Fontaine Rings and Local Cohomology

Paul C. Roberts

September 26, 2010

Paul C. Roberts Fontaine Rings and Local Cohomology

/⊒ > < ≣ >

< ≣ >

Background

The main aim of the research outlined in this talk is to study properties of R^+ where R is a local domain of mixed characteristic.

We will describe recent results in a program to do this by studying the Fontaine rings of various rings associated to R and using the Frobenius map on these rings, which are rings of positive characteristic.

We recall that if R is an integral domain, then R^+ is the absolute integral closure of R; that is, the integral closure of R in the algebraic closure of its quotient field.

回 と く ヨ と く ヨ と

The basic setup.

Let R_0 be a Noetherian local ring of mixed characteristic with maximal ideal \mathfrak{m}_0 and perfect residue field k. We assume that R_0 is a complete integral domain, and let p be the prime number with $p \in \mathfrak{m}_0$ (and $p \neq 0$).

Let S_0 be a power series ring of the form $V[[y_2, \ldots, y_t]]$ that maps onto R_0 , where V is a complete discrete valuation ring with maximal ideal generated by p. Let x_i be the image of y_i for each i; we can assume that $p(=x_1), x_2, \ldots, x_d$ form a system of parameters for R_0 . We will sometimes refer to $\{x_1, \ldots, x_t\}$ as a set of generators of R_0 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Let U be a ring of mixed characteristic. The *Fontaine Ring* of U, denoted E(U), is the inverse limit of

$$\cdots U/pU \xrightarrow{F} U/pU \xrightarrow{F} U/pU \xrightarrow{F} U/pU,$$

where F is the Frobenius map.

イロン イヨン イヨン イヨン

æ

Let U be a ring of mixed characteristic. The *Fontaine Ring* of U, denoted E(U), is the inverse limit of

$$\cdots U/pU \xrightarrow{F} U/pU \xrightarrow{F} U/pU \xrightarrow{F} U/pU,$$

where F is the Frobenius map.

The Fontaine ring has the following properties:

- 1. E(U) is a perfect ring of characteristic p.
- 2. If U satisfies certain conditions, U can be reconstructed from E(U) up to p-adic completion.

We will discuss these conditions and how to recover U from E(U).

白 と く ヨ と く ヨ と

Let U be a ring of mixed characteristic. The *Fontaine Ring* of U, denoted E(U), is the inverse limit of

$$\cdots U/pU \xrightarrow{F} U/pU \xrightarrow{F} U/pU \xrightarrow{F} U/pU,$$

where F is the Frobenius map.

The Fontaine ring has the following properties:

- 1. E(U) is a perfect ring of characteristic p.
- 2. If U satisfies certain conditions, U can be reconstructed from E(U) up to p-adic completion.

We will discuss these conditions and how to recover U from E(U). **Remark:** An element of E(U) can be represented by a sequence

$$(u_0, u_1, u_2, \ldots)$$

with $u_i \in U$ and $u_i^p \equiv u_{i-1}$ modulo p.

Recovering U from E(U)

The relation between E(U) and U is carried out through the use of the ring of Witt vectors. If E is a perfect ring of characteristic p, the ring of Witt vectors, denoted W(E), is a ring of mixed characteristic p such that $W(E)/pW(E) \cong E$, p is a non-zero-divisor, and W(E) is complete in the p-adic topology.

伺 ト イヨト イヨト

Recovering U from E(U)

The relation between E(U) and U is carried out through the use of the ring of Witt vectors. If E is a perfect ring of characteristic p, the ring of Witt vectors, denoted W(E), is a ring of mixed characteristic p such that $W(E)/pW(E) \cong E$, p is a non-zero-divisor, and W(E) is complete in the p-adic topology.

