example 5.31 then the Levi factor part of the Langlands
parameters is uniquely determined by the lowest K-type and its uniqueness. We get a different kind
of ambiguity from the fact that if s 6= m then MA contains GL(2,R) factors with two different
discrete parameters attached, and there may be more than one way to match continuous parameters
and get the same infinitesimal character. For instance, let s = 4, m = 6, and r = 14. Then Λ′

4 =
(4, 4, 4, 4, 3, 3; 0, 0, 0, 0, 0, 0, 0), ν2 = (6, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 0, 0), and πdet has Langlands parameters
MA = O(2, 4) × GL(2,R)5, λd = (2; 1, 0), µ = (3, 3, 3, 2, 2) and ν = (5, 3, 1, 10, 8). Continuous
parameters (9, 5, 5, 8, 2) or (7, 5, 3, 10, 4) give two more inequivalent representations with the same
lowest K-type and infinitesimal character.

The next result shows how to introduce additional hypotheses to circumvent the ambiguities of
the previous examples.

Theorem 5.33. Let m, r, s, π11 and πdet be as above. Recall the maximal primitive ideal Jmax(νs)
with infinitesimal character νs (Section 2.3).

(1) π11 is the unique irreducible admissible representation of O(2m, r) with annihilator Jmax(νs)
and lowest K-type Λs.

(2) πdet is the unique irreducible admissible representation of O(2m, r) with annihilator Jmax(νs)
and lowest K-type Λ′

s.
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Sketch. We begin by recalling the τ -invariant of an irreducible U(g) module π with regular integral
infinitesimal character. For the purposes of this paragraph, g may be taken to be an arbitrary
complex semisimple Lie algebra. Fix a positive system of roots ∆+ for a Cartan h in g. Let λ denote
a dominant (with respect to ∆+) representative of the infinitesimal character of π. Fix a simple root
α ∈ ∆+ and let λα = λ−〈λ, α∨〉α. Then λα is integral and dominant (with respect to ∆+); moreover,
λ and λα differ by a weight of a finite dimensional representation of g. We may thus consider the
translation functor ψα from λ to λα. The τ -invariant of π, denoted τ(π), is the set of simple α for
which ψα(π) = 0.

Return to our setting and let π be an irreducible admissible representation for O(2m, r). We now
extract a consequence of the classification of primitive ideals in g = so(2m + r,C). Assume π has
infinitesimal character νs and make the standard choices (of Cartan, positive roots ∆+, etc.) so
that the formulas (2.7) and (2.9) give the dominant representative of the infinitesimal character of π.
Since we are assuming the parity of r and s match, νs is integral. The translation principle dictates
the following: there is a regular infinitesimal character with dominant representative νreg

s so that νreg
s

and ν differ by the weight of a finite-dimensional representation of g; and there is a representation
πreg with infinitesimal character νreg

s so that if T denotes the translation functor from νreg
s to ν, then

T (πreg) = π.

Now let Ss denote the set of simple roots α ∈ ∆+ for which νs is not singular, i.e. those simple roots
so that 〈νs, α〉 6= 0. We claim that

Jmax(νs) annihilates π iff Ss = τ(πreg).

This follows from the classification of primitive ideals in U(g). In more detail, the paper [29] gives the
explicit tableau parameters of the primitive ideal Jmax(ν

reg
s ), and from there it is simple to extract

the τ -invariant statement.

Now we sketch how to use the τ -invariant criterion to rule out the ambiguities highlighted in
Examples 5.30–5.32. Our task is to take a representation π (different from π1 and πdet) given by one
of the Langlands parameters in those examples, compute the τ -invariant of πreg, and show that it
differs from Ss. Here is a sketch of how to do that. The papers [32] and [34] explain how to produce
the Langlands parameters of πreg and then to compute the τ -invariant of πreg. (Theorem 4.12 in
[32] is especially relevant.) Then one can see directly that the τ -invariant of πreg is strictly smaller
than Ss. For instance, suppose we encounter the ambiguity of the sort treated in Examples 5.30
and 5.31. In these cases the Levi factor contains more GL(1,R) factors than the Levi factor for π1.
The real roots that arise from these additional GL(1) factors cannot satisfy the parity condition. This
corresponds to saying that the real roots are not in the τ -invariant of πreg, and thus the τ -invariant
is smaller than possible and, in particular, smaller than Ss. The final kind of ambiguity treated in
Example 5.32 is slightly more subtle. One must verify that the alternative matchings of continuous
parameters always lead to a smaller τ -invariant for πreg. Given [32, Theorem 4.12], this is a rather
complicated combinatorial check. We omit the details. ˜

As a corollary, we immediately obtain the Langlands parameters of the double lifts θ(1s) and
θ(dets).

Corollary 5.34. Let m, r, s, π11 and πdet be as above. Then

π1 = θ2(1s) and πdet = θ2(dets).

Proof. Since the double lifts θ(1s) and θ(dets) satisfy the hypothesis of the theorem (with the
annihilator hypothesis explained in the proof of Proposition 4.3), the corollary follows. ˜

The proof of Proposition 4.1 is also now a simple corollary: if there were more than one represen-
tation of the kind described in the proposition, there would be more than one of the kind described
in Theorem 5.33. This contradiction completes the proof. ˜
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