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Background

The main aim of the research outlined in this talk is to study
properties of R+ where R is a local domain of mixed characteristic.

We will describe recent results in a program to do this by studying
the Fontaine rings of various rings associated to R and using the
Frobenius map on these rings, which are rings of positive
characteristic.

We recall that if R is an integral domain, then R+ is the absolute
integral closure of R; that is, the integral closure of R in the
algebraic closure of its quotient field.
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The basic setup.

Let R0 be a Noetherian local ring of mixed characteristic with
maximal ideal m0 and perfect residue field k . We assume that R0

is a complete integral domain, and let p be the prime number with
p ∈ m0 (and p 6= 0).

Let S0 be a power series ring of the form V [[y2, . . . , yt ]] that maps
onto R0, where V is a complete discrete valuation ring with
maximal ideal generated by p. Let xi be the image of yi for each i ;
we can assume that p(= x1), x2, . . . , xd form a system of
parameters for R0. We will sometimes refer to {x1, . . . , xt} as a set
of generators of R0.
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Let U be a ring of mixed characteristic. The Fontaine Ring of U,
denoted E (U), is the inverse limit of

· · ·U/pU F→ U/pU
F→ U/pU

F→ U/pU,

where F is the Frobenius map.
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Let U be a ring of mixed characteristic. The Fontaine Ring of U,
denoted E (U), is the inverse limit of

· · ·U/pU F→ U/pU
F→ U/pU

F→ U/pU,

where F is the Frobenius map.
The Fontaine ring has the following properties:

1. E (U) is a perfect ring of characteristic p.

2. If U satisfies certain conditions, U can be reconstructed from
E (U) up to p-adic completion.

We will discuss these conditions and how to recover U from E (U).
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Let U be a ring of mixed characteristic. The Fontaine Ring of U,
denoted E (U), is the inverse limit of

· · ·U/pU F→ U/pU
F→ U/pU

F→ U/pU,

where F is the Frobenius map.
The Fontaine ring has the following properties:

1. E (U) is a perfect ring of characteristic p.

2. If U satisfies certain conditions, U can be reconstructed from
E (U) up to p-adic completion.

We will discuss these conditions and how to recover U from E (U).
Remark: An element of E (U) can be represented by a sequence

(u0, u1, u2, . . .)

with ui ∈ U and upi ≡ ui−1 modulo p.
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Recovering U from E (U)

The relation between E (U) and U is carried out through the use of
the ring of Witt vectors. If E is a perfect ring of characteristic p,
the ring of Witt vectors, denoted W (E ), is a ring of mixed
characteristic p such that W (E )/pW (E ) ∼= E , p is a
non-zero-divisor, and W (E ) is complete in the p-adic topology.
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Recovering U from E (U)

The relation between E (U) and U is carried out through the use of
the ring of Witt vectors. If E is a perfect ring of characteristic p,
the ring of Witt vectors, denoted W (E ), is a ring of mixed
characteristic p such that W (E )/pW (E ) ∼= E , p is a
non-zero-divisor, and W (E ) is complete in the p-adic topology.

We have a map
φU : W (E (U))→ Û,

where Û is the p=adic completion of U. It is defined on E (U) by

φU((u0, u1, u2, . . .)) = lim
n→∞

up
n

n .
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Recovering U from E (U)

The relation between E (U) and U is carried out through the use of
the ring of Witt vectors. If E is a perfect ring of characteristic p,
the ring of Witt vectors, denoted W (E ), is a ring of mixed
characteristic p such that W (E )/pW (E ) ∼= E , p is a
non-zero-divisor, and W (E ) is complete in the p-adic topology.

We have a map
φU : W (E (U))→ Û,

where Û is the p=adic completion of U. It is defined on E (U) by

φU((u0, u1, u2, . . .)) = lim
n→∞

up
n

n .

We will discuss conditions for the map φU to be useful below.
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What we are looking for: Almost Cohen-Macaulay Algebras

Let A be a ring between R0 and R+
0 .

We recall that A is Cohen-Macaulay if the local cohomology
H i
m0

(A) is zero for i = 0, . . . , d − 1, where d is the dimension of R0

(and A/m0A 6= 0).
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What we are looking for: Almost Cohen-Macaulay Algebras

Let A be a ring between R0 and R+
0 .