We have a map

$$\phi_U: W(E(U)) \to \hat{U},$$

where \hat{U} is the *p*=adic completion of *U*. It is defined on E(U) by

$$\phi_U((u_0, u_1, u_2, \ldots)) = \lim_{n \to \infty} u_n^{p^n}.$$

向下 イヨト イヨト

Recovering U from E(U)

The relation between E(U) and U is carried out through the use of the ring of Witt vectors. If E is a perfect ring of characteristic p, the ring of Witt vectors, denoted W(E), is a ring of mixed characteristic p such that $W(E)/pW(E) \cong E$, p is a non-zero-divisor, and W(E) is complete in the p-adic topology.

We have a map

$$\phi_U: W(E(U)) \to \hat{U},$$

where \hat{U} is the *p*=adic completion of *U*. It is defined on E(U) by

$$\phi_U((u_0, u_1, u_2, \ldots)) = \lim_{n \to \infty} u_n^{p^n}.$$

We will discuss conditions for the map ϕ_U to be useful below.

向下 イヨト イヨト

What we are looking for: Almost Cohen-Macaulay Algebras

Let A be a ring between R_0 and R_0^+ .

We recall that A is Cohen-Macaulay if the local cohomology $H^i_{\mathfrak{m}_0}(A)$ is zero for $i = 0, \ldots, d-1$, where d is the dimension of R_0 (and $A/\mathfrak{m}_0 A \neq 0$).

・回 と く ヨ と く ヨ と

3

What we are looking for: Almost Cohen-Macaulay Algebras

Let A be a ring between R_0 and R_0^+ .

We recall that A is Cohen-Macaulay if the local cohomology $H^i_{\mathfrak{m}_0}(A)$ is zero for $i = 0, \ldots, d-1$, where d is the dimension of R_0 (and $A/\mathfrak{m}_0 A \neq 0$).

Definition

The algebra A is almost Cohen-Macaulay if for every i with $0 \le i \le d-1$ for every $x \in H^i_{\mathfrak{m}_0}(A)$ there is a $c \ne 0 \in A$ such that c^{1/p^n} annihilates x for all n (and c^{1/p^n} does not annihilate A/\mathfrak{m}_0A for some n).

伺下 イヨト イヨト

In his proof of the Direct Summand Conjecture in dimension 3, Heitmann showed that R^+ is almost Cohen-Macaulay in dimension 3 (mixed characteristic) and showed that this is enough to imply the Direct Summand Conjecture.

Review of almost Cohen-Macaulay algebras in positive characteristic

Let T_0 be a Noetherian local domain of positive characteristic. Then the perfect closure of T_0 is almost Cohen-Macaulay, where the perfect closure is the direct limit of

$$T_0 \xrightarrow{F} T_0 \xrightarrow{F} T_0 \xrightarrow{F} \cdots$$

where F is the Frobenius map.

The starting point is that there is a nonzero c that annihilates the local cohomology of T_0 in degrees less than d.

We would like to do something similar in mixed characteristic.

向下 イヨト イヨト

Outline of a plan to construct almost Cohen-Macaulay algebras using Fontaine rings

- 1. Start with a Noetherian ring R_0 as above.
- 2. Adjoin some p^n th roots to get a ring R.
- 3. Take the Fontaine ring E(R).
- 4. Take the ring of Witt vectors W(E(R)) and divide by a non-zero-divisor P p to get a quotient W(E(R))/(P p).
- 5. Show that W(E(R)) is almost Cohen-Macaulay and that there is a map from R_0 to W(E(R))/(P-p).

イロト イヨト イヨト イヨト

Recall: For a ring of mixed characteristic U we have a map $\phi_U : W(E(U)) \rightarrow \hat{U}$ which we want to use to relate properties of E(U) to properties of U.

An element of E(U) can be represented by a sequence

 (u_0, u_1, u_2, \ldots)

with $u_i \in U$ and $u_i^p \equiv u_{i-1}$ modulo p.

Let $p = x_1, \ldots, x_t$ be a set of generators for R_0 . Let R be the ring obtained by adjoining p^n th roots of the x_i . Then

 $\phi_R: W(E(R)) \to \hat{R}$

is surjective.

Note that the element $X_i = (x_i, x_i^{1/p}, x_i^{1/p^2}, ...)$ satisfies $\phi_R(X_i) = x_i$.

(同) (王) (王)

The map ϕ_U is never injective in the situation we are considering. However..

We assume that we have adjoined p^n th roots of p and of the x_i . We now let

$$P(=X_1) = (p, p^{1/p}, p^{1/p^2}, \ldots,).$$

We then have that $\phi_U(P) = p$. Hence $\phi_U(P-p) = 0$ and P-p is in the kernel of ϕ_U .

・ 同 ト ・ ヨ ト ・ ヨ ト

The ideal situation: ϕ_U induces an isomorphism from W(E(U))/(P-p) to \hat{U} .

Why not just use W(E(R))/(P-p) as our almost Cohen-Macaulay algebra?

The reason-we would need to have a map from R_0 to W(E(R))/(P-p), which means that every element w with $\phi_R(w) = 0$ is a multiple of P-p. More precisely, let E_0 be the subring of W(E(R)) "generated" by V and the X_i . Let I_0 be the kernel of the map induced by ϕ from E_0 to R_0 . We want

 $I_0 \subseteq (P-p)W(E(R)).$

(本部) (本語) (本語) (語)

First Method:

Take a set of generators for I_0 . Let $(a_0, a_1, ...)$ be such a generator. Then one can solve recursively for x_i to get

$$(a_0, a_1, \ldots) = (P - p)(x_0, x_1, \ldots).$$

One can derive formulas (very complicated ones) for x_i , which are elements of $E_0[1/P]$.

Second method: Extend R.

Theorem

The following are equivalent.

- 1. The kernel of ϕ_R is generated by P p.
- 2. If $r \in R_p$ and $r^{p^n} \in R$ for some n, then $r \in R$.
- 3. The kernel of $E(R) \rightarrow R/pR$ is generated by P.

The map in (3) sends (r_0, r_1, \ldots) to r_0 .

We say that R is *root closed* if it satisfies these properties. Usually R will not be root closed, so we define the *root closure* of R to be

$$C = \{r \in R_p | r^{p^n} \in R \text{ for some } n\}.$$

C is a subring of R_p .

Theorem The map

$$\phi_C: W(E(C))/(P-p)W(E(C)) \to \hat{C}$$

is an isomorphism.

All the elements we got from the first method will be in E(C).

The ring C can be considered as an analogue of the perfect closure in positive characteristic.

→ ∃ →

Example: Let $R_0 = V[[x, y, z]]/(x^3 + y^3 + z^3)$, and let R be the ring obtained from R_0 by adjoining the p^n th roots of p, x, y, and z. If C is the root closure of R, then

$$\frac{x^{3/p} + y^{3/p} + z^{3/p}}{p^{1/p}}$$

is in C but not in R.

伺 とう ヨン うちょう

Properties of C/pC

.

Let the letter α denote a rational number of the form k/p^m . We let

$$J=\cup_{\alpha>0}p^{\alpha}C.$$

Let

$$T = \bigcup V[[P^{1/p^n}, X_2^{1/p^n}, \ldots, X_t^{1/p^n}]] \subseteq W(E(C)).$$

We have a surjective homomorphism from T to R, and this induces a homomorphism ϕ from T/pT to C/pC, where k is the residue field of V.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Proposition If $c^p \in p^{\alpha}C$, then $c \in p^{\alpha/p}C$.

In fact, this is really the main property of the root closure. Suppose that $x^p \in p^{\alpha}C$. Then $(x/p^{\alpha/p})^p \in C$, so $(x/p^{\alpha/p})^{p^n} \in R$ for some *n*. Hence $x \in p^{\alpha/p}C$.

∃ >

Proposition

The map induced by ϕ from T/pT to C/J is surjective.

