Summer 2014

Rebecca Noonan Heale

Midterm 3 "would-be-In-class-if-there wasn't-a-holiday" Review Problems (No solutions provided, but you can ask about anything before the midterm)

- 1. Find the volume of the region that lies inside the sphere $x^2 + y^2 + z^2 = 64$ and outside the cylinder $x^2 + y^2 = 4$.
- 2. Find the volume of the region that lies under the surface $z = x^2 + y^2$ and above the triangle enclosed by the lines x=5, y=0, and y=8x.
- 3. Evaluate $\int_{(-1,1)}^{(5,5)} y \frac{20}{x^2} dx + x \frac{20}{y^2} dy$.
- 4. Find the volume of the region bounded by the surface $z = x^2 + y^2$, the cylinder $x^2 + y^2 =$ 100 and the xy-plane.
- 5. Find the area of the region inside $r = 8 \sin \theta$ and $r = 8 \cos \theta$.
- 6. Evaluate $\int_C \frac{x+y+z}{5} ds$, where C is the curve x = 3t, $y = 5\cos(4t/5)$, $z = 5\sin(\frac{4t}{5})$, $0 \le t \le 5\pi/4$.
- 7. Find the area of the surface of the parabolic cylinder $z = y^2$ over the triangle in the xyplane with vertices (0,0), (0,4), (4,0).
- 8. Find the volume of the region in the first octant bounded by the coordinate plane and the surface $= 9 - x^2 - y$.
- 9. Write and iterated triple integral in the order dzdydx for the volume of the region enclosed by the paraboloids $z = 50 - x^2 - y^2$ and $z = x^2 + y^2$.
- 10. Use the given transformation to evaluate the integral: u = x + y, v = -2x + y, R is the region bound by the lines y = -x + 1, y = -x + 4, y = 2x + 2, y = 2x + 5. $\iint_R \cos\left(\frac{y-x}{y+x}\right)$.
- 11. Find the mass of a wire of density $\delta(x, y, z) = 4z$ and has the shape of the helix $x = 3 \cos t$, $y = 3 \sin t$, z = 4t.