We recall that A is Cohen-Macaulay if the local cohomology
H i
m0

(A) is zero for i = 0, . . . , d − 1, where d is the dimension of R0

(and A/m0A 6= 0).

Definition
The algebra A is almost Cohen-Macaulay if
for every i with 0 ≤ i ≤ d − 1
for every x ∈ H i

m0
(A)

there is a c 6= 0 ∈ A such that c1/p
n
annihilates x for all n (and

c1/p
n
does not annihilate A/m0A for some n).
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In his proof of the Direct Summand Conjecture in dimension 3,
Heitmann showed that R+ is almost Cohen-Macaulay in dimension
3 (mixed characteristic) and showed that this is enough to imply
the Direct Summand Conjecture.
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Review of almost Cohen-Macaulay algebras in positive
characteristic

Let T0 be a Noetherian local domain of positive characteristic.
Then the perfect closure of T0 is almost Cohen-Macaulay, where
the perfect closure is the direct limit of

T0
F→ T0

F→ T0
F→ · · ·

where F is the Frobenius map.

The starting point is that there is a nonzero c that annihilates the
local cohomology of T0 in degrees less than d .

We would like to do something similar in mixed characteristic.
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Outline of a plan to construct almost Cohen-Macaulay
algebras using Fontaine rings

1. Start with a Noetherian ring R0 as above.

2. Adjoin some pnth roots to get a ring R.

3. Take the Fontaine ring E (R).

4. Take the ring of Witt vectors W (E (R)) and divide by a
non-zero-divisor P − p to get a quotient W (E (R))/(P − p).

5. Show that W (E (R)) is almost Cohen-Macaulay and that
there is a map from R0 to W (E (R))/(P − p).
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Recall: For a ring of mixed characteristic U we have a map
φU : W (E (U))→ Û which we want to use to relate properties of
E (U) to properties of U.

An element of E (U) can be represented by a sequence

(u0, u1, u2, . . .)

with ui ∈ U and upi ≡ ui−1 modulo p.

Let p = x1, . . . , xt be a set of generators for R0. Let R be the ring
obtained by adjoining pnth roots of the xi . Then

φR : W (E (R))→ R̂

is surjective.

Note that the element Xi = (xi , x
1/p
i , x

1/p2

i , . . .) satisfies
φR(Xi ) = xi .
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The map φU is never injective in the situation we are considering.
However..

We assume that we have adjoined pnth roots of p and of the xi .
We now let

P(= X1) = (p, p1/p, p1/p
2
, . . . , ).

We then have that φU(P) = p. Hence φU(P − p) = 0 and P − p is
in the kernel of φU .
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The ideal situation: φU induces an isomorphism from
W (E (U))/(P − p) to Û.

Why not just use W (E (R))/(P − p) as our almost
Cohen-Macaulay algebra?

The reason–we would need to have a map from R0 to
W (E (R))/(P − p), which means that every element w with
φR(w) = 0 is a multiple of P − p. More precisely, let E0 be the
subring of W (E (R)) “generated” by V and the Xi . Let I0 be the
kernel of the map induced by φ from E0 to R0. We want

I0 ⊆ (P − p)W (E (R)).
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First Method:
Take a set of generators for I0. Let (a0, a1, . . .) be such a
generator. Then one can solve recursively for xi to get

(a0, a1, . . .) = (P − p)(x0, x1, . . .).

One can derive formulas (very complicated ones) for xi , which are
elements of E0[1/P].
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Second method: Extend R.

Theorem
The following are equivalent.

1. The kernel of φR is generated by P − p.

2. If r ∈ Rp and rp
n ∈ R for some n, then r ∈ R.

3. The kernel of E (R)→ R/pR is generated by P.

The map in (3) sends (r0, r1, . . .) to r0.

We say that R is root closed if it satisfies these properties. Usually
R will not be root closed, so we define the root closure of R to be

C = {r ∈ Rp|rp
n ∈ R for some n}.

C is a subring of Rp.

Paul C. Roberts Fontaine Rings and Local Cohomology



Theorem
The map

φC : W (E (C ))/(P − p)W (E (C ))→ Ĉ

is an isomorphism.

All the elements we got from the first method will be in E (C ).