Proof Let c be an element of C; we may assume that c is not in J. We wish to represent c as the sum of an element in the image of ϕ and an element of J.

By the definition of C, we have that $c = r/p^k$ for some k and $r \in R$, and $c^{p^n} \in R$ for some n. Since the map is clearly surjective to R/J_RR , where J_R is the ideal of R generated by positive fractional powers of p, we can write

$$c^{p^n} = \phi(t_0) - p^b s$$

for some $t_0 \in T$, b > 0 and $s \in R$. Let $t = t_0^{1/p^n}$.

伺下 イヨト イヨト

Then

$$(\phi(t)-c)^{p^n} \cong \phi(t)^{p^n} - c^{p^n} \cong \phi(t^{p^n}) - c^{p^n} \cong \phi(t_0) - c^{p^n} \cong p^b s$$

modulo pC. Thus if we let *a* be the minimum of *b* and 1, we can write

$$(\phi(t)-c)^{p^n}=p^a u$$

for some $u \in C$, and we have

$$\left[\frac{(\phi(t)-c)^{p^n}}{p^{a/p^n}}\right]^{p^n} = u$$

Since C is root closed, this implies that $\phi(t) \cong c$ modulo p^{a/p^n} .

向下 イヨト イヨト

Proposition

C/J is the perfect closure of R_0/pR_0 .

Proof We know that the Frobenius map on C/pC, and hence also on C/J, is surjective. On the other hand, since C is root closed, if x^p is in J, then $x^p \in p^{\alpha}C$ for some $\alpha > 0$, so $x \in p^{\alpha/p}C$, and thus $x \in J$. Thus C/J is perfect.

The fact that it is the perfect closure of R_0/pR_0 follows essentially from the fact that we have a map from R_0/pR_0 to C/J which and every element of C/J has a power that is in the image.

・ 同 ト ・ ヨ ト ・ ヨ ト

The above properties imply that the "associated graded" ring $\bigoplus_{\alpha \ge 0} p^{\alpha} C / p^{\alpha} J$ is almost Cohen-Macaulay. However, it is not clear whether this fact implies very much about C itself.

- ∢ ≣ >

The final property of C/pC is that it is a limit of Noetherian rings for which x_2, \ldots, x_d form a system of parameters. This follows from the fact that *C* is an integral extension of R_0 .

Since we have an isomorphism

 $E(C)/PE(C) \cong C/pC$,

all of the above properties hold for E(C)/PE(C). We would like to know in addition that E(C) is a limit of Noetherian rings for which P, X_2, \ldots, X_d form a system of parameters. This would imply that W(E(C))/(P-p)W(E(C)) is an almost Cohen-Macaulay algebra for R_0 .

(1日) (日) (日)

An Example

Let $R_0 = V[[x, y, u, v, w]]/I$, where *I* is the ideal generated by 1. The 2 by 2 minors of $\begin{pmatrix} p & x & y \\ u & v & w \end{pmatrix}$ 2. $p^3 + x^3 + y^3$, $p^2u + x^2v + y^2w$, $pu^2 + xv^2 + yw^2$, $u^3 + v^3 + w^3$. R_0 is a normal non-Cohen-Macaulay domain. One can show using the first method that the image of $H^2_{m_0}(R_0)$ in $H^2(W(E(C))/(P-p)$ is almost zero. K. Shimomoto has used these methods combined with Hochster's method of modifications to construct an algebra A with the following properties:

- 1. $A/(p, x_2, ..., x_d) \neq 0.$
- 2. x_2, \ldots, x_d form a regular sequence on A/pA.
- 3. *p* is not nilpotent on *A* and $(0:_A p)$ is annihilated by p^{ϵ} for all positive rational epsilon.

It is not known whether $A/(p, x_2, ..., x_d)$ is almost zero; if not, then A is an almost Cohen-Macaulay algebra.

▲圖▶ ▲屋▶ ▲屋▶