The ring C can be considered as an analogue of the perfect closure
in positive characteristic.
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Example: Let R0 = V [[x , y , z ]]/(x3 + y3 + z3), and let R be the
ring obtained from R0 by adjoining the pnth roots of p, x , y , and z .
If C is the root closure of R, then

x3/p + y3/p + z3/p

p1/p

is in C but not in R.
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Properties of C/pC

Let the letter α denote a rational number of the form k/pm . We
let

J = ∪α>0p
αC .

Let
T = ∪V [[P1/pn ,X

1/pn

2 , . . . ,X
1/pn

t ]] ⊆W (E (C )).

We have a surjective homomorphism from T to R, and this
induces a homomorphism φ from T/pT to C/pC , where k is the
residue field of V .
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Proposition

If cp ∈ pαC, then c ∈ pα/pC.

In fact, this is really the main property of the root closure.
Suppose that xp ∈ pαC . Then (x/pα/p)p ∈ C , so (x/pα/p)p

n ∈ R
for some n. Hence x ∈ pα/pC .
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Proposition

The map induced by φ from T/pT to C/J is surjective.

Proof Let c be an element of C ; we may assume that c is not in
J. We wish to represent c as the sum of an element in the image
of φ and an element of J.
By the definition of C , we have that c = r/pk for some k and
r ∈ R, and cp

n ∈ R for some n. Since the map is clearly surjective
to R/JRR, where JR is the ideal of R generated by positive
fractional powers of p, we can write

cp
n

= φ(t0)− pbs

for some t0 ∈ T , b > 0 and s ∈ R. Let t = t
1/pn

0 .
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Then

(φ(t)− c)p
n ∼= φ(t)p

n − cp
n ∼= φ(tp

n
)− cp

n ∼= φ(t0)− cp
n ∼= pbs

modulo pC . Thus if we let a be the minimum of b and 1, we can
write

(φ(t)− c)p
n

= pau

for some u ∈ C , and we have[
(φ(t)− c)p

n

pa/pn

]pn
= u

Since C is root closed, this implies that φ(t) ∼= c modulo pa/p
n
.
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Proposition

C/J is the perfect closure of R0/pR0.

Proof We know that the Frobenius map on C/pC , and hence also
on C/J, is surjective. On the other hand, since C is root closed, if
xp is in J, then xp ∈ pαC for some α > 0, so x ∈ pα/pC , and thus
x ∈ J. Thus C/J is perfect.

The fact that it is the perfect closure of R0/pR0 follows essentially
from the fact that we have a map from R0/pR0 to C/J which and
every element of C/J has a power that is in the image.
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The above properties imply that the “associated graded” ring
⊕α≥0pαC/pαJ is almost Cohen-Macaulay.
However, it is not clear whether this fact implies very much about
C itself.
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The final property of C/pC is that it is a limit of Noetherian rings
for which x2, . . . , xd form a system of parameters. This follows
from the fact that C is an integral extension of R0.

Since we have an isomorphism

E (C )/PE (C ) ∼= C/pC ,

all of the above properties hold for E (C )/PE (C ). We would like to
know in addition that E (C ) is a limit of Noetherian rings for which
P,X2, . . . ,Xd form a system of parameters. This would imply that
W (E (C ))/(P − p)W (E (C )) is an almost Cohen-Macaulay algebra
for R0.

Paul C. Roberts Fontaine Rings and Local Cohomology



An Example
Let R0 = V [[x , y , u, v ,w ]]/I , where I is the ideal generated by

1. The 2 by 2 minors of

(
p x y
u v w

)
2. p3 + x3 + y3, p2u + x2v + y2w , pu2 + xv2 + yw2, u3 + v3 +w3.

R0 is a normal non-Cohen-Macaulay domain. One can show using
the first method that the image of H2

m0
(R0) in

H2(W (E (C ))/(P − p) is almost zero.

Paul C. Roberts Fontaine Rings and Local Cohomology



K. Shimomoto has used these methods combined with Hochster’s
method of modifications to construct an algebra A with the
following properties:

1. A/(p, x2, . . . , xd) 6= 0.

2. x2, . . . , xd form a regular sequence on A/pA.

3. p is not nilpotent on A and (0 :A p) is annihilated by pε for all
positive rational epsilon.

It is not known whether A/(p, x2, . . . , xd) is almost zero; if not,
then A is an almost Cohen-Macaulay algebra.